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This paper is concerned with one kind of delayed stochastic linear-quadratic optimal control problems with state constraints. The
control domain is not necessarily convex and the control variable does not enter the diffusion coefficient. Necessary conditions in
the form of maximum principle as well as sufficient conditions are established.

1. Introduction

In the classical case, many random phenomena are described
by stochastic differential equations (SDEs), such as the
evolution of the stock prices. However, there also exist many
phenomena which are characteristic of past dependence;
that is, their present value depends not only on the present
situation but also on the past history. Such models may be
identified as stochastic differential delay equations (SDDEs).
SDDEs have a wide range of applications in physics, biology,
engineering, economics, and finance. See [1–4] and the
references therein.

A stochastic control system whose state function is
described by the solution of an SDDE is called a delayed
stochastic system. This kind of stochastic control problem
appears widely in different research fields; see, for example,
[3, 5]. It is worth pointing out that the delayed responses
make it more difficult to deal with the system, not only for
the infinite dimensional problem, but also for the absence of
Itô’s formula to deal with the delayed part of the trajectory.

One fundamental research direction for stochastic opti-
mal control problems is to establish necessary optimality
conditions—Pontryagin maximum principle. By the duality
between linear SDEs and backward stochastic differential
equations (BSDEs), stochastic maximum principle for for-
ward, backward, and forward-backward systems has been
studied by many authors, including Peng [6, 7], Wu [8, 9], Xu
[10], and Yong [11]. Recently, Peng and Yang [12] introduced

a new type of BSDEs called anticipated BSDEs of the follow-
ing form:
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(1)

in which the coefficient 𝑓 contains not only the values of
solutions of present but also those of the future. A duality
between linear SDDEs and anticipatedBSDEswas established
in [12], which gave a newway to study themaximumprinciple
for delayed stochastic control problems. Along this line, [13]
studied the maximum principle for delayed stochastic opti-
mal control problems inwhich the control domain is assumed
to be convex and both the control variable and its delay
part enter the diffusion coefficient. After that, [14] studied
the optimal control problem in which the control system is
described by a fully coupled anticipated forward-backward
stochastic differential delayed equation, and then [15] gener-
alized [13] to the case when the system involves both contin-
uous and impulse controls and the coefficients are random.

In practice, sometimes state constraints are inevitably
encountered in stochastic optimal control problems; see, for
example, [6, 10, 16, 17]. However, little attention was paid to
the study of delayed stochastic control problem with state
constraints by means of anticipated BSDEs.

It is well known that the linear-quadratic (LQ) optimal
control problem is an extremely important class of optimal
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control problems; it can model many problems in applica-
tions andmany nonlinear control problems can be reasonably
approximated by the LQ problems. This paper is concerned
with a delayed stochastic LQ optimal control problem, in
which the control system evolves by a linear SDDE and
the cost functional has a quadratic criterion. We assume
that the control domain is not necessarily convex and the
control variable does not enter the diffusion coefficient. The
coefficients may be random, and the delays enter both the
state and the control variables. Besides, the terminal value of
the state process is imposed to satisfy the following constraint:
E𝐿(𝑋(𝑇)) = 0. Making use of Ekeland’s variational principle
and the duality between linear SDDEs and anticipatedBSDEs,
we establish necessary optimality conditions of themaximum
principle type. Sufficient optimality conditions are also pre-
sented, which helps find optimal controls.

Firstly, this paper involves many derivation details which
were omitted in most existing literature. Secondly, when
𝐿 ≡ 0, the state constraint disappears and the results in
this paper degenerate to the corresponding ones without state
constraints. Besides, in [6, 10], the function 𝐿(𝑥) is assumed
to have linear growth, while 𝐿 is allowed to have quadratic
growth in this paper. Thirdly, we can study unbounded
control domain case. However, it is worth pointing out
that when we apply Ekeland’s variational principle to deal
with the case when there are state constraints, we need
the continuity of the state process 𝑋(⋅) and the lower
semicontinuity of a penalty functional 𝐽

𝜌
(V(⋅)) in the con-

trol variable V(⋅), which is impossible to prove when the
control domain is unbounded. To overcome this difficulty,
we adopt a convergence technique inspired by Tang and
Li [16]. To be precise, we first study the optimal control
problem with bounded control domain, and then extend the
results to the case with unbounded control domain using
a convergence technique. This method was also used in
[9].

In the classical LQ optimal control problem, a state
feedback form of the optimal control can be obtained by
virtue of the Riccati equations; for stochastic LQ problems
with delays, see [18, 19]. On the one hand, we make use of
the maximum principle method in this paper to investigate
necessary conditions satisfied by the optimal control, which is
different from the method of Riccati equations. Secondly, the
study of LQ problems via Riccati equations is mostly carried
on under the assumption that the admissible control can
take values on the whole space, while we can study bounded
control domain case as well as nonconvex control domain
case in this paper.

The organization of our paper is as follows. In Section 2,
we give the formulation of the problem. Section 3 is devoted
to the study of the maximum principle when the control
domain is bounded. In Section 4, we prove the maximum
principle as well as the sufficient optimality condition for
general control domain case.

2. Formulation of the Problem

Let (Ω,F,P) be a probability space and E the expectation
with respect to P. {𝑊

𝑡
, 𝑡 ≥ 0} is a one-dimensional standard

Brownian motion, and {F
𝑡
, 𝑡 ≥ 0} is its natural filtration

augmentedwith theP-null sets ofF. Let us denote by 𝐿2(F
𝑡
)

the set of real-valued F
𝑡
-measurable random variables 𝜉’s

such that E|𝜉|2 < ∞. For 𝑎 < 𝑏, we denote by 𝑀2(𝑎, 𝑏) the
set of one-dimensional progressively measurable processes
{𝜙(𝑡), 𝑎 ≤ 𝑡 ≤ 𝑏} such that E∫
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2
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|𝜓(𝑡)|

2
] < ∞.

In this paper, we only consider one-dimensional case for
simplicity, and the results can be extended to multidimen-
sional case without difficulty. Throughout this paper, we use
𝐶 and 𝐶

1
, 𝐶

2
, . . . to represent positive constants which can be

different from line to line.
Assume that 𝑇 is a positive constant, and 𝛿

1
and 𝛿

2
are

two nonnegative constants. Let𝑈 be a nonempty set inR. We
denote byU the set of feasible controls, which is the collection
of progressively measurable processes V(𝑡) : Ω × [−𝛿

2
, 𝑇] →

𝑈 satisfying

‖V (⋅)‖2 ≜ E∫
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2
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The control system considered in this paper evolves by the
following linear SDDE:
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continuous.The coefficients (𝐴𝑖
⋅
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𝑖

⋅
, 𝐶

𝑖

⋅
), 𝑖 = 1, 2, are bounded

progressively measurable processes, which are assumed to
vanish outside [0, 𝑇].

Let usmention that the initial path 𝜉
⋅
is independent of the

control V(⋅), since V(⋅) can affect𝑋(𝑡) only for 𝑡 ≥ 0. It is easy to
check that SDDE (3) admits a unique solution𝑋(⋅) ∈ 𝑆

2
(0, 𝑇)

for any V(⋅) ∈ U (for this, one can see Theorem 2.2 in [13] or
Theorem 2.1 in [15]).

In addition, we require that the state process𝑋(⋅) satisfies
the following constraint:

E𝐿 (𝑋 (𝑇)) = 0, (4)

where 𝐿(𝑥) : Ω × R → R satisfies that 𝐿(𝑥) is F
𝑇
-

measurable for all 𝑥 ∈ R, E|𝐿(0)| < ∞, and 𝐿 is continuously
differentiable with |𝐿

𝑥
(𝑥)| ≤ 𝐶(1 + |𝑥|). Under these

assumptions, 𝐿 has a quadratic growth: |𝐿(𝑥)| ≤ 𝐶(1+|𝐿(0)|+

|𝑥|

2
).
If V(⋅) ∈ U also satisfies the state constraint (4), then V(⋅)

is called an admissible control. The set of admissible controls
is denoted byUad.
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The cost functional is given as follows:
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time-varying coefficients (𝐼

𝑖

⋅
,𝑀

𝑖

⋅
), 𝑖 = 1, 2, are nonnega-

tive bounded progressively measurable processes which are
assumed to vanish outside [0, 𝑇]. It is easy to see that the
functional 𝐽 is well defined onU.

The objective of the optimal control problem is to mini-
mize 𝐽(V(⋅)) over Uad. An admissible control 𝑢∗(⋅) ∈ Uad is
called optimal if it satisfies 𝐽(𝑢∗(⋅)) = infV(⋅)∈Uad

𝐽(V(⋅)). We
use𝑋∗(⋅) to denote the optimal trajectory.

Let us define a metric 𝑑 onU by

𝑑 (V (⋅) , 𝑢 (⋅)) ≜ E∫

𝑇

−𝛿
2

𝜒V(𝑡) ̸= 𝑢(𝑡)𝑑𝑡, (6)

where 𝜒 is an indicator function, that is, 𝜒
𝐸
= 1, if 𝐸 holds,

and 𝜒

𝐸
= 0 otherwise. It is well known that (U, 𝑑) is a

complete metric space.
Wewill need the following Ekeland’s variational principle.

Lemma 1. Let (𝑆, 𝑑) be a complete metric space and 𝐹 : 𝑆 →

R lower semicontinuous and bounded from below. Assume that
V𝜀 ∈ 𝑆 satisfies 𝐹(V𝜀) ≤ infV∈𝑆𝐹(V) + 𝜀 for some 𝜀 > 0. Then
for any 𝜆 > 0, there exists V𝜆 ∈ 𝑆 such that 𝐹(V𝜆) ≤ 𝐹(V𝜀),
𝑑(V𝜆, V𝜀) ≤ 𝜆, and 𝐹(V𝜆) ≤ 𝐹(V) + (𝜀/𝜆)𝑑(V, V𝜆) for any V ∈ 𝑆.

3. Maximum Principle in the Case When 𝑈 Is
Bounded in R

In this section, we only consider the case when the control
domain 𝑈 is a bounded set in R. Let us denote by 𝑋V

(⋅) the
trajectory corresponding to V(⋅) ∈ U.

The following resultswill play a crucial role in this section.

Lemma 2. There exists 𝐶 > 0, such that for any V(⋅), 𝑢(⋅) ∈ U,
it holds that
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Proof. Recall that the coefficients are bounded and the con-
trol domain 𝑈 is bounded. Let us first prove (7). By the basic

inequality, the Cauchy-Schwartz inequality, and the BDG
inequality we have, for 0 ≤ 𝑟 ≤ 𝑇,
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Then by a change of variables we get
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So, (7) can be obtained by theGronwall inequality.Then result
(8) is obvious. Next, let us prove (9). Denote ̂
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Using a change of variables gives
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Then applying theGronwall inequality leads to (9). Finally we
prove (10). Firstly, since
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by (7) and (9), applying the Cauchy-Schwartz inequality gives
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In the same way, we can use a change of variables to get
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Thus, (10) can be obtained.
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admissible control set Uad. In other words, we are able to
get rid of the sate constraint by introducing such a penalty
functional. It is obvious that 𝐽

𝜌
(𝑢

∗
(⋅)) = 𝜌 and 𝐽

𝜌
(V(⋅)) > 0

for any V(⋅) ∈ U. Thus, 𝐽
𝜌
(𝑢

∗
(⋅)) ≤ infV(⋅)∈U𝐽𝜌(V(⋅)) + 𝜌. The

following lemma shows that 𝐽
𝜌
(V(⋅)) : U → R is continuous.

Lemma 3. There exists 𝐶 > 0 such that |𝐽
𝜌
(V(⋅)) − 𝐽

𝜌
(𝑢(⋅))| ≤

𝐶𝑑(V(⋅), 𝑢(⋅))1/4 holds for any V(⋅), 𝑢(⋅) ∈ U.

Proof. Since (𝐴 − 𝐵)

2
≤ |𝐴

2
− 𝐵

2
| for 𝐴, 𝐵 > 0, we have

󵄨

󵄨

󵄨

󵄨

󵄨

𝐽

𝜌
(V (⋅)) − 𝐽

𝜌
(𝑢 (⋅))

󵄨

󵄨

󵄨

󵄨

󵄨

2

≤

󵄨

󵄨

󵄨

󵄨

󵄨

𝐽

2

𝜌
(V (⋅)) − 𝐽

2

𝜌
(𝑢 (⋅))

󵄨

󵄨

󵄨

󵄨

󵄨

≤

̂

𝐽

1
+

̂

𝐽

2
,

(19)

where

̂

𝐽

1
=

󵄨

󵄨

󵄨

󵄨

󵄨

[E𝐿 (𝑋
V
(𝑇))]

2

− [E𝐿 (𝑋
𝑢
(𝑇))]

2󵄨
󵄨

󵄨

󵄨

󵄨

,

̂

𝐽

2
=

󵄨

󵄨

󵄨

󵄨

󵄨

[𝐽 (V (⋅)) − 𝐽 (𝑢

∗
(⋅)) + 𝜌]

2

−[𝐽 (𝑢 (⋅)) − 𝐽 (𝑢

∗
(⋅)) + 𝜌]

2󵄨
󵄨

󵄨

󵄨

󵄨

.

(20)

We first consider ̂𝐽
1
. On the one hand, by the growth condi-

tion of 𝐿, we can use (7) to get |E[𝐿(𝑋V
(𝑇))+𝐿(𝑋

𝑢
(𝑇))]| ≤ 𝐶.

On the other hand, since
󵄨

󵄨

󵄨

󵄨

E [𝐿 (𝑋

V
(𝑇)) − 𝐿 (𝑋

𝑢
(𝑇))]

󵄨

󵄨

󵄨

󵄨

≤ 𝐶E [(1 +

󵄨

󵄨

󵄨

󵄨

𝑋

V
(𝑇)

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝑋

𝑢
(𝑇)

󵄨

󵄨

󵄨

󵄨

)

󵄨

󵄨

󵄨

󵄨

𝑋

V
(𝑇) − 𝑋

𝑢
(𝑇)

󵄨

󵄨

󵄨

󵄨

] ,

(21)

by (7) and (9), we can use the Cauchy-Schwartz inequality to
get

󵄨

󵄨

󵄨

󵄨

E [𝐿 (𝑋

V
(𝑇)) − 𝐿 (𝑋

𝑢
(𝑇))]

󵄨

󵄨

󵄨

󵄨

≤ 𝐶𝑑(V (⋅) , 𝑢 (⋅))1/2. (22)

Thus,

̂

𝐽

1
=

󵄨

󵄨

󵄨

󵄨

E [𝐿 (𝑋

V
(𝑇)) + 𝐿 (𝑋

𝑢
(𝑇))]

󵄨

󵄨

󵄨

󵄨

×

󵄨

󵄨

󵄨

󵄨

E [𝐿 (𝑋

V
(𝑇)) − 𝐿 (𝑋

𝑢
(𝑇))]

󵄨

󵄨

󵄨

󵄨

≤ 𝐶𝑑(V (⋅) , 𝑢 (⋅))1/2.

(23)

Next, from (8) it follows that |𝐽(V(⋅))+𝐽(𝑢(⋅))−2𝐽(𝑢∗(⋅))+2𝜌| ≤
𝐶, so by (10) we have

̂

𝐽

2
=

󵄨

󵄨

󵄨

󵄨

𝐽 (V (⋅)) + 𝐽 (𝑢 (⋅)) − 2𝐽 (𝑢

∗
(⋅)) + 2𝜌

󵄨

󵄨

󵄨

󵄨

× |𝐽 (V (⋅)) − 𝐽 (𝑢 (⋅))|

≤ 𝐶𝑑(V (⋅) , 𝑢 (⋅))1/2.

(24)

Thus |𝐽2
𝜌
(V(⋅)) − 𝐽

2

𝜌
(𝑢(⋅))| ≤ 𝐶𝑑(V(⋅), 𝑢(⋅))1/2. So |𝐽

𝜌
(V(⋅)) −

𝐽

𝜌
(𝑢(⋅))| ≤ 𝐶𝑑(V(⋅), 𝑢(⋅))1/4.

Now applying Lemma 1 leads to the existence of V
𝜌
(⋅) ∈ U

such that

𝐽

𝜌
(V
𝜌
(⋅)) ≤ 𝐽

𝜌
(𝑢

∗
(⋅)) = 𝜌, (25)

𝑑 (V
𝜌
(⋅) , 𝑢

∗
(⋅)) ≤

√
𝜌, (26)

𝐽

𝜌
(V
𝜌
(⋅)) ≤ 𝐽

𝜌
(V (⋅)) +

√
𝜌𝑑 (V (⋅) , V

𝜌
(⋅)) , ∀V (⋅) ∈ U.

(27)

In what follows, let us first derive the necessary conditions for
V
𝜌
(⋅) and then take 𝜌 ↓ 0 to get proper conditions for 𝑢∗(⋅).
For any 𝜏 ∈ [0, 𝑇) and V(⋅) ∈ U, let us define

V𝜖
𝜌
(𝑡) = {

V (𝑡) , if 𝜏 ≤ 𝑡 ≤ 𝜏 + 𝜖,

V
𝜌
(𝑡) , otherwise,

(28)

where 𝜖 > 0 is small enough such that we can always assume
that 𝜏 + 𝜖 ≤ 𝑇. It is obvious that V𝜖

𝜌
(⋅) ∈ U. Let us point out

that we cannot get V𝜖
𝜌
(⋅) ∈ Uad even if V

𝜌
(⋅) ∈ Uad. This also

shows why the functional 𝐽
𝜌
is defined on U rather than on

Uad. It is easy to see that

𝑑 (V
𝜌
(⋅) , V𝜖
𝜌
(⋅)) ≤ 𝜖. (29)

Then, by (27),

𝐽

𝜌
(V𝜖
𝜌
(⋅)) − 𝐽

𝜌
(V
𝜌
(⋅)) ≥ −

√
𝜌𝜖. (30)

Let𝑋
𝜌
(⋅),𝑋𝜖
𝜌
(⋅) be the trajectories corresponding to V

𝜌
(⋅),

V𝜖
𝜌
(⋅), respectively. We introduce the following variational

equation:

𝑑𝑋

1

𝜌
(𝑡) = [𝐴

1

𝑡
𝑋

1

𝜌
(𝑡) + 𝐴

2

𝑡
𝑋

1

𝜌
(𝑡 − 𝛿

1
)

+ 𝐵

1

𝑡
(V𝜖
𝜌
(𝑡) − V

𝜌
(𝑡))

+𝐵

2

𝑡
(V𝜖
𝜌
(𝑡 − 𝛿

2
) − V
𝜌
(𝑡 − 𝛿

2
))] 𝑑𝑡

+ [𝐶

1

𝑡
𝑋

1

𝜌
(𝑡) + 𝐶

2

𝑡
𝑋

1

𝜌
(𝑡 − 𝛿

1
)] 𝑑𝑊

𝑡
,

0 ≤ 𝑡 ≤ 𝑇,

𝑋

1

𝜌
(𝑡) = 0, −𝛿

1
≤ 𝑡 ≤ 0.

(31)

It is easy to check that this equation admits a unique solution
𝑋

1

𝜌
(⋅) ∈ 𝑆

2
(0, 𝑇). Moreover, we have the following.
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Lemma 4. There exists 𝐶 > 0, which is independent of 𝜖, such
that

E[ sup
0≤𝑡≤𝑇

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

1

𝜌
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

] ≤ 𝐶𝜖

2
. (32)

Proof. By the basic inequality, the Cauchy-Schwartz inequal-
ity, and the BDG inequality, we can use a change of variables
to get, for 0 ≤ 𝑟 ≤ 𝑇,

E[ sup
0≤𝑡≤𝑟

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

1

𝜌
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

]

≤ 𝐶∫

𝑟

0

E[ sup
0≤𝑡≤𝑠

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

1

𝜌
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

]𝑑𝑠 + 𝐶E(∫
𝑇

−𝛿
2

𝜒V𝜖
𝜌
(𝑡) ̸= V

𝜌
(𝑡)
𝑑𝑡)

2

.

(33)

By the definition of V𝜖
𝜌
(⋅), we have

∫

𝑇

−𝛿
2

𝜒V𝜖
𝜌
(𝑡) ̸= V

𝜌
(𝑡)
𝑑𝑡 = ∫

𝜏+𝜖

𝜏

𝜒V𝜖
𝜌
(𝑡) ̸= V

𝜌
(𝑡)
𝑑𝑡. (34)

Then by (29), applying the Cauchy-Schwartz inequality gives

E(∫
𝑇

−𝛿
2

𝜒V𝜖
𝜌
(𝑡) ̸= V

𝜌
(𝑡)
𝑑𝑡)

2

≤ 𝜖E∫

𝜏+𝜖

𝜏

𝜒V𝜖
𝜌
(𝑡) ̸= V

𝜌
(𝑡)
𝑑𝑡 ≤ 𝜖𝑑 (V

𝜌
(⋅) , V𝜖
𝜌
(⋅)) ≤ 𝜖

2
.

(35)

Finally, the result can be derived by the Gronwall inequality
applied to (33).

Let us denote ̃𝑋(⋅) = 𝑋

𝜖

𝜌
(⋅) − 𝑋

𝜌
(⋅) − 𝑋

1

𝜌
(⋅). Then it’s easy

to check that ̃𝑋(⋅) satisfies

𝑑

̃

𝑋 (𝑡) = [𝐴

1

𝑡
̃

𝑋 (𝑡) + 𝐴

2

𝑡
̃

𝑋 (𝑡 − 𝛿

1
)] 𝑑𝑡

+ [𝐶

1

𝑡
̃

𝑋 (𝑡) + 𝐶

2

𝑡
̃

𝑋 (𝑡 − 𝛿

1
)] 𝑑𝑊

𝑡
, 0 ≤ 𝑡 ≤ 𝑇,

̃

𝑋 (𝑡) = 0, −𝛿

1
≤ 𝑡 ≤ 0.

(36)

By the existence and uniqueness of the solution for this
equation, we have ̃𝑋(𝑡) = 0, a.s., a.e.That is, for a.e. 𝑡 ∈ [0, 𝑇],
P—a.s.,

𝑋

𝜖

𝜌
(𝑡) − 𝑋

𝜌
(𝑡) − 𝑋

1

𝜌
(𝑡) = 0. (37)

Lemma 5. We have

𝐽

2

𝜌
(V𝜖
𝜌
(⋅)) − 𝐽

2

𝜌
(V
𝜌
(⋅))

= 2E𝐿 (𝑋
𝜌
(𝑇)) × E [𝐿

𝑥
(𝑋

𝜌
(𝑇))𝑋

1

𝜌
(𝑇)]

+ 2Γ [𝐽 (V
𝜌
(⋅)) − 𝐽 (𝑢

∗
(⋅)) + 𝜌] + 𝑜 (𝜖) ,

(38)

where Γ is defined by

Γ = E {𝑁𝑋

𝜌
(𝑇)𝑋

1

𝜌
(𝑇)

+ ∫

𝑇

0

[𝐼

1

𝑡
𝑋

𝜌
(𝑡) 𝑋

1

𝜌
(𝑡) + 𝐼

2

𝑡
𝑋

𝜌
(𝑡 − 𝛿

1
)𝑋

1

𝜌
(𝑡 − 𝛿

1
)

+

1

2

𝑀

1

𝑡
((V𝜖
𝜌
(𝑡))

2

− (V
𝜌
(𝑡))

2

)

+

1

2

𝑀

2

𝑡
((V𝜖
𝜌
(𝑡 − 𝛿

2
))

2

− (V
𝜌
(𝑡 − 𝛿

2
))

2

)] 𝑑𝑡} .

(39)

Proof. It is obvious that 𝐽2
𝜌
(V𝜖
𝜌
(⋅)) − 𝐽

2

𝜌
(V
𝜌
(⋅)) = 𝐽

1
+ 𝐽

2
, where

𝐽

1
= [E𝐿 (𝑋

𝜖

𝜌
(𝑇))]

2

− [E𝐿 (𝑋
𝜌
(𝑇))]

2

,

𝐽

2
= [𝐽 (V𝜖

𝜌
(⋅)) − 𝐽 (𝑢

∗
(⋅)) + 𝜌]

2

− [𝐽 (V
𝜌
(⋅)) − 𝐽 (𝑢

∗
(⋅)) + 𝜌]

2

.

(40)

Firstly, 𝐽
1
− 2E𝐿(𝑋

𝜌
(𝑇)) × E[𝐿

𝑥
(𝑋

𝜌
(𝑇))𝑋

1

𝜌
(𝑇)] = 𝐽

11
+ 𝐽

12
,

where

𝐽

11
= (E [𝐿 (𝑋

𝜖

𝜌
(𝑇)) − 𝐿 (𝑋

𝜌
(𝑇))])

2

,

𝐽

12
= 2E𝐿 (𝑋

𝜌
(𝑇))

× E [𝐿 (𝑋

𝜖

𝜌
(𝑇)) − 𝐿 (𝑋

𝜌
(𝑇)) − 𝐿

𝑥
(𝑋

𝜌
(𝑇))𝑋

1

𝜌
(𝑇)] .

(41)

On the one hand, since
󵄨

󵄨

󵄨

󵄨

󵄨

E [𝐿 (𝑋

𝜖

𝜌
(𝑇)) − 𝐿 (𝑋

𝜌
(𝑇))]

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶E [(1 +

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝜖

𝜌
(𝑇)

󵄨

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝜌
(𝑇)

󵄨

󵄨

󵄨

󵄨

󵄨

)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝜖

𝜌
(𝑇) − 𝑋

𝜌
(𝑇)

󵄨

󵄨

󵄨

󵄨

󵄨

] ,

(42)

by (7), (32), and (37), we can use the Cauchy-Schwartz
inequality to get 𝐽

11
= 𝑜(𝜖). On the other hand, we can use the

Cauchy-Schwartz inequality and the dominated convergence
theorem to derive 𝐽

12
= 𝑜(𝜖). Thus

𝐽

1
= 2E𝐿 (𝑋

𝜌
(𝑇)) × E [𝐿

𝑥
(𝑋

𝜌
(𝑇))𝑋

1

𝜌
(𝑇)] + 𝑜 (𝜖) . (43)

Next we consider 𝐽
2
. On the one hand, by (32) and (37) it’s

easy to check that

𝐽 (V𝜖
𝜌
(⋅)) − 𝐽 (V

𝜌
(⋅)) = Γ + 𝐶𝜖

2
. (44)

On the other hand, by (29) and (32) we can use the Cauchy-
Schwartz inequality to derive |Γ| ≤ 𝐶𝜖, and thus

󵄨

󵄨

󵄨

󵄨

󵄨

𝐽 (V𝜖
𝜌
(⋅)) − 𝐽 (V

𝜌
(⋅))

󵄨

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

Γ + 𝐶𝜖

2󵄨
󵄨

󵄨

󵄨

󵄨

≤ 𝐶𝜖. (45)
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So, from the fact that |𝐽(V
𝜌
(⋅)) − 𝐽(𝑢

∗
(⋅)) + 𝜌| ≤ 𝐶 and

𝐽

2
− 2Γ [𝐽 (V

𝜌
(⋅)) − 𝐽 (𝑢

∗
(⋅)) + 𝜌]

= [𝐽 (V𝜖
𝜌
(⋅)) − 𝐽 (V

𝜌
(⋅))]

2

+ 2 [𝐽 (V𝜖
𝜌
(⋅)) − 𝐽 (V

𝜌
(⋅)) − Γ]

× [𝐽 (V
𝜌
(⋅)) − 𝐽 (𝑢

∗
(⋅)) + 𝜌] ,

(46)

we have |𝐽
2
− 2Γ[𝐽(V

𝜌
(⋅)) − 𝐽(𝑢

∗
(⋅)) + 𝜌]| ≤ 𝐶𝜖

2, and thus

𝐽

2
= 2Γ [𝐽 (V

𝜌
(⋅)) − 𝐽 (𝑢

∗
(⋅)) + 𝜌] + 𝑜 (𝜖) . (47)

The proof is complete.

Let us introduce the following Hamiltonian:

𝐻(𝑡, 𝑥, 𝑥

𝛿
, 𝑞, 𝑘, V, V

𝛿
, 𝛼, 𝛾)

= 𝑏 (𝑡, 𝑥, 𝑥

𝛿
, V, V
𝛿
) 𝑞 + 𝜎 (𝑡, 𝑥, 𝑥

𝛿
) 𝑘

+ 𝛾𝑙 (𝑡, 𝑥, 𝑥

𝛿
, V, V
𝛿
) .

(48)

The following is the maximum principle for the delayed
stochastic LQ control problemwith bounded control domain.

Theorem 6. Assume that𝑈 is a bounded set inR.Then for the
optimal control 𝑢∗(⋅), there exist (𝛼∗, 𝛾∗) ∈ R2 satisfying

󵄨

󵄨

󵄨

󵄨

𝛼

∗󵄨
󵄨

󵄨

󵄨

2

+

󵄨

󵄨

󵄨

󵄨

𝛾

∗󵄨
󵄨

󵄨

󵄨

2

= 1,

(49)

and the solution (𝑄

∗
(⋅), 𝐾

∗
(⋅)) ∈ 𝑆

2
(0, 𝑇) × 𝑀

2
(0, 𝑇) of the

following adjoint equation:

𝑑𝑄

∗
(𝑡) = − {𝐴

1

𝑡
𝑄

∗
(𝑡) + 𝐶

1

𝑡
𝐾

∗
(𝑡) + 𝛾

∗
𝐼

1

𝑡
𝑋

∗
(𝑡)

+ E
F
𝑡
[𝐴

2

𝑡+𝛿
1

𝑄

∗
(𝑡 + 𝛿

1
) + 𝐶

2

𝑡+𝛿
1

𝐾

∗
(𝑡 + 𝛿

1
)

+𝛾

∗
𝐼

2

𝑡+𝛿
1

𝑋

∗
(𝑡)]} 𝑑𝑡 + 𝐾

∗
(𝑡) 𝑑𝑊

𝑡
,

0 ≤ 𝑡 ≤ 𝑇,

𝑄

∗
(𝑇) = 𝛼

∗
𝐿

𝑥
(𝑋

∗
(𝑇)) + 𝛾

∗
𝑁𝑋

∗
(𝑇) ,

𝑄

∗
(𝑡) = 0, 𝐾

∗
(𝑡) = 0, 𝑇 < 𝑡 ≤ 𝑇 + 𝛿

1
,

(50)

such that

H (𝑡, V) ≥ H (𝑡, 𝑢

∗
(𝑡)) , ∀V ∈ 𝑈,

𝑎.𝑒. 𝑡 ∈ [0, 𝑇] , P—𝑎.𝑠.,

(51)

whereH is defined by

H (𝑡, V) = 𝐻 (Θ

∗
(𝑡) , V, 𝑢∗ (𝑡 − 𝛿

2
) , 𝛼

∗
, 𝛾

∗
)

+ E
F
𝑡
[𝐻 (Θ

∗
(𝑡 + 𝛿

2
) , 𝑢

∗
(𝑡 + 𝛿

2
) , V, 𝛼∗, 𝛾∗)]

(52)

with Θ∗(𝑡) = (𝑡, 𝑋

∗
(𝑡), 𝑋

∗
(𝑡 − 𝛿

1
), 𝑄

∗
(𝑡), 𝐾

∗
(𝑡)).

Proof. From (29) it follows that 𝑑(V𝜖
𝜌
(⋅), V
𝜌
(⋅)) → 0 as 𝜖 ↓ 0.

So by Lemma 3 we have 𝐽
𝜌
(V𝜖
𝜌
(⋅)) → 𝐽

𝜌
(V
𝜌
(⋅)) > 0 as 𝜖 ↓ 0.

By Lemma 5 and (30), we have

𝛼

𝜖

𝜌
E [𝐿

𝑥
(𝑋

𝜌
(𝑇))𝑋

1

𝜌
(𝑇)] + 𝛾

𝜖

𝜌
Γ +

√
𝜌𝜖 + 𝑜 (𝜖) ≥ 0, (53)

where

𝛼

𝜖

𝜌
=

2E𝐿 (𝑋
𝜌
(𝑇))

𝐽

𝜌
(V𝜖
𝜌
(⋅)) + 𝐽

𝜌
(V
𝜌
(⋅))

,

𝛾

𝜖

𝜌
=

2 [𝐽 (V
𝜌
(⋅)) − 𝐽 (𝑢

∗
(⋅)) + 𝜌]

𝐽

𝜌
(V𝜖
𝜌
(⋅)) + 𝐽

𝜌
(V
𝜌
(⋅))

.

(54)

Besides, it’s easy to check that lim
𝜖↓0

(|𝛼

𝜖

𝜌
|

2
+ |𝛾

𝜖

𝜌
|

2
) = 1.

Therefore, there exists a subsequence, still denoted by (𝛼𝜖
𝜌
, 𝛾

𝜖

𝜌
),

such that

lim
𝜖↓0

(𝛼

𝜖

𝜌
, 𝛾

𝜖

𝜌
) = (𝛼

𝜌
, 𝛾

𝜌
) , (55)

for some (𝛼
𝜌
, 𝛾

𝜌
), with

󵄨

󵄨

󵄨

󵄨

󵄨

𝛼

𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

2

+

󵄨

󵄨

󵄨

󵄨

󵄨

𝛾

𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

2

= 1.

(56)

Let us introduce the following equation:

𝑑𝑄

𝜖

𝜌
(𝑡) = − {𝐴

1

𝑡
𝑄

𝜖

𝜌
(𝑡) + 𝐶

1

𝑡
𝐾

𝜖

𝜌
(𝑡) + 𝛾

𝜖

𝜌
𝐼

1

𝑡
𝑋

𝜌
(𝑡)

+ E
F
𝑡
[𝐴

2

𝑡+𝛿
1

𝑄

𝜖

𝜌
(𝑡 + 𝛿

1
) + 𝐶

2

𝑡+𝛿
1

𝐾

𝜖

𝜌
(𝑡 + 𝛿

1
)

+𝛾

𝜖

𝜌
𝐼

2

𝑡+𝛿
1

𝑋

𝜌
(𝑡)]} 𝑑𝑡 + 𝐾

𝜖

𝜌
(𝑡) 𝑑𝑊

𝑡
,

0 ≤ 𝑡 ≤ 𝑇,

𝑄

𝜖

𝜌
(𝑇) = 𝛼

𝜖

𝜌
𝐿

𝑥
(𝑋

𝜌
(𝑇)) + 𝛾

𝜖

𝜌
𝑁𝑋

𝜌
(𝑇) ,

𝑄

𝜖

𝜌
(𝑡) = 0, 𝐾

𝜖

𝜌
(𝑡) = 0, 𝑇 < 𝑡 ≤ 𝑇 + 𝛿

1
.

(57)

It is easy to check that this equation admits a unique solution
(𝑄

𝜖

𝜌
(⋅), 𝐾

𝜖

𝜌
(⋅)) which belongs to 𝑆2(0, 𝑇) ×𝑀2(0, 𝑇). Applying

Itô’s formula to 𝑋1
𝜌
(𝑡)𝑄

𝜖

𝜌
(𝑡) and then taking expectations, we

can use a change of variables to get

𝛼

𝜖

𝜌
E [𝐿

𝑥
(𝑋

𝜌
(𝑇))𝑋

1

𝜌
(𝑇)] + 𝛾

𝜖

𝜌
Γ

= E∫

𝑇

0

𝑄

𝜖

𝜌
(𝑡) [𝐵

1

𝑡
(V𝜖
𝜌
(𝑡) − V

𝜌
(𝑡))

+𝐵

2

𝑡
(V𝜖
𝜌
(𝑡 − 𝛿

2
) − V
𝜌
(𝑡 − 𝛿

2
))] 𝑑𝑡

+

1

2

𝛾

𝜖

𝜌
E∫

𝑇

0

{𝑀

1

𝑡
[(V𝜖
𝜌
(𝑡))

2

− (V
𝜌
(𝑡))

2

]

+𝑀

2

𝑡
[(V𝜖
𝜌
(𝑡 − 𝛿

2
))

2

− (V
𝜌
(𝑡 − 𝛿

2
))

2

]} 𝑑𝑡.

(58)
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Then, by (53) and the definition of V𝜖
𝜌
(⋅) we have

E∫

𝜏+𝜖

𝜏

{𝑄

𝜖

𝜌
(𝑡) 𝐵

1

𝑡
(V (𝑡) − V

𝜌
(𝑡))

+

1

2

𝑀

1

𝑡
𝛾

𝜖

𝜌
[(V (𝑡))2 − (V

𝜌
(𝑡))

2

]

+ E
F
𝑡
[𝑄

𝜖

𝜌
(𝑡 + 𝛿

2
) 𝐵

2

𝑡+𝛿
2

] (V (𝑡) − V
𝜌
(𝑡))

+

1

2

𝛾

𝜖

𝜌
E
F
𝑡
[𝑀

2

𝑡+𝛿
2

] [(V (𝑡))2 − (V
𝜌
(𝑡))

2

]} 𝑑𝑡

+
√
𝜌𝜖 + 𝑜 (𝜖) ≥ 0.

(59)

Let (𝑄
𝜌
(⋅), 𝐾

𝜌
(⋅)) ∈ 𝑆

2
(0, 𝑇) ×𝑀

2
(0, 𝑇) be the solution of

𝑑𝑄

𝜌
(𝑡) = − {𝐴

1

𝑡
𝑄

𝜌
(𝑡) + 𝐶

1

𝑡
𝐾

𝜌
(𝑡) + 𝛾

𝜌
𝐼

1

𝑡
𝑋

𝜌
(𝑡)

+ E
F
𝑡
[𝐴

2

𝑡+𝛿
1

𝑄

𝜌
(𝑡 + 𝛿

1
) + 𝐶

2

𝑡+𝛿
1

𝐾

𝜌
(𝑡 + 𝛿

1
)

+𝛾

𝜌
𝐼

2

𝑡+𝛿
1

𝑋

𝜌
(𝑡)]} 𝑑𝑡 + 𝐾

𝜌
(𝑡) 𝑑𝑊

𝑡
,

0 ≤ 𝑡 ≤ 𝑇,

𝑄

𝜌
(𝑇) = 𝛼

𝜌
𝐿

𝑥
(𝑋

𝜌
(𝑇)) + 𝛾

𝜌
𝑁𝑋

𝜌
(𝑇) ,

𝑄

𝜌
(𝑡) = 0, 𝐾

𝜌
(𝑡) = 0, 𝑇 < 𝑡 ≤ 𝑇 + 𝛿

1
.

(60)

Then, by subdividing the time interval [0, 𝑇], we can use (55)
to derive

E[ sup
0≤𝑡≤𝑇

󵄨

󵄨

󵄨

󵄨

󵄨

𝑄

𝜖

𝜌
(𝑡) − 𝑄

𝜌
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

+ ∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝐾

𝜖

𝜌
(𝑡) − 𝐾

𝜌
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡]

󳨀→ 0,

(61)

as 𝜖 ↓ 0. Consequently, considering the arbitrariness of 𝜏 ∈

[0, 𝑇), dividing (59) by 𝜖, and then taking 𝜖 ↓ 0 lead to

E {𝑄

𝜌
(𝑡) 𝐵

1

𝑡
(V (𝑡) − V

𝜌
(𝑡)) +

1

2

𝑀

1

𝑡
𝛾

𝜌
[(V (𝑡))2 − (V

𝜌
(𝑡))

2

]

+ E
F
𝑡
[𝑄

𝜌
(𝑡 + 𝛿

2
) 𝐵

2

𝑡+𝛿
2

] (V (𝑡) − V
𝜌
(𝑡))

+

1

2

𝛾

𝜌
E
F
𝑡
[𝑀

2

𝑡+𝛿
2

] [(V (𝑡))2 − (V
𝜌
(𝑡))

2

]} 𝑑𝑡

+
√
𝜌 ≥ 0.

(62)

Now let us take 𝜌 ↓ 0. On the one hand, by (56), there
exists a subsequence of (𝛼

𝜌
, 𝛾

𝜌
), which converges to (𝛼∗, 𝛾∗),

and (49) holds. On the other hand, from (26) it follows that
𝑑(V
𝜌
(⋅), 𝑢

∗
(⋅)) → 0 as 𝜌 ↓ 0, so we can use (9) to obtain

E[ sup
0≤𝑡≤𝑇

󵄨

󵄨

󵄨

󵄨

󵄨

𝑋

𝜌
(𝑡) − 𝑋

∗
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

] 󳨀→ 0, (63)

as 𝜌 ↓ 0. Consequently, we can check that

E[ sup
0≤𝑡≤𝑇

󵄨

󵄨

󵄨

󵄨

󵄨

𝑄

𝜌
(𝑡) − 𝑄

∗
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

+ ∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝐾

𝜌
(𝑡) − 𝐾

∗
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡]

󳨀→ 0,

(64)

as 𝜌 ↓ 0, where (𝑄∗(⋅), 𝐾∗(⋅)) is the solution of the adjoint
equation (50). Let us assume without loss of generality that
𝑄

∗
(𝑡) = 𝐾

∗
(𝑡) = 0 for 𝑡 < 0. Consequently, we can take 𝜌 ↓ 0

in (62) to get

E {𝑄

∗
(𝑡) 𝐵

1

𝑡
(V (𝑡) − 𝑢

∗
(𝑡)) +

1

2

𝑀

1

𝑡
𝛾

∗
[(V (𝑡))2 − (𝑢

∗
(𝑡))

2

]

+ E
F
𝑡
[𝑄

∗
(𝑡 + 𝛿

2
) 𝐵

2

𝑡+𝛿
2

] (V (𝑡) − 𝑢

∗
(𝑡))

+

1

2

𝛾

∗
E
F
𝑡
[𝑀

2

𝑡+𝛿
2

] [(V (𝑡))2 − (𝑢

∗
(𝑡))

2

]} ≥ 0.

(65)

In order to obtain (65), we only need to prove that the terms
on the left-hand side of (62) converge to the corresponding
ones in (65) along a subsequence. For this, we first prove

E∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑄

𝜌
(𝑡) 𝐵

1

𝑡
(V (𝑡) − V

𝜌
(𝑡)) − 𝑄

∗
(𝑡) 𝐵

1

𝑡
(V (𝑡) − 𝑢

∗
(𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑡

󳨀→ 0,

(66)

as 𝜌 ↓ 0. In fact, since
󵄨

󵄨

󵄨

󵄨

󵄨

𝑄

𝜌
(𝑡) 𝐵

1

𝑡
(V (𝑡) − V

𝜌
(𝑡)) − 𝑄

∗
(𝑡) 𝐵

1

𝑡
(V (𝑡) − 𝑢

∗
(𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑄

𝜌
(𝑡) − 𝑄

∗
(𝑡)) 𝐵

1

𝑡
(V (𝑡) − V

𝜌
(𝑡))

+𝑄

∗
(𝑡) 𝐵

1

𝑡
(𝑢

∗
(𝑡) − V

𝜌
(𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶

󵄨

󵄨

󵄨

󵄨

󵄨

𝑄

𝜌
(𝑡) − 𝑄

∗
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

+ 𝐶

󵄨

󵄨

󵄨

󵄨

𝑄

∗
(𝑡)

󵄨

󵄨

󵄨

󵄨

𝜒V
𝜌
(𝑡) ̸= 𝑢

∗
(𝑡)
,

(67)

by the Cauchy-Schwartz inequality we have

E∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑄

𝜌
(𝑡) 𝐵

1

𝑡
(V (𝑡) − V

𝜌
(𝑡)) − 𝑄

∗
(𝑡) 𝐵

1

𝑡
(V (𝑡) − 𝑢

∗
(𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑡

≤ 𝐶E∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑄

𝜌
(𝑡) − 𝑄

∗
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑡

+ 𝐶

√E∫

𝑇

0

|𝑄

∗
(𝑡)|

2
𝑑𝑡

√

𝑑 (V
𝜌
(⋅) , 𝑢

∗
(⋅)) 󳨀→ 0,

(68)

as 𝜌 ↓ 0. With the same method and by a change of variables
we can also prove

E∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

E
F
𝑡
[𝑄

𝜌
(𝑡 + 𝛿

2
) 𝐵

2

𝑡+𝛿
2

] (V (𝑡) − V
𝜌
(𝑡))

−E
F
𝑡
[𝑄

∗
(𝑡 + 𝛿

2
) 𝐵

2

𝑡+𝛿
2

] (V (𝑡) − 𝑢

∗
(𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑡 󳨀→ 0.

(69)
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Next, since
1

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑀

1

𝑡
𝛾

𝜌
[(V (𝑡))2 − (V

𝜌
(𝑡))

2

] −𝑀

1

𝑡
𝛾

∗
[(V (𝑡))2 − (𝑢

∗
(𝑡))

2

]

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

=

1

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑀

1

𝑡
(𝛾

𝜌
− 𝛾

∗
) [(V (𝑡))2 − (V

𝜌
(𝑡))

2

]

+𝑀

1

𝑡
𝛾

∗
[(𝑢

∗
(𝑡))

2

− (V
𝜌
(𝑡))

2

]

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶

󵄨

󵄨

󵄨

󵄨

󵄨

𝛾

𝜌
− 𝛾

∗󵄨
󵄨

󵄨

󵄨

󵄨

+ 𝐶𝜒V
𝜌
(𝑡) ̸= 𝑢

∗
(𝑡)
,

(70)

we have

1

2

E∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑀

1

𝑡
𝛾

𝜌
[(V (𝑡))2 − (V

𝜌
(𝑡))

2

]

−𝑀

1

𝑡
𝛾

∗
[(V (𝑡))2 − (𝑢

∗
(𝑡))

2

]

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑡

≤ 𝐶

󵄨

󵄨

󵄨

󵄨

󵄨

𝛾

𝜌
− 𝛾

∗󵄨
󵄨

󵄨

󵄨

󵄨

+ 𝐶𝑑 (V
𝜌
(⋅) , 𝑢

∗
(⋅)) 󳨀→ 0.

(71)

In a similar way, we can use a change of variables to get

1

2

E∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝛾

𝜌
E
F
𝑡
[𝑀

2

𝑡+𝛿
2

] [(V (𝑡))2 − (V
𝜌
(𝑡))

2

]

−𝛾

∗
E
F
𝑡
[𝑀

2

𝑡+𝛿
2

] [(V (𝑡))2 − (𝑢

∗
(𝑡))

2

]

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑡 󳨀→ 0.

(72)

Thus, we can derive (65).
Let us recall that V(⋅) ∈ U is arbitrarily chosen, so result

(65) holds for all V(⋅) ∈ U. Next, we drop the expectation in
(65). For any V ∈ 𝑈 and 𝐸 ∈ F

𝑡
, let us define V(𝑡) = V𝜒

𝐸
+

𝑢

∗
(𝑡)𝜒

𝐸
. It is obvious that the defined V(⋅) is an element ofU.

Applying this V(⋅) in (65) gives

E {𝑄

∗
(𝑡) 𝐵

1

𝑡
(V − 𝑢

∗
(𝑡)) 𝜒

𝐸
+

1

2

𝑀

1

𝑡
𝛾

∗
[V2 − (𝑢

∗
(𝑡))

2

] 𝜒

𝐸

+ E
F
𝑡
[𝑄

∗
(𝑡 + 𝛿

2
) 𝐵

2

𝑡+𝛿
2

] (V − 𝑢

∗
(𝑡)) 𝜒

𝐸

+

1

2

𝛾

∗
E
F
𝑡
[𝑀

2

𝑡+𝛿
2

] [V2 − (𝑢

∗
(𝑡))

2

] 𝜒

𝐸
} ≥ 0.

(73)

Since 𝐸 ∈ F
𝑡
is arbitrarily chosen, it implies

E
F
𝑡
{𝑄

∗
(𝑡) 𝐵

1

𝑡
(V − 𝑢

∗
(𝑡)) +

1

2

𝑀

1

𝑡
𝛾

∗
[V2 − (𝑢

∗
(𝑡))

2

]

+ E
F
𝑡
[𝑄

∗
(𝑡 + 𝛿

2
) 𝐵

2

𝑡+𝛿
2

] (V − 𝑢

∗
(𝑡))

+

1

2

𝛾

∗
E
F
𝑡
[𝑀

2

𝑡+𝛿
2

] [V2 − (𝑢

∗
(𝑡))

2

]} ≥ 0,

(74)

which leads to

{𝑄

∗
(𝑡) 𝐵

1

𝑡
+ E

F
𝑡
[𝑄

∗
(𝑡 + 𝛿

2
) 𝐵

2

𝑡+𝛿
2

]} (V − 𝑢

∗
(𝑡))

+

1

2

𝛾

∗
{𝑀

1

𝑡
+ E

F
𝑡
[𝑀

2

𝑡+𝛿
2

]} [V2 − (𝑢

∗
(𝑡))

2

] ≥ 0,

(75)

which is just the conclusion of (51).

4. Maximum Principle for General Control
Domain 𝑈

In this section, we study the maximum principle in the case
when 𝑈 can be unbounded in R. This case can be treated via
the bounded case in Section 3 with a convergence technique.

Let us define 𝑈𝑖 = {V ∈ 𝑈||V| ≤ ‖𝑢

∗
(⋅)‖ + 𝑖}, 𝑖 = 1, 2, . . ..

Then 𝑈

𝑖 is a bounded set in R for fixed 𝑖. Besides,

𝑈

𝑖
⊂ 𝑈

𝑖+1
, 𝑖 = 1, 2, . . . , 𝑈 =

∞

⋃

𝑖=1

𝑈

𝑖
. (76)

We denote by U𝑖 the set of progressively measurable pro-
cesses V(𝑡) : Ω × [−𝛿

2
, 𝑇] → 𝑈

𝑖 satisfying ‖V(⋅)‖ < ∞ and by
U𝑖ad the collection of V(⋅) ∈ U𝑖 satisfying the state constraint
(4). Then from (76) it follows that

U
𝑖
⊂ U
𝑖+1
, 𝑖 = 1, 2, . . . , U =

∞

⋃

𝑖=1

U
𝑖
;

U
𝑖

ad ⊂ U
𝑖+1

ad , 𝑖 = 1, 2, . . . , Uad =
∞

⋃

𝑖=1

U
𝑖

ad.

(77)

Since 𝑢∗(⋅) ∈ Uad, by (77) there exists 𝑖1 such that 𝑢∗(⋅) ∈
U𝑖ad for 𝑖 > 𝑖

1
. Thus, 𝑢∗(⋅) is still optimal when the original

admissible control setUad is replaced byU
𝑖

ad for 𝑖 > 𝑖

1
. So, by

Theorem 6, for 𝑖 > 𝑖

1
, there exist (𝛼𝑖, 𝛾𝑖) ∈ R2, satisfying

󵄨

󵄨

󵄨

󵄨

󵄨

𝛼

𝑖󵄨
󵄨

󵄨

󵄨

󵄨

2

+

󵄨

󵄨

󵄨

󵄨

󵄨

𝛾

𝑖󵄨
󵄨

󵄨

󵄨

󵄨

2

= 1,

(78)

and the solution (𝑄

𝑖
(⋅), 𝐾

𝑖
(⋅)) ∈ 𝑆

2
(0, 𝑇) × 𝑀

2
(0, 𝑇) of the

following adjoint equation:

𝑑𝑄

𝑖
(𝑡) = − {𝐴

1

𝑡
𝑄

𝑖
(𝑡) + 𝐶

1

𝑡
𝐾

𝑖
(𝑡) + 𝛾

𝑖
𝐼

1

𝑡
𝑋

∗
(𝑡)

+ E
F
𝑡
[𝐴

2

𝑡+𝛿
1

𝑄

𝑖
(𝑡 + 𝛿

1
) + 𝐶

2

𝑡+𝛿
1

𝐾

𝑖
(𝑡 + 𝛿

1
)

+𝛾

𝑖
𝐼

2

𝑡+𝛿
1

𝑋

∗
(𝑡)]} 𝑑𝑡 + 𝐾

𝑖
(𝑡) 𝑑𝑊

𝑡
,

0 ≤ 𝑡 ≤ 𝑇,

𝑄

𝑖
(𝑇) = 𝛼

𝑖
𝐿

𝑥
(𝑋

∗
(𝑇)) + 𝛾

𝑖
𝑁𝑋

∗
(𝑇) ,

𝑄

𝑖
(𝑡) = 0, 𝐾

𝑖
(𝑡) = 0, 𝑇 < 𝑡 ≤ 𝑇 + 𝛿

1
,

(79)

such that

{𝑄

𝑖
(𝑡) 𝐵

1

𝑡
+ E

F
𝑡
[𝑄

𝑖
(𝑡 + 𝛿

2
) 𝐵

2

𝑡+𝛿
2

]} (V − 𝑢

∗
(𝑡))

+

1

2

𝛾

𝑖
{𝑀

1

𝑡
+ E

F
𝑡
[𝑀

2

𝑡+𝛿
2

]} [V2 − (𝑢

∗
(𝑡))

2

] ≥ 0,

∀V ∈ 𝑈

𝑖
, a.e. 𝑡 ∈ [0, 𝑇] , P—a.s.

(80)

By (78), there exists a subsequence of (𝛼𝑖, 𝛾𝑖), still denoted by
(𝛼

𝑖
, 𝛾

𝑖
), such that

lim
𝑖→∞

(𝛼

𝑖
, 𝛾

𝑖
) = (𝛼, 𝛾) , (81)
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for some (𝛼, 𝛾), with

|𝛼|

2
+

󵄨

󵄨

󵄨

󵄨

𝛾

󵄨

󵄨

󵄨

󵄨

2

= 1.

(82)

Then, by (81) it’s easy to check that

E[ sup
0≤𝑡≤𝑇

󵄨

󵄨

󵄨

󵄨

󵄨

𝑄

𝑖
(𝑡) − 𝑄 (𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

+ ∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝐾

𝑖
(𝑡) − 𝐾 (𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡]

󳨀→ 0,

(83)

as 𝑖 → ∞, where (𝑄(⋅), 𝐾(⋅)) ∈ 𝑆

2
(0, 𝑇) × 𝑀

2
(0, 𝑇) is the

solution of

𝑑𝑄 (𝑡) = − {𝐴

1

𝑡
𝑄 (𝑡) + 𝐶

1

𝑡
𝐾 (𝑡) + 𝛾𝐼

1

𝑡
𝑋

∗
(𝑡)

+ E
F
𝑡
[𝐴

2

𝑡+𝛿
1

𝑄 (𝑡 + 𝛿

1
) + 𝐶

2

𝑡+𝛿
1

𝐾(𝑡 + 𝛿

1
)

+𝛾𝐼

2

𝑡+𝛿
1

𝑋

∗
(𝑡)]} 𝑑𝑡 + 𝐾 (𝑡) 𝑑𝑊

𝑡
,

0 ≤ 𝑡 ≤ 𝑇,

𝑄 (𝑇) = 𝛼𝐿

𝑥
(𝑋

∗
(𝑇)) + 𝛾𝑁𝑋

∗
(𝑇) ,

𝑄 (𝑡) = 0, 𝐾 (𝑡) = 0, 𝑇 < 𝑡 ≤ 𝑇 + 𝛿

1
.

(84)

Let us assume without loss of generality that 𝑄(𝑡) = 𝐾(𝑡) = 0

for 𝑡 < 0.
For any fixed V ∈ 𝑈, from (76) it follows that there exists

𝑖

2
such that V ∈ 𝑈

𝑖 for 𝑖 > 𝑖

2
, and consequently we see from

(80) that

{𝑄

𝑖
(𝑡) 𝐵

1

𝑡
+ E

F
𝑡
[𝑄

𝑖
(𝑡 + 𝛿

2
) 𝐵

2

𝑡+𝛿
2

]} (V − 𝑢

∗
(𝑡))

+

1

2

𝛾

𝑖
{𝑀

1

𝑡
+ E

F
𝑡
[𝑀

2

𝑡+𝛿
2

]} [V2 − (𝑢

∗
(𝑡))

2

] ≥ 0,

∀𝑖 > 𝑖

1
+ 𝑖

2
, a.e. 𝑡 ∈ [0, 𝑇] , P—a.s.

(85)

Then, similar to the proof of (65), by (81) and (83), taking
𝑖 → ∞ along a subsequence in (85) leads to

{𝑄 (𝑡) 𝐵

1

𝑡
+ E

F
𝑡
[𝑄 (𝑡 + 𝛿

2
) 𝐵

2

𝑡+𝛿
2

]} (V − 𝑢

∗
(𝑡))

+

1

2

𝛾 {𝑀

1

𝑡
+ E

F
𝑡
[𝑀

2

𝑡+𝛿
2

]} [V2 − (𝑢

∗
(𝑡))

2

] ≥ 0,

a.e. 𝑡 ∈ [0, 𝑇] , P—a.s.

(86)

Note that the above inequality holds for all V ∈ 𝑈, and
therefore we have the main result of this section.

Theorem 7. For the optimal control 𝑢∗(⋅), there exist (𝛼, 𝛾) ∈
R2 satisfying (82) and the solution (𝑄(⋅), 𝐾(⋅)) ∈ 𝑆

2
(0, 𝑇) ×

𝑀

2
(0, 𝑇) of the adjoint equation (84) such that

H (𝑡, V) ≥ H (𝑡, 𝑢

∗
(𝑡)) , ∀V ∈ 𝑈, 𝑎.𝑒. 𝑡 ∈ [0, 𝑇] , P—𝑎.𝑠.,

(87)

where H is defined by

H (𝑡, V) = 𝐻 (Θ (𝑡) , V, 𝑢∗ (𝑡 − 𝛿

2
) , 𝛼, 𝛾)

+ E
F
𝑡
[𝐻 (Θ (𝑡 + 𝛿

2
) , 𝑢

∗
(𝑡 + 𝛿

2
) , V, 𝛼, 𝛾)]

(88)

with Θ(𝑡) = (𝑡, 𝑋

∗
(𝑡), 𝑋

∗
(𝑡 − 𝛿

1
), 𝑄(𝑡), 𝐾(𝑡)).

Inwhat follows, let us investigate underwhat condition an
admissible control turns out to be optimal. To this end, let us
assume that V(𝑡) = 𝜂(𝑡) for all V(⋅) ∈ Uad and 𝑡 ∈ [−𝛿

2
, 0],

where 𝜂(𝑡) : [−𝛿

2
, 0] → 𝑈 is a given function satisfying

sup
−𝛿
1
≤𝑡≤0

|𝜂(𝑡)|

2
< ∞.

Let us assume that

(H) 𝛼 ≥ 0 and 𝐿 is convex or 𝛼 ≤ 0 and 𝐿 is concave.

Theorem 8. Assume (H). Assume that 𝑢∗(⋅) ∈ U
𝑎𝑑

is an
admissible control and𝑋∗(⋅) is the corresponding trajectory. Let
𝛼 ∈ R, 𝛾 > 0 satisfy (82), and (𝑄(⋅), 𝐾(⋅)) ∈ 𝑆

2
(0, 𝑇)×𝑀

2
(0, 𝑇)

satisfy (84). Then 𝑢∗(⋅) is an optimal control if it satisfies (87).

Proof. Let us denote 𝑋(⋅) = 𝑋

V
(⋅) − 𝑋

∗
(⋅) for V(⋅) ∈ Uad.

Applying Itô’s formula to 𝑋(𝑡)𝑄(𝑡) for 0 ≤ 𝑡 ≤ 𝑇 and then
using a change of variables lead to

𝛼E [𝐿

𝑥
(𝑋

∗
(𝑇))𝑋 (𝑇)] + 𝛾E [𝑁𝑋

∗
(𝑇)𝑋 (𝑇)]

+ 𝛾E∫

𝑇

0

[𝐼

1

𝑡
𝑋

∗
(𝑡) 𝑋 (𝑡) + 𝐼

2

𝑡
𝑋

∗
(𝑡 − 𝛿

1
)𝑋 (𝑡 − 𝛿

1
)] 𝑑𝑡

+

1

2

𝛾E∫

𝑇

0

{𝑀

1

𝑡
[(V (𝑡))2 − (𝑢

∗
(𝑡))

2

]

+𝑀

2

𝑡
[(V (𝑡 − 𝛿

2
))

2

− (𝑢

∗
(𝑡 − 𝛿

2
))

2

]} 𝑑𝑡

= E∫

𝑇

0

[H (𝑡, V (𝑡)) − H (𝑡, 𝑢

∗
(𝑡))] 𝑑𝑡.

(89)

On the one hand, from (87) it follows that

E∫

𝑇

0

[H (𝑡, V (𝑡)) − H (𝑡, 𝑢

∗
(𝑡))] 𝑑𝑡 ≥ 0.

(90)

On the other hand, since𝑁, 𝐼1
𝑡
, and 𝐼2

𝑡
are nonnegative, by the

property of convex functions we have

1

2

E [𝑁(𝑋

V
(𝑇))

2

− 𝑁(𝑋

∗
(𝑇))

2

] ≥ E [𝑁𝑋

∗
(𝑇)𝑋 (𝑇)] ,

1

2

E∫

𝑇

0

𝐼

1

𝑡
[(𝑋

V
(𝑡))

2

− (𝑋

∗
(𝑡))

2

] 𝑑𝑡 ≥ E∫

𝑇

0

𝐼

1

𝑡
𝑋

∗
(𝑡) 𝑋 (𝑡) 𝑑𝑡,

1

2

E∫

𝑇

0

𝐼

2

𝑡
[(𝑋

V
(𝑡 − 𝛿

1
))

2

− (𝑋

∗
(𝑡 − 𝛿

1
))

2

] 𝑑𝑡

≥ E∫

𝑇

0

𝐼

2

𝑡
𝑋

∗
(𝑡 − 𝛿

1
)𝑋 (𝑡 − 𝛿

1
) 𝑑𝑡.

(91)

Thus, it follows that 𝛼E[𝐿
𝑥
(𝑋

∗
(𝑇))𝑋(𝑇)] + 𝛾[𝐽(V(⋅)) −

𝐽(𝑢

∗
(⋅))] ≥ 0, so

𝐽 (V (⋅)) − 𝐽 (𝑢

∗
(⋅)) ≥ −

𝛼

𝛾

E [𝐿

𝑥
(𝑋

∗
(𝑇))𝑋 (𝑇)] . (92)
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Let us recall that E[𝐿(𝑋V
(𝑇))−𝐿(𝑋

∗
(𝑇))] = 0 holds for V(⋅) ∈

Uad. Then, by (H), (92) leads to

−

𝛼

𝛾

E [𝐿

𝑥
(𝑋

∗
(𝑇))𝑋 (𝑇)]

≥ −

𝛼

𝛾

E [𝐿 (𝑋

V
(𝑇)) − 𝐿 (𝑋

∗
(𝑇))] = 0,

(93)

which gives 𝐽(V(⋅)) − 𝐽(𝑢

∗
(⋅)) ≥ 0.

Remark 9. When 𝐿 ≡ 0, namely, there is no state constraint
for 𝑋(⋅), we have 𝛼

∗
= 𝛼 = 0. In this case, Theorems 6

and 7 degenerate to the maximum principle for stochastic
LQ problem with delays and without state constraints. When
𝐿(𝑥) is a linear function, the assumption (H) holds for any
𝛼 ∈ R.

Example 10. Let us take 𝑈 = (−∞, −1] ∪ [1, +∞) and 𝐿(𝑥) =
((𝐾 − 𝑥)

+
)

2 with a fixed constant 𝐾. In this case, 𝐿(𝑥) is
a convex function and the state constraint (4) implies that
𝑋(𝑇) ≥ 𝐾 a.s. Assume that 𝛼 > 0, 𝛾 > 0, and 𝑀

1

𝑡
+

EF
𝑡
[𝑀

2

𝑡+𝛿
2

] > 0. Then we can solve the inequality (87) to
obtain

𝑢

∗
(𝑡) =

{

{

{

{

{

] (𝑡) , if |] (𝑡)| ≥ 1,

−1, if − 1 < ] (𝑡) ≤ 0,

1, if 0 < ] (𝑡) ≤ 1,

(94)

where ](𝑡) is defined by

] (𝑡) = −

𝑄 (𝑡) 𝐵

1

𝑡
+ EF

𝑡
[𝑄 (𝑡 + 𝛿

2
) 𝐵

2

𝑡+𝛿
2

]

𝛾 {𝑀

1

𝑡
+ EF

𝑡
[𝑀

2

𝑡+𝛿
2

]}

. (95)

By Theorem 8, this 𝑢∗(⋅) is indeed an optimal control if it
satisfies the state constraint (4).
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