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Multisender authentication codes allow a group of senders to construct an authenticatedmessage for a receiver such that the receiver
can verify authenticity of the received message. In this paper, we construct multisender authentication codes with sequential model
from symplectic geometry over finite fields, and the parameters and the maximum probabilities of deceptions are also calculated.

1. Introduction

Information security consists of confidentiality and authen-
tication. Confidentiality is to prevent the confidential infor-
mation from decrypting by adversary. The purpose of
authentication is to ensure the sender is real and to verify
that the information is integrated. Digital signature and
authentication codes are two important means of authen-
ticating the information and provide good service in the
network. In practical, digital signature is computationally
secure assuming that the computing power of adversary
is limited and a mathematical problem is intractable and
complex. However, authentication codes are generally safe
(unconditional secure) and relatively simple. In the 1940s, C.
E. Shannon first put forward the concept of perfect secrecy
authentication system using the information theory. In the
1980s, information theory method had been applied to the
problem of authentication by G. J. Simmons; then authenti-
cation codes became the foundation for constructing uncon-
ditionally secure authentication system. In 1974, Gilbert
et al. constructed the first authentication code [1], which is
a landmark in the development of authentication theory.
During the same period, Simmons independently studied
the authentication theory and established three participants
and four participants certification models [2]. The famous
mathematician Wan Zhexian constructed an authentication
code without arbitration from the subspace of the classical

geometry [3]. In the case of transmitter and receiver being
not honest, Ma et al. constructed a series of authentica-
tion codes with arbitration [4–9]. Xing et al. constructed
authentication codes using algebraic curve and nonlinear
functions, respectively [10, 11]. Safavi-Naini and Wang gave
some results onmultireceiver authentication codes [12]. Chen
et al. made great contributions onmultisender authentication
codes from polynomials and matrices [13–19].

With the rapid development of information science,
the traditional one-to-one authentication codes have been
unable to meet the requirements of network communication,
thus making the study of multiuser authentication codes
particularly important. Multiuser authentication code is a
generalization of traditional two-user authentication code.
It can be divided into two cases: one is a sender and
many receivers authentication codes; the other one is many
senders and a receiver authentication codes. We call the
former as multireceiver authentication codes and the latter
as multisender authentication codes. Safavi-Naini R gave
some results on multireceiver authentication codes using
the subspace of the classical geometry, while there are only
some multisender authentication codes using polynomials
and matrices to construct. We present the first construction
multisender authentication code using the subspace of the
classical geometry, specifically symplectic geometry.

The main contribution of our paper is constructing a
multi-sender authentication code using symplectic geometry.
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Furthermore, we calculate the corresponding parameters and
the maximum probabilities of deceptions.

The paper is organised as follows. Section 2 gives the
models of multisender authentication codes. In Section 3, we
provide the calculation formulas on probability of success
in attacks by malicious groups of senders. In Section 4, we
give some definitions and properties on geometry of sym-
plectic groups over finite fields. In Section 5, a construction
of multisender authentication codes with sequential model
from symplectic geometry over finite fields is given; then
the parameters and the maximum probabilities of deceptions
are also calculated. We give a comparison with the other
construction of multisender authentication [19] in Section 6.

2. Models of Multisender Authentication
Codes

We review the concepts of authentication codes which can be
extracted from [20].

Definition 1 (see [20]). A systematic Cartesian authentication
code 𝐶 is a 4-tuple (𝑆, 𝐸, 𝑇; 𝑓), where 𝑆 is the set of source
states, 𝐸 is the set of keys, 𝑇 is the set of authenticators, and
𝑓 : 𝑆 × 𝐸 → 𝑇 is the authentication mapping. The message
space𝑀 = 𝑆 × 𝑇 is the set of all possible messages.

In the actual computer network communications, mul-
tisender authentication codes include sequential models and
simultaneousmodels. Sequential models are that each sender
uses his own encoding rules to encode a source state orderly,
and the last sender sends the encodedmessage to the receiver;
then the receiver receives the message and verifies whether
the message is legal or not. Simultaneous models are that all
senders use their own encoding rules to encode a source state
simultaneously; then the synthesizer forms an authenticated
message and sends it to the receiver; the receiver receives the
message and verifies whether the message is legal or not.

In the following we will give out the working principles
of two modes of multisender authentication codes and the
protocols that the participants should follow.

Definition 2 (see [17]). In sequential model, there are three
participants: a group of senders 𝑈 = {𝑈

1
, 𝑈
2
, . . . , 𝑈

𝑛
}; a

Key Distribution Center (KDC), for the distribution keys to
senders and receiver; a receiver who receives the authen-
ticated message and verifies the message true or not. The
code works as follows: each sender and receiver has their
own Cartesian authentication code, respectively. It is used to
generate part of the message and verify authenticity of the
received message. Sender’s authentication codes are called
branch authentication codes, and receiver’s authentication
code is called channel authentication code. Let (𝑆

𝑖
, 𝐸
𝑖
, 𝑇
𝑖
; 𝑓
𝑖
),

𝑖 = 1, 2, . . . , 𝑛, be the 𝑖th sender’s Cartesian authentication
codes, and let 𝑇

𝑖−1
⊂ 𝑆
𝑖
, 1 ≤ 𝑖 ≤ 𝑛, (𝑆, 𝐸, 𝑇; 𝑓) be the receiver’s

Cartesian authentication code, and let 𝑆 = 𝑆
1
, 𝑇 = 𝑇

𝑖
, 𝜋
𝑖
:

𝐸 → 𝐸
𝑖
be a subkey generation algorithm. For authenticating

a message, the senders and the receiver should comply with
protocols:

(1) KDC randomly selects an 𝑒 ∈ 𝐸 and secretly sends it
to the receiver 𝑅 and sends 𝑒

𝑖
= 𝜋
𝑖
(𝑒) to the 𝑖th sender

𝑈
𝑖
, 𝑖 = 1, 2, . . . , 𝑛;

(2) if the senders would like to send a source state 𝑠 to
the receiver 𝑅, 𝑈

1
calculates 𝑡

1
= 𝑓
1
(𝑠, 𝑒
1
) and then

sends 𝑡
1
to 𝑈
2
through an open channel; 𝑈

2
receives

𝑡
1
and calculates 𝑡

2
= 𝑓
2
(𝑡
1
, 𝑒
2
) and then sends 𝑡

2
to

𝑈
3
through an open channel. In general, 𝑈

𝑖
receives

𝑡
𝑖−1

and calculates 𝑡
𝑖
= 𝑓
𝑖
(𝑡
𝑖−1
, 𝑒
𝑖
) and then sends 𝑡

𝑖
to

𝑈
𝑖+1

through an open channel, 1 < 𝑖 < 𝑛. 𝑈
𝑛
receives

𝑡
𝑛−1

and calculates 𝑡
𝑛
= 𝑓
𝑛
(𝑡
𝑛−1
, 𝑒
𝑛
) and then sends

𝑚 = (𝑠, 𝑡
𝑛
) through an open channel to the receiver 𝑅;

(3) when the receiver receives the message 𝑚 = (𝑠, 𝑡
𝑛
),

he checks the authenticity by verifying whether 𝑡
𝑛
=

𝑓(𝑠, 𝑒) or not. If the equality holds, the message is
regarded as authentic and is accepted. Otherwise, the
message is rejected.

Definition 3 (see [17]). In simultaneous model of a multi-
sender authentication code, there are four participants: a
group of senders 𝑈 = {𝑈

1
, 𝑈
2
, . . . , 𝑈

𝑛
}; a Key Distribution

Center (KDC), for the distribution keys to senders and
receiver; a synthesizer 𝐶 who only runs the trusted synthesis
algorithm; a receiver who receives the authenticated message
and verifies the message true or not. The code works as
follows: each sender and receiver has their own Cartesian
authentication code, respectively. It is used to generate part
of the message and verify the received message. Sender’s
authentication codes are called branch authentication codes,
and receiver’s authentication code is called channel authen-
tication code. Let (𝑆

𝑖
, 𝐸
𝑖
, 𝑇
𝑖
; 𝑓
𝑖
), 𝑖 = 1, 2, . . . , 𝑛, be the

sender’s Cartesian authentication codes, let (𝑆, 𝐸, 𝑇; 𝑓) be the
receiver’s Cartesian authentication code, let 𝑔 : 𝑇

1
×𝑇
2
× ⋅ ⋅ ⋅ ×

𝑇
𝑛
→ 𝑇 be the synthesis algorithm, and let 𝜋

𝑖
: 𝐸 → 𝐸

𝑖
be

a subkey generation algorithm. For authenticating a message,
the senders and the receiver should comply with protocols:

(1) KDC randomly selects a encoding rule 𝑒 ∈ 𝐸 and
secretly sends it to the receiver 𝑅 and sends 𝑒

𝑖
= 𝜋
𝑖
(𝑒)

to the 𝑖th sender 𝑈
𝑖
, 𝑖 = 1, 2, . . . , 𝑛;

(2) if the senders would like to send a source state 𝑠
to the receiver 𝑅, 𝑈

𝑖
computes 𝑡

𝑖
= 𝑓
𝑖
(𝑠, 𝑒
𝑖
), 𝑖 =

1, 2, . . . , 𝑛, and sends 𝑚
𝑖
= (𝑠, 𝑡

𝑖
) (𝑖 = 1, 2, . . . , 𝑛) to

the synthesizer 𝐶 through an open channel;

(3) the synthesizer 𝐶 receives the messages 𝑚
𝑖
= (𝑠, 𝑡

𝑖
),

𝑖 = 1, 2, . . . , 𝑛, and calculates 𝑡 = 𝑔(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) using

the synthesis algorithm 𝑔; then sends message 𝑚 =

(𝑠, 𝑡) to the receiver 𝑅;

(4) when the receiver receives the message 𝑚 = (𝑠, 𝑡),
he checks the authenticity by verifying whether 𝑡 =
𝑓(𝑠, 𝑒) or not. If the equality holds, the message is
regarded as authentic and is accepted. Otherwise, the
message is rejected.
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3. Probabilities of Deceptions

We assume that the arbitrator (KDC) and the synthesizer (C)
are credible; though they know the senders’ and receiver’s
encoding rules, they donot participate in any communication
activities. When transmitter and receiver are disputing, the
arbitrator settles it. At the same time, assume that the system
follows Kerckhoff ’s principle which the other information
of the whole system is public except the actual used keys.
Assume that the source state space 𝑆 and the receiver’s decod-
ing rules space 𝐸

𝑅
are according to a uniform probability

distribution; then the probability distribution of message
space 𝑀 and tag space 𝑇 is determined by the probability
distribution of 𝑆 and 𝐸

𝑅
. In a multisender authentication

system, assume that the whole senders cooperate to form a
valid message; that is, all senders as a whole and receiver are
reliable. But there are some malicious senders which they
together cheat the receiver; the part of senders and receiver
are not credible; they can take impersonation attack and
substitution attack.

Assume that 𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑛
are senders, 𝑅 is a receiver,

and 𝐸
𝑖
is the encoding rules of 𝑈

𝑖
, 1 ≤ 𝑖 ≤ 𝑛. 𝐸

𝑅
is the

decoding rules of receiver 𝑅. 𝐿 = {𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑙
} ⊂ {1, 2, . . . , 𝑛},

𝑙 < 𝑛, 𝑈
𝐿
= {𝑈
𝑖
1

, 𝑈
𝑖
2

, . . . , 𝑈
𝑖
𝑙

}, 𝐸
𝐿
= {𝐸
𝑖
1

, 𝐸
𝑖
2

, . . . , 𝐸
𝑖
𝑙

}.

Impersonation Attack. 𝑈
𝐿
, after receiving their secret keys,

sends a message 𝑚 to receiver. 𝑈
𝐿

is successful if the
receiver accepts it as legitimate message. Denote 𝑃

𝐼
[𝐿] as the

maximum probability of success of the impersonation attack.
It can be expressed as

𝑃
𝐼 [𝐿] = max

𝑒
𝐿
∈𝐸
𝐿

max
𝑚∈𝑀

𝑃 (𝑚 is accepted by 𝑅 | 𝑒
𝐿
) . (1)

Substitution Attack. 𝑈
𝐿
, after observing a legitimate message,

substitutes it with another message 𝑚󸀠. 𝑈
𝐿
is successful if

𝑚
󸀠 is accepted by receiver as authentic. Denote 𝑃

𝑆
[𝐿] as the

maximum probability of success of the substitution attack. It
can be expressed as

𝑃
𝑆 [𝐿] = max

𝑒
𝐿
∈𝐸
𝐿

max
𝑚∈𝑀

max
𝑚
󸀠
̸= 𝑚∈𝑀

𝑃 (𝑚
󸀠is accepted by 𝑅 | 𝑚, 𝑒

𝐿
) .

(2)

4. Symplectic Geometry

In this section, we give some definitions and properties on
geometry of symplectic groups over finite fields, which can
be extracted from [20].

Let F
𝑞
be a finite field with 𝑞 elements, 𝑛 = 2] and define

the 2] × 2] alternate matrix

𝐾 = (
0 𝐼
(])

−𝐼
(])

0
) . (3)

The symplectic group of degree 2] over F
𝑞
, denoted by

𝑆𝑝
2](F𝑞), is defined to be the set of matrices

𝑆𝑝
2] (F𝑞) = {𝑇 | 𝑇𝐾

𝑡

𝑇 = 𝐾} , (4)

with matrix multiplication as its group operation. Let F (2])
𝑞

be
the 2]-dimensional row vector space over F

𝑞
. 𝑆𝑝
2](F𝑞) has an

action on F (2])
𝑞

defined as follows:

F
(2])
𝑞

× 𝑆𝑝
2] (F𝑞) 󳨀→ F

(2])
𝑞
,

((𝑥
1
, 𝑥
2
, . . . , 𝑥

2]) , 𝑇) 󳨀→ (𝑥
1
, 𝑥
2
, . . . , 𝑥

2]) 𝑇.

(5)

The vector space F (2])
𝑞

together with this action of 𝑆𝑝
2](F𝑞) is

called the symplectic space over F
𝑞
.

Let 𝑃 be an 𝑚-dimensional subspace of F (2])
𝑞

. We use the
same latter 𝑃 to denote a matrix representation of 𝑃; that is, 𝑃
is an𝑚×2]matrix of rank𝑚 such that its rows form a basis of
𝑃. The 𝑃𝐾 𝑡𝑃 is alternate. Assume that it is of rank 2𝑠; then 𝑃
is called a subspace of type (𝑚, 𝑠). It is known that subspaces
of type (𝑚, 𝑠) exist in F (2])

𝑞
if and only if

2𝑠 ≤ 𝑚 ≤ ] − 𝑠. (6)

It is also known that subspaces of the same type form an
orbit under 𝑆𝑝

2](F𝑞). Denote by 𝑁(𝑚, 𝑠; 2]) the number of
subspaces of type (𝑚, 𝑠) in F (2])

𝑞
.

Denote by 𝑃⊥ the set of vectors which are orthogonal to
every vector of 𝑃; that is,

𝑃
⊥
= {𝑦 ∈ F

(2])
𝑞

| 𝑦𝐾
𝑡
𝑥 = 0 for all 𝑥 ∈ 𝑃} . (7)

Obviously, 𝑃⊥ is a (2] − 𝑚)-dimensional subspace of F (2])
𝑞

.
Readers can refer to [15] for notations and terminology,

which are not explained, on symplectic geometry of classical
groups over finite fields.

5. Construction

Let F
𝑞
be a finite field with 𝑞 elements. Assume that

1 < 𝑛 < 𝑟 < ]. 𝑈 = ⟨𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
⟩; then 𝑈

⊥
=

⟨𝑒
1
, . . . , 𝑒], 𝑒]+𝑛+1, . . . , 𝑒2]⟩. Let𝑊𝑖 = ⟨𝑒1, . . . , 𝑒𝑖−1, 𝑒𝑖+1, . . . , 𝑒𝑛⟩;

then𝑊
𝑖

⊥
= ⟨𝑒
1
, . . . , 𝑒], 𝑒]+𝑖, 𝑒]+𝑛+1, . . . , 𝑒2]⟩. The set of source

states 𝑆 = {𝑠 | 𝑠 is a subspace of type (2𝑟 − 𝑛, 𝑟 − 𝑛) and
𝑈 ⊂ 𝑠 ⊂ 𝑈

⊥
}; the set of 𝑖th sender’s encoding rules𝐸

𝑖
= {𝑒
𝑖
| 𝑒
𝑖

is a subspace of type (𝑛 + 1, 1),𝑈 ⊂ 𝑒
𝑖
and 𝑒
𝑖
⊥ 𝑊
𝑖
}, 1 ≤ 𝑖 ≤ 𝑛;

the set of receiver’s decoding rules 𝐸
𝑅
= {𝑒
𝑅
| 𝑒
𝑅
is a subspace

of type (2𝑛, 𝑛) and 𝑈 ⊂ 𝑒
𝑅
}; the set of tags 𝑇

𝑖
= {𝑡
𝑖
| 𝑡
𝑖
is a

subspace of type (2𝑟 − 𝑛 + 𝑖, 𝑟 − 𝑛 + 𝑖) and 𝑈 ⊂ 𝑡
𝑖
}, 1 ≤ 𝑖 ≤ 𝑛.

Define the encoding maps:

𝑓
1
: 𝑆 × 𝐸

1
󳨀→ 𝑇
1
, 𝑓

1
(𝑠, 𝑒
1
) = 𝑠 + 𝑒

1
,

𝑓
𝑖
: 𝑇
𝑖−1
× 𝐸
𝑖
󳨀→ 𝑇
𝑖
, 𝑓
𝑖
(𝑡
𝑖−1
, 𝑒
𝑖
) = 𝑡
𝑖−1
+ 𝑒
𝑖
, 2 ≤ 𝑖 ≤ 𝑛.

(8)

Define the decoding map:

𝑓 : 𝑆 × 𝐸
𝑅
󳨀→ 𝑇
𝑛
, 𝑓 (𝑠, 𝑒

𝑅
) = 𝑠 + 𝑒

𝑅
. (9)
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This code works as follows.

(1) Key Distribution. First, the KDC does a list 𝐿 of
senders; assume that 𝐿 = {1, 2, . . . , 𝑛}. Then, the KDC
randomly chooses a subspace 𝑒

𝑅
∈ 𝐸
𝑅
and privately

sends 𝑒
𝑅
to the receiver 𝑅. Last, the KDC randomly

chooses a subspace 𝑒
𝑖
∈ 𝐸
𝑖
and 𝑒
𝑖
⊂ 𝑒
𝑅
, then privately

sends 𝑒
𝑖
to the 𝑖th sender, 1 ≤ 𝑖 ≤ 𝑛.

(2) Broadcast. For a source state 𝑠 ∈ 𝑆, the sender 𝑈
1

calculates 𝑡
1
= 𝑠 + 𝑒

1
and sends (𝑠, 𝑡

1
) to 𝑈

2
. The

sender 𝑈
2
calculates 𝑡

2
= 𝑡
1
+ 𝑒
2
and sends (𝑠, 𝑡

2
) to

𝑈
3
. Finally, the sender𝑈

𝑛
calculates 𝑡

𝑛
= 𝑡
𝑛−1
+ 𝑒
𝑛
and

sends𝑚 = (𝑠, 𝑡
𝑛
) to the receiver 𝑅.

(3) Verification. Since the receiver 𝑅 holds the decoding
rule 𝑒

𝑅
, 𝑅 accepts 𝑚 as authentic if 𝑡

𝑛
= 𝑠 + 𝑒

𝑅
.

Otherwise, it is rejected by 𝑅.

Lemma 4. Let 𝐶 = (𝑆, 𝐸
𝑅
, 𝑇
𝑛
; 𝑓), 𝐶

1
= (𝑆, 𝐸

1
, 𝑇
1
; 𝑓
1
), 𝐶
𝑖
=

(𝑇
𝑖−1
, 𝐸
𝑖
, 𝑇
𝑖
; 𝑓
𝑖
) (2 ≤ 𝑖 ≤ 𝑛); then 𝐶, 𝐶

1
, 𝐶
𝑖
are all Cartesian

authentication codes.

Proof. First, we show that 𝐶 is a Cartesian authentication
code.

(1) For 𝑠 ∈ 𝑆, 𝑒
𝑅
∈ 𝐸
𝑅
. Let

𝑠 = (
𝑈

𝑄
)

𝑛

2 (𝑟 − 𝑛) ,

𝑒
𝑅
= (

𝑈

𝑉
)
𝑛

𝑛.

(10)

From the definition of 𝑠 and 𝑒
𝑅
, we can assume that

(
𝑈

𝑄
)𝐾

𝑡

(
𝑈

𝑄
) = (

0
(𝑛)

0 0

0 0 𝐼
(𝑟−𝑛)

0 −𝐼
(𝑟−𝑛)

0

) ,

(
𝑈

𝑉
)𝐾

𝑡

(
𝑈

𝑉
) = (

0 𝐼
(𝑛)

−𝐼
(𝑛)

0
) .

(11)

Obviously, we have V ∉ 𝑠 for any V ∈ 𝑉 and V ̸= 0. Therefore,

𝑡
𝑛
= 𝑠 + 𝑒

𝑅
= (

𝑈

𝑉

𝑄

) ,

(

𝑈

𝑉

𝑄

)𝐾

𝑡

(

𝑈

𝑉

𝑄

) =(

0 𝐼
(𝑛)

0 0

−𝐼
(𝑛)

0 ∗ ∗

0 ∗ 0 𝐼
(𝑟−𝑛)

0 ∗ −𝐼
(𝑟−𝑛)

0

) .

(12)

From above, 𝑡
𝑛
is a subspace of type (2𝑟, 𝑟) and 𝑈 ⊂ 𝑡

𝑛
; that

is, 𝑡
𝑛
∈ 𝑇
𝑛
.

(2) For 𝑡
𝑛
∈ 𝑇
𝑛
, 𝑡
𝑛
is a subspace of type (2𝑟, 𝑟) containing

𝑈. So there is subspace 𝑉 ⊂ 𝑡
𝑛
, satisfying

(
𝑈

𝑉
)𝐾

𝑡

(
𝑈

𝑉
) = (

0 𝐼
(𝑛)

−𝐼
(𝑛)

0
) . (13)

Then, we can assume that 𝑡
𝑛
= (
𝑈

𝑉

𝑄
), satisfying

(

𝑈

𝑉

𝑄

)𝐾

𝑡

(

𝑈

𝑉

𝑄

) =(

0 𝐼
(𝑛)

0 0

−𝐼
(𝑛)

0 0 0

0 0 0 𝐼
(𝑟−𝑛)

0 0 −𝐼
(𝑟−𝑛)

0

) . (14)

Let 𝑠 = ( 𝑈
𝑄
); then 𝑠 is a subspace of type (2𝑟 − 𝑛, 𝑟 − 𝑛) and

𝑈 ⊂ 𝑠 ⊂ 𝑈
⊥; that is, 𝑠 ∈ 𝑆 is a source state. For any V ∈ 𝑉 and

V ̸= 0, we have V ∉ 𝑠 and 𝑉 ∩ 𝑈⊥ = {0}. Therefore, 𝑡
𝑛
∩ 𝑈
⊥
=

(
𝑈

𝑄
) = 𝑠. Let 𝑒

𝑅
= ( 𝑈
𝑉
); then 𝑒

𝑅
is a transmitter’s encoding

rule satisfying 𝑡
𝑛
= 𝑠 + 𝑒

𝑅
.

If 𝑠󸀠 is another source state contained in 𝑡
𝑛
, then𝑈 ⊂ 𝑠󸀠 ⊂

𝑈
⊥. Therefore, 𝑠󸀠 ⊂ 𝑡

𝑛
∩ 𝑈
⊥
= 𝑠, while dim 𝑠

󸀠
= dim 𝑠, so

𝑠
󸀠
= 𝑠. That is, 𝑠 is the uniquely source state contained in 𝑡

𝑛
.

Similarly, we can show that 𝐶
1
and 𝐶

𝑖
(2 ≤ 𝑖 ≤ 𝑛) are also

Cartesian authentication code.

From Lemma 4, we know that such construction of
multisender authentication codes is reasonable. Next we
compute the parameters of this code.

Lemma 5. The number of the source states is |𝑆| = 𝑁(2(𝑟 −

𝑛), 𝑟 − 𝑛; 2(] − 𝑛)).

Proof. For any 𝑠 ∈ 𝑆, since 𝑈 ⊂ 𝑠 ⊂ 𝑈⊥, 𝑠 has the form

𝑠 = (
𝐼
(𝑛)

0 0 0

0 𝑃
2

0 𝑃
4

)
𝑛

2 (𝑟 − 𝑛)

𝑛 ] − 𝑛 𝑛 ] − 𝑛,
(15)

where (𝑃
2
, 𝑃
4
) is a subspace of type (2(𝑟 − 𝑛), 𝑟 − 𝑛) in the

symplectic space 𝐹2(]−𝑛)
𝑞

. Therefore, the number of the source
states is |𝑆| = 𝑁(2(𝑟 − 𝑛), 𝑟 − 𝑛; 2(] − 𝑛)).

Lemma 6. The number of the 𝑖th sender’s encoding rules is
|𝐸
𝑖
| = 𝑞
2(]−𝑛).

Proof. For any 𝑒
𝑖
∈ 𝐸
𝑖
, 𝑒
𝑖
is a subspace of type (𝑛 +

1, 1) containing 𝑈 and 𝑒
𝑖
is orthogonal to 𝑊

𝑖
. So we can

assume that 𝑒
𝑖
=
𝑡
(𝑒
1
, . . . , 𝑒

𝑛
, 𝑢), where𝑢 = (𝑥

1
𝑥
2
⋅ ⋅ ⋅ 𝑥

2]).
Obviously, 𝑥

1
= ⋅ ⋅ ⋅ = 𝑥

𝑛
= 𝑥]+1 = ⋅ ⋅ ⋅ = 𝑥]+𝑖−1 = 𝑥]+𝑖+1 =

⋅ ⋅ ⋅ = 𝑥]+𝑛 = 0, 𝑥]+𝑖 = 1, and 𝑥
𝑛+1
, . . . , 𝑥], 𝑥]+𝑛+1, . . . , 𝑥2]

arbitrarily. Therefore, |𝐸
𝑖
| = 𝑞
2(]−𝑛).

Lemma7. Thenumber of the receiver’s decoding rules is |𝐸
𝑅
| =

𝑞
2𝑛(]−𝑛).

Proof. For any 𝑒
𝑅
∈ 𝐸
𝑅
, since 𝑒

𝑅
is a subspace of type (2𝑛, 𝑛)

containing 𝑈, 𝑒
𝑅
has the form

𝑒
𝑅
= (

𝐼
(𝑛)

0 0 0

0 𝑄
2
𝐼
(𝑛)

𝑄
4

)
𝑛

𝑛

𝑛 ] − 𝑛 𝑛 ] − 𝑛,
(16)

where 𝑄
2
, 𝑄
4
are arbitrary matrices. Therefore, |𝐸

𝑅
| =

𝑞
2𝑛(]−𝑛).
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Lemma 8. (1)The number of decoding rules 𝑒
𝑅
contained in 𝑡

𝑛

is 𝑞2𝑛(𝑟−𝑛);
(2) the number of the tags is |𝑇

𝑛
| = 𝑞
2𝑛(]−𝑟)

𝑁(2(𝑟 − 𝑛), 𝑟 −

𝑛; 2(] − 𝑛)).

Proof. (1) For any 𝑡
𝑛
∈ 𝑇
𝑛
, 𝑡
𝑛
is a subspace of type (2𝑟, 𝑟) and

𝑈 ⊂ 𝑡
𝑛
. We assume that 𝑡

𝑛
has the form

𝑡
𝑛

= (

𝐼
(𝑛)

0 0 0 0 0

0 𝐼
(𝑟−𝑛)

0 0 0 0

0 0 0 𝐼
(𝑛)

0 0

0 0 0 0 𝐼
(𝑟−𝑛)

0

)

𝑛

𝑟 − 𝑛

𝑛

𝑟 − 𝑛

𝑛 𝑟 − 𝑛 ] − 𝑟 𝑛 𝑟 − 𝑛 ] − 𝑟.
(17)

If 𝑒
𝑅
⊂ 𝑡
𝑛
, then we can assume that

𝑒
𝑅
= (

𝐼
(𝑛)

0 0 0 0 0

0 𝑅
2

0 𝐼
(𝑛)

𝑅
5

0
)
𝑛

𝑛

𝑛 𝑟 − 𝑛 ] − 𝑟 𝑛 𝑟 − 𝑛 ] − 𝑟,
(18)

where 𝑅
2
, 𝑅
5
are arbitrary matrices.Therefore, the number of

𝑒
𝑅
contained in 𝑡

𝑛
is 𝑞2𝑛(𝑟−𝑛).

(2)We know that a tag contains only one source state and
the number of decoding rules 𝑒

𝑅
contained in 𝑡

𝑛
is 𝑞2𝑛(𝑟−𝑛).

Therefore, we have |𝑇
𝑛
| = |𝑆||𝐸

𝑅
|/𝑞
2𝑛(𝑟−𝑛)

= 𝑞
2𝑛(]−𝑟)

𝑁(2(𝑟 −

𝑛), 𝑟 − 𝑛; 2(] − 𝑛)).

Theorem 9. The parameters of the above constructed multi-
sender authentication code are

|𝑆| = 𝑁 (2 (𝑟 − 𝑛) , 𝑟 − 𝑛; 2 (] − 𝑛)) ;

󵄨󵄨󵄨󵄨𝐸𝑖
󵄨󵄨󵄨󵄨 = 𝑞
2(]−𝑛)

;

󵄨󵄨󵄨󵄨𝐸𝑅
󵄨󵄨󵄨󵄨 = 𝑞
2𝑛(]−𝑛)

;

󵄨󵄨󵄨󵄨𝑇𝑛
󵄨󵄨󵄨󵄨 = 𝑞
2𝑛(]−𝑟)

𝑁(2 (𝑟 − 𝑛) , 𝑟 − 𝑛; 2 (] − 𝑛)) .

(19)

Without loss of generality, we can assume that 𝑈
𝐿
=

{𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑙
}, 𝐸
𝐿
= {𝐸
1
× ⋅ ⋅ ⋅ × 𝐸

𝑙
}, where 𝑙 < 𝑛.

Lemma 10. For any 𝑒
𝐿
= (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑙
) ∈ 𝐸
𝐿
, the number of

𝑒
𝑅
containing 𝑒

𝐿
is 𝑞2(𝑛−𝑙)(]−𝑛).

Proof. For any 𝑒
𝐿
= (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑙
) ∈ 𝐸
𝐿
, we can assume that

𝑒
𝐿
= (

𝐼
(𝑙)

0 0 0 0 0

0 𝐼
(𝑛−𝑙)

0 0 0 0

0 0 𝑃
3

𝐼
(𝑙)
0 𝑃

6

)

𝑙

𝑛 − 𝑙

𝑙

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑛 − 𝑙 ] − 𝑛.

(20)

If 𝑒
𝐿
⊂ 𝑒
𝑅
, then 𝑒

𝑅
has the form

𝑒
𝑅
= (

𝐼
(𝑙)

0 0 0 0 0

0 𝐼
(𝑛−𝑙)

0 0 0 0

0 0 𝑃
3

𝐼
(𝑙)

0 𝑃
6

0 0 𝑃
󸀠

3
0 𝐼
(𝑛−𝑙)

𝑃
󸀠

6

)

𝑙

𝑛 − 𝑙

𝑙

𝑛 − 𝑙

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑛 − 𝑙 ] − 𝑛,

(21)

where 𝑃󸀠
3
, 𝑃󸀠
6
are arbitrary matrices. Therefore, the number of

𝑒
𝑅
containing 𝑒

𝐿
is 𝑞2(𝑛−𝑙)(]−𝑛).

Lemma 11. For any 𝑡
𝑛
∈ 𝑇
𝑛
and 𝑒
𝐿
= (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑙
) ∈ 𝐸
𝐿
, the

number of 𝑒
𝑅
contained in 𝑡

𝑛
and containing 𝑒

𝐿
is 𝑞2(𝑛−𝑙)(𝑟−𝑛).

Proof. For any 𝑡
𝑛
∈ 𝑇
𝑛
, 𝑡
𝑛
is a subspace of type (2𝑟, 𝑟) and

𝑈 ⊂ 𝑡
𝑛
. We assume that 𝑡

𝑛
has the form

𝑡
𝑛
= (

𝐼
(𝑛)

0 0 0 0 0

0 𝐼
(𝑟−𝑛)

0 0 0 0

0 0 0 𝐼
(𝑛)

0 0

0 0 0 0 𝐼
(𝑟−𝑛)

0

)

𝑛

𝑟 − 𝑛

𝑛

𝑟 − 𝑛

𝑛 𝑟 − 𝑛 ] − 𝑟 𝑛 𝑟 − 𝑛 ] − 𝑟.

(22)

If 𝑒
𝐿
⊂ 𝑡
𝑛
, assume that 𝑒

𝐿
has the form

𝑒
𝐿
= (

𝐼
(𝑙)

0 0 0 0 0 0 0

0 𝐼
(𝑛−𝑙)

0 0 0 0 0 0

0 0 𝑅
3

0 𝐼
(𝑙)

0 𝑅
7

0

)

𝑙

𝑛 − 𝑙

𝑙

𝑙 𝑛 − 𝑙 𝑟 − 𝑛 V − 𝑟 𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟.

(23)

If 𝑒
𝑅
⊂ 𝑡
𝑛
and 𝑒
𝐿
⊂ 𝑒
𝑅
, then

𝑒
𝑅
= (

𝐼
(𝑙)

0 0 0 0 0 0 0

0 𝐼
(𝑛−𝑙)

0 0 0 0 0 0

0 0 𝑅
3

0 𝐼
(𝑙)

0 𝑅
7

0

0 0 𝑅
󸀠

3
0 0 𝐼

(𝑛−𝑙)
𝑅
󸀠

7
0

)

𝑙

𝑛 − 𝑙

𝑙

𝑛 − 𝑙

𝑙 𝑛 − 𝑙 𝑟 − 𝑛 V − 𝑟 𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟,

(24)
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where 𝑅󸀠
3
, 𝑅󸀠
7
are arbitrary matrices.Therefore, the number of

𝑒
𝑅
contained in 𝑡

𝑛
and containing 𝑒

𝐿
is 𝑞2(𝑛−𝑙)(𝑟−𝑛).

Lemma 12. Assume that 𝑡
𝑛
∈ 𝑇
𝑛
and 𝑡󸀠
𝑛
∈ 𝑇
𝑛
are two distinct

tags which are decoded by receiver’s decoding rule 𝑒
𝑅
. 𝑠
1
and 𝑠
2

contained in 𝑡
𝑛
and 𝑡󸀠
𝑛
, respectively. Let 𝑠

0
= 𝑠
1
∩𝑠
2
, dim 𝑠

0
= 𝑘;

then 𝑛 ≤ 𝑘 ≤ 2𝑟 − 𝑛 − 1; the number of 𝑒
𝑅
contained in 𝑡

𝑛
∩ 𝑡
󸀠

𝑛

and containing 𝑒
𝐿
is 𝑞(𝑛−𝑙)(𝑘−𝑛).

Proof. Since 𝑡
𝑛
= 𝑠
1
+ 𝑒
𝑅
, 𝑡󸀠
𝑛
= 𝑠
2
+ 𝑒
𝑅
and 𝑡
𝑛
̸= 𝑡
󸀠

𝑛
, then 𝑠

1
̸= 𝑠
2
.

And for any 𝑠 ∈ 𝑆, 𝑈 ⊂ 𝑠, therefore, 𝑛 ≤ 𝑘 ≤ 2𝑟 − 𝑛 − 1.
Assume that 𝑠󸀠

𝑖
is the complementary subspace of 𝑠

0
in the 𝑠

𝑖
;

then 𝑠
𝑖
= 𝑠
0
+𝑠
󸀠

𝑖
(𝑖 = 1, 2). Because of 𝑡

𝑛
= 𝑠
1
+𝑒
𝑅
= 𝑠
0
+𝑠
󸀠

1
+𝑒
𝑅
,

𝑡
󸀠

𝑛
= 𝑠
2
+𝑒
𝑅
= 𝑠
0
+𝑠
󸀠

2
+𝑒
𝑅
and 𝑠
1
= 𝑡
𝑛
∩𝑈
⊥, 𝑠
2
= 𝑡
󸀠

𝑛
∩𝑈
⊥, we know

𝑠
0
= (𝑡
𝑛
∩𝑈
⊥
)∩(𝑡
󸀠

𝑛
∩𝑈
⊥
) = 𝑡
𝑛
∩𝑡
󸀠

𝑛
∩𝑈
⊥
= 𝑠
1
∩𝑡
󸀠

𝑛
= 𝑠
2
∩𝑡
𝑛
, and

𝑡
𝑛
∩𝑡
󸀠

𝑛
= (𝑠
1
+𝑒
𝑅
)∩𝑡
󸀠

𝑛
= (𝑠
0
+𝑠
󸀠

1
+𝑒
𝑅
)∩𝑡
󸀠

𝑛
= ((𝑠
0
+𝑒
𝑅
)+𝑠
󸀠

1
)∩𝑡
󸀠

𝑛
.

Since 𝑠
0
+ 𝑒
𝑅
⊆ 𝑡
󸀠

𝑛
, then 𝑡

𝑛
∩ 𝑡
󸀠

𝑛
= (𝑠
0
+ 𝑒
𝑅
) + (𝑠
󸀠

1
∩ 𝑡
󸀠

𝑛
), while

𝑠
󸀠

1
∩ 𝑡
󸀠

𝑛
⊆ 𝑠
1
∩ 𝑡
󸀠

𝑛
= 𝑠
0
, so 𝑡
𝑛
∩ 𝑡
󸀠

𝑛
= 𝑠
0
+ 𝑒
𝑅
.

From the definition of the 𝑡
𝑛
and 𝑡󸀠
𝑛
, we assume that

𝑡
𝑛
= (

𝐼
(𝑛)

0 0 0

0 𝑃
22

0 0

0 0 𝐼
(𝑛)

0

0 0 0 𝑃
44

)

𝑛

𝑟 − 𝑛

𝑛

𝑟 − 𝑛

𝑛 ] − 𝑛 𝑛 ] − 𝑛,

𝑡
󸀠

𝑛
= (

𝐼
(𝑛)

0 0 0

0 𝑃
󸀠

22
0 0

0 0 𝐼
(𝑛)

0

0 0 0 𝑃
󸀠

44

)

𝑛

𝑟 − 𝑛

𝑛

𝑟 − 𝑛

𝑛 ] − 𝑛 𝑛 ] − 𝑛.

(25)

Let

𝑡
𝑛
∩ 𝑡
󸀠

𝑛
= (

𝐼
(𝑛)

0 0 0

0 𝑃
2

0 0

0 0 𝐼
(𝑛)

0

0 0 0 𝑃
4

)

𝑛

𝑟 − 𝑛

𝑛

𝑟 − 𝑛

𝑛 ] − 𝑛 𝑛 ] − 𝑛.

(26)

And from above we know that 𝑡
𝑛
∩𝑡
󸀠

𝑛
= 𝑠
0
+𝑒
𝑅
; then dim (𝑡

𝑛
∩

𝑡
󸀠

𝑛
) = 𝑘 + 𝑛; therefore,

dim(
0 𝑃
2
0 0

0 0 0 𝑃
4

) = 𝑘 − 𝑛. (27)

For any 𝑒
𝐿
⊂ 𝑡
𝑛
∩ 𝑡
󸀠

𝑛
, we assume that

𝑒
𝐿
= (

𝐼
(𝑙)

0 0 0 0 0

0 𝐼
(𝑛−𝑙)

0 0 0 0

0 0 𝑅
3

𝐼
(𝑙)
0 𝑅

6

)

𝑙

𝑛 − 𝑙

𝑙

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑛 − 𝑙 ] − 𝑛.

(28)

If 𝑒
𝑅
⊂ 𝑡
𝑛
∩ 𝑡
󸀠

𝑛
and 𝑒
𝐿
⊂ 𝑒
𝑅
, then 𝑒

𝑅
has the form

𝑒
𝑅
= (

𝐼
(𝑙)

0 0 0 0 0

0 𝐼
(𝑛−𝑙)

0 0 0 0

0 0 𝑅
3

𝐼
(𝑙)

0 𝑅
6

0 0 𝑅
󸀠

3
0 𝐼
(𝑛−𝑙)

𝑅
󸀠

6

)

𝑙

𝑛 − 𝑙

𝑙

𝑛 − 𝑙

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑛 − 𝑙 ] − 𝑛.

(29)

So, every row of (0 𝑅
󸀠

3
0 𝑅
󸀠

6
) is the linear combination of

(
0 𝑃
2
0 0

0 0 0 𝑃
4

). Therefore, the number of 𝑒
𝑅
contained in 𝑡

𝑛
∩ 𝑡
󸀠

𝑛

and containing 𝑒
𝐿
is 𝑞(𝑛−𝑙)(𝑘−𝑛).

Theorem 13. In the constructed multi-sender authentication
codes, the maximum probabilities of success for impersonation
attack and substitution attack from 𝑈

𝐿
on the receiver 𝑅 are

𝑃
𝐼
(𝐿) =

1

𝑞2(𝑛−𝑙)(]−𝑟)
, 𝑃

𝑆
(𝐿) =

1

𝑞(𝑛−𝑙)
. (30)

Proof. (1) Impersonation Attack. 𝑈
𝐿
, after receiving their

secret keys, sends a message 𝑚 to 𝑅. 𝑈
𝐿
is successful if the

receiver accepts it as authentic. Therefore,

𝑃
𝐼
(𝐿) = max

𝑒
𝐿
∈𝐸
𝐿

max
𝑚∈𝑀

{

󵄨󵄨󵄨󵄨{𝑒𝑅 ∈ 𝐸𝑅 | 𝑒𝐿 ⊂ 𝑒𝑅, 𝑒𝑅 ⊂ 𝑡}
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨{𝑒𝑅 ∈ 𝐸𝑅 | 𝑒𝐿 ⊂ 𝑒𝑅}
󵄨󵄨󵄨󵄨

}

=
𝑞
2(𝑛−𝑙)(𝑟−𝑛)

𝑞2(𝑛−𝑙)(]−𝑛)

=
1

𝑞2(𝑛−𝑙)(]−𝑟)
.

(31)

(2) Substitution Attack. 𝑅
𝐿
, after observing a message 𝑚

that is transmitted by the sender, replaces 𝑚 with another
message 𝑚󸀠. 𝑅

𝐿
is successful if 𝑚󸀠 is accepted by 𝑅 as

authentic. Therefore,
𝑃
𝑆
(𝐿)

=max
𝑒
𝐿
∈𝐸
𝐿

max
𝑚∈𝑀

max
𝑚 ̸=𝑚

󸀠
∈𝑀

{

󵄨󵄨󵄨󵄨󵄨
{𝑒
𝑅
∈ 𝐸
𝑅
| 𝑒
𝐿
⊂ 𝑒
𝑅
, 𝑒
𝑅
⊂ 𝑡, 𝑒
𝑅
⊂ 𝑡
󸀠
}
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨{𝑒𝑅 ∈ 𝐸𝑅 | 𝑒𝐿 ⊂ 𝑒𝑅, 𝑒𝑅 ⊂ 𝑡}
󵄨󵄨󵄨󵄨

}

= max
𝑛≤𝑘≤2𝑟−𝑛−1

𝑞
(𝑛−𝑙)(𝑘−𝑛)

𝑞2(𝑛−𝑙)(𝑟−𝑛)

=
1

𝑞(𝑛−𝑙)
.

(32)

6. The Advantage of the Constructed
Authentication Code

The security of an authentication code could be measured
by the maximum probabilities of deceptions. The smaller the
probability of successful attack, the higher the security of the
authentication codes. Now let us compare the security of our
constructed authentication code with the known one [19].

The constructed authentication code in [19] is also a
multisender authentication code from symplectic geometry
over finite fields, but which is in simultaneous model. If
we choose the parameters 𝑛, 𝑛󸀠, 𝑟, and ] with 1 < 𝑛 <

𝑛
󸀠
< 𝑟 < ], 𝑛 > (𝑟/2), and 𝑛

󸀠
− 𝑛 > ] − 𝑟, from

Table 1 we see that the maximum probabilities of deceptions
of our construction are smaller than the construction in
[19]. Therefore, compared with the construction in [19], our
construction is more efficient.
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Table 1: (𝑛 > 𝑟/2, 𝑛󸀠 − 𝑛 > ] − 𝑟).

Constructions [19] Size relation Ours
The number of senders 𝑛 = 𝑛

The number of attackers 𝑙, 1 ≤ 𝑙 < 𝑛 = 𝑙, 1 ≤ 𝑙 < 𝑛

The parameters of codes
|𝑆| 𝑁(2(𝑟 − 𝑛), 𝑟 − 𝑛; 2(] − 𝑛)) = 𝑁(2(𝑟 − 𝑛), 𝑟 − 𝑛; 2(] − 𝑛))
󵄨󵄨󵄨󵄨𝐸𝑖
󵄨󵄨󵄨󵄨 𝑞

2(]−𝑛)
= 𝑞

2(]−𝑛)

󵄨󵄨󵄨󵄨𝐸𝑅
󵄨󵄨󵄨󵄨 𝑞

2𝑛
󸀠
(]−𝑛󸀠)

> 𝑞
2𝑛(]−𝑛)

|𝑇| 𝑁(2(𝑟 − 𝑛), 𝑟 − 𝑛; 2(] − 𝑛))𝑞2𝑛
󸀠
(]−𝑟−𝑛󸀠+𝑛)

< 𝑁(2(𝑟 − 𝑛), 𝑟 − 𝑛; 2(] − 𝑛))𝑞2𝑛(]−𝑟)

The probabilities of deceptions
𝑃
𝐼
(𝐿)

1

𝑞2(𝑛
󸀠
−𝑙)(]+𝑛−𝑛󸀠−𝑟)−(𝑛󸀠−𝑛)(𝑛−𝑙)

>
1

𝑞2(𝑛−𝑙)(]−𝑟)

𝑃
𝑆
(𝐿)

1

𝑞(𝑛
󸀠
−𝑙)(2𝑛−2𝑛

󸀠
+1)+(𝑛

󸀠
−𝑛)(𝑛−𝑙)

>
1

𝑞𝑛−𝑙
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