
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 962765, 24 pages
http://dx.doi.org/10.1155/2013/962765

Research Article
Efficient Semantics-Based Compliance Checking Using LTL
Formulae and Unfolding

Liang Song,1,2,3,4 Jianmin Wang,1,3,4 Lijie Wen,1,3,4 and Hui Kong1,2

1 School of Software, Tsinghua University, Beijing 100084, China
2Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
3 Key Lab for Information System Security, Ministry of Education, Beijing 100084, China
4National Laboratory for Information Science and Technology, Beijing 100084, China

Correspondence should be addressed to Jianmin Wang; jimwang@tsinghua.edu.cn

Received 6 February 2013; Accepted 26 March 2013

Academic Editor: Xiaoyu Song

Copyright © 2013 Liang Song et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Business process models are required to be in line with frequently changing regulations, policies, and environments. In the field of
intelligent modeling, organisations concern automated business process compliance checking as the manual verification is a time-
consuming and inefficient work. There exist two key issues for business process compliance checking. One is the definition of a
business process retrieval language that can be employed to capture the compliance rules, the other concerns efficient evaluation of
these rules. Traditional syntax-based retrieval approaches cannot deal with various important requirements of compliance checking
in practice. Although a retrieval language that is based on semantics can overcome the drawback of syntax-based ones, it suffers
from the well-known state space explosion. In this paper, we define a semantics-based process model query language through
simplifying a property specification pattern system without affecting its expressiveness. We use this language to capture semantics-
based compliance rules and constraints. We also propose a feasible approach in such a way that the compliance checking will not
suffer from the state space explosion asmuch as possible. A tool is implemented to evaluate the efficiency. An experiment conducted
on three model collections illustrates that our technology is very efficient.

1. Introduction

Business process models are valuable intellectual assets cap-
turing theways organisations conduct their business. Current
business process management evolves increasingly fast due
to changing environments and emerging technologies. As a
result, organisations accumulate huge numbers of business
process models, and among these may be models with high
complexity. For example, Haier is one of the largest Chinese
consumer electronics manufacturers. Over the years, Haier
has gathered more than 4,000 process models from various
domains, including purchase, financing, distribution, and
service. In this context, support for business process manage-
ment, for example, for the purposes of knowledge discovery
and process reuse, faces real challenges. In order to stand
a competitive advantage, one of these challenges concerns
business process compliance checking tomake sure that busi-
ness processes are in line with frequently changing business

environments and legal regulations. This problem has also
gradually emerged as an important branch of intelligentmod-
eling.There are two key issuesmust be addressed for automat-
ed business process compliance checking. One is a retrieval
language that can be employed to capture compliance rules,
the other is the efficient evaluation of compliance checking.

In recent years, there are some query languages have been
proposed to retrieve process models in repositories, such
as BP-QL [1] and BPMN-Q [2]. In [3], BPMN-Q was also
used to capture compliance rules. But these languages are
based on syntax (structure) of process models, rather than on
semantics of them. While in the syntax of a process model,
a directed path connecting a task A and a task B does not
mean that during execution task A will always occur before
task B. Let us consider, for example, the three process models
in Figure 2. Among of them, rectangles represent tasks,
arcs represent sequential dependencies between tasks, while
diamonds represent choices (if each of the diamonds has one

2 Journal of Applied Mathematics

Ordinary
account

International
accountReceive

customer
request

VIP
account

Open ordinary
account

Open
international

account

Open VIP
account

Analyse
customer

credit history

(a)

Receive
customer
request

Ordinary
account

International
account

VIP
account

Open ordinary
account

Open
international

account

Open VIP
account

Analyse
customer

credit history

(b)
Ordinary
account

Receive
customer
request

International
account

VIP

Non-VIP

Fill forms

Open VIP
account

Open ordinary
account

Open
international

account

Analyse
customer

credit history

(c)

Figure 1: Three variants of a business process for opening bank accounts.

Receive
customer
request

Analyse
customer

credit history“Leads to”

Figure 2: A query written in BPMN-Q.

input arc and multiple output arcs) and merges (if each of
the diamonds has multiple input arcs and one output arc).
These models represent three variants of a business process
for opening an account in the BPMN notation [4]. These
three variants could specify the way an account is opened
in three different states in which the company conducts its
business and could be part of a repository of hundreds, even
thousands of process models for all states in which the bank
operates.Next, let us take BPMN-Qas an example to illustrate
the drawback of syntax-based languages. A rule written in
BPMN-Q uses a directed edge connecting two activities to
represent that these two activities are executed in order (in
just some executions of a process). For example, the BPMN-Q
query, as shown in Figure 2, can specify the compliance rule
that task “receive customer request” must always be followed
by task “analyse customer credit history” in some process
executions. But if an analyst requires to retrieve processes
where in every process execution task “receive customer
request” always occurs before task “analyse customer credit
history,” BPMN-Q cannot capture this kind of requirements.
Thus, after executing the query in Figure 2, we would retrieve
the first and the third processes, since in both process (a)
and process (c), there exists at least one process execution
in which if task “receive customer request” occurs, then task
“analyst customer credit history” would eventually occur.
However, according to the requirement, process (c) does not
belong to the result as process (c) has an execution where
that task “receive customer request” always precedes task
“analyst customer credit history” does not hold (the process
execution where task “open VIP account” is run). As a result,

the problem of BPMN-Q is that people cannot knowwhether
all of the process executions of a resulting process satisfy the
requirement, or just some of them satisfy the requirement.
This issue is very important in reuse of business processes,
automatic modeling, and verification. For example, in reuse
of business process, people often need to know whether there
are some process executions that fail to satisfy a requirement,
with the goal to check the reason and modify these process
executions. Therefore, in order to yield correct result, we
have to explore every process execution of every process in
a repository, which is indeed based on semantics.

As we can see from the example, syntax-based retrieval
languages are not powerful enough. In fact, retrieval tech-
nologies based on semantics are indeed in line with process
execution and therefore are more intuitive to ordinary users
who are not necessarily experts in business process man-
agement (BPM). A semantics-based process model query
language should capture two types of requirements: (1) it
can specify various semantic relationships between tasks; (2)
it can explicitly specify that these relationships hold in just
some process execution or in every process execution.

In light of the previous, in this paper, we aim to address
two questions. One is that how many the semantic relation-
ships between tasks are enough; the other is that the evalua-
tion of semantics-based compliance rules requires to explore
every process execution of a process model, which suffers
from the well-known state space explosion problem.

In [5], a property specification pattern system (SPS) has
been proposed for finite-state verification by Dwyer and
so forth. SPS consists of 5 basic patterns and 5 scopes,
which results in 5 × 5 = 25 LTL formulae. In this paper, we
significantly simplify SPS without affecting its expressiveness
through formal logic reasoning. After this simplification,
there are only 3 basic LTL formulae from which the rest
formulae can be deduced. A retrieval language for expressing
semantics-based compliance rules is based on this simplified
SPS. With respect to the evaluation of semantics of process

Journal of Applied Mathematics 3

models, we proposed a feasible technology which can extract
every execution of a business process model. In such a way,
the state space explosion can be avoided as much as possible.
We achieve this by adopting the theory of complete finite
prefixes (CFP) [6] and its improvements [7]. Moreover, a
tool is implemented to evaluate the performance of our
technology over three collections of Petri nets. For the three
collections, two are obtained from practice, and the third is a
much larger one and obtained by artificially generating.

The remainder of this paper is organized as follows. In
Section 2 we simplify SPS to define a process model retrieval
language for specifying compliance rules. While in Section 3
the basic concepts of Petri nets, unfolding, and CFP are
presented. In Section 4, we detail the mechanism of efficient
semantics-based compliance checking. Next, in Section 5
we illustrate the tool implementation and report on the
performance evaluation over three processmodel collections.
Finally, we discuss related work in Section 6 and conclude the
paper in Section 7.

2. Language

As discussed in Section 1, a language is needed for specifying
semantics-based compliance rules. This language should be
powerful enoughwhile being not too complex. In this section,
we will simplify the SPS to obtain a core pattern system
from which the rest patterns and scopes of SPS can be
derived. Then we present the formal definition of a new
query language, namely, “a semantics-based process query
language” (ASBPQL), based on this core pattern system.

2.1. LTL Formulae. Linear temporal logic (LTL) is a widely
used formalism for specifying properties of concurrent,
finite-state systems. In this subsection, we use LTL to reason
about the core of SPS.

Definition 1 (linear temporal logic formulae). The formulae
of linear temporal logic are built from a finite set of atomic
propositions 𝑃, the logical operators ¬, ∧, and ∨, and the
temporal modal operators ⃝ and 𝑈. Formally, the set of LTL
formulae over 𝑃 can be inductively defined as follows:

(i) both true and false are LTL formulae;
(ii) for all 𝑝 ∈ 𝑃, 𝑝 and ¬𝑝 are LTL formulae;
(iii) if 𝜑

1
and 𝜑

2
are both LTL formulae, then 𝜑

1
∧ 𝜑
2
, 𝜑
1

∨

𝜑
2
, ⃝𝜑
1
, 𝜑
1
𝑈𝜑
2
, and 𝜑

1
𝑅𝜑
2
are LTL formulae.

The operator ⃝ is read as “next” and denotes in the next
state.The operator 𝑈 is read as “until” and means that its first
argument has to hold until its second argument is true, where
it is required that the second argument holds eventually
(some literatures also define the weak until operator (𝑊)
which related to the strong until operator (𝑈) through the
following equivalences: 𝑊𝑞 ≡ (𝑝𝑈𝑞) ∨ 𝑝 ≡ 𝑝𝑈(𝑞 ∨ ◻𝑝) ≡

(◻𝑝) ∨ (𝑝 𝑈 𝑞) ≡ 𝑝 𝑈 (𝑞 ∨ ◻𝑝), 𝑝𝑈𝑞 ≡ ⬦𝑞 ∧ (𝑝 𝑊 𝑞)).
The operator 𝑅 is read as “releases” and is the dual of 𝑈. In
addition, two derived operators are in common use.They are
as follows:

Property pattern

Occurrence Order

Absence
Universality

Existence Precedence Response

(a) Pattern hierarchy

Global

Before

After

Between and

After until
State sequence 𝐿

𝐿

𝐿

𝐿

𝐿𝑅

𝑅

𝑅

𝑅

(b) Scopes

Figure 3: The pattern hierarchy and the scopes in SPS.

(i) ⬦ is read as “eventually,” ⬦𝜑 = 𝑡𝑟𝑢𝑒 𝑈 𝜑, which
requires that its argument be true eventually, that is,
at some states in the future;

(ii) ◻ is read as “always,” ◻𝜑 = 𝑓𝑎𝑙𝑠𝑒 𝑅 𝜑, which requires
that its argument be true at all future states.

2.2. Simplification. SPS consists of 5 basic patterns (the other
three patterns are defined based on them) and 5 scopes, as
shown in Figure 3. The intents of the 5 basic patterns are as
follows:

(i) Absence, a given task never occurs within a scope;
(ii) Universality, a given task occurs throughout a scope;
(iii) Existence, a given task occurs at least once within a

scope;

(iv) Precedence, a task 𝑃 occurs before a task 𝑇 within a
scope;

(v) Response, a task 𝑃must be followed by a task𝑇within
a scope.

The meanings of the five scopes are presented as follows:

(i) Globalmeans the entire extent of a process execution;

(ii) Before 𝐿 means the extent up to an occurrence of the
given task 𝐿 within a process execution;

(iii) After 𝑅 means the extent after an occurrence of the
given task 𝐿 within a process execution;

(iv) Between 𝐿 and 𝑅 means the part of a process execu-
tion from an occurrence of the task 𝐿 and that of the
task 𝑅;

(v) After 𝐿 until𝑅 is similar to the scopeBetween 𝐿 and 𝑅

except that the designated part of a process execution
continues if the task 𝑅 does not occur.

4 Journal of Applied Mathematics

Table 1: LTL formulae in SPS.

Pattern Scope LTL Formula Pattern Scope LTL Formula
Global ◻(¬𝑃) Global ◻𝑃

Before 𝑅 ⬦𝑅 → ((¬𝑃) 𝑈 𝑅) Before 𝑅 ⬦𝑅 → (𝑃 𝑈 𝑅)

Absence After 𝐿 ◻(𝐿 → ◻(¬𝑃)) Universality After 𝐿 ◻(𝐿 → ◻𝑃)

Between 𝐿 and 𝑅
◻((𝐿 ∧ (¬𝑅) ∧ ⬦𝑅) →

((¬𝑃) 𝑈 𝑅))

Between 𝐿 and 𝑅
◻((𝐿 ∧ (¬𝑅) ∧ ⬦𝑅) →

(𝑃 𝑈 𝑅)))

After 𝐿 until 𝑅
◻(𝐿 ∧ (¬𝑅) →

((¬𝑃) 𝑊 𝑅))

After 𝐿 Until 𝑅
◻((𝐿 ∧ (¬𝑅)) →

(𝑃 𝑊 𝑅)))

Global ⬦𝑃 Global (¬𝑃) 𝑊 𝑇

Before 𝑅 (¬𝑅) 𝑊 (𝑃 ∧ (¬𝑅)) Before 𝑅
⬦𝑅 →

((¬𝑃) 𝑈 (𝑇 ∨ 𝑅))

Existence After 𝐿 ◻(¬𝐿) ∨ ⬦(𝐿 ∧ ⬦𝑃) Precedence After 𝐿
◻(¬𝐿) ∨ ⬦(𝐿 ∧

((¬𝑃) 𝑊 𝑇))

Between 𝐿 and 𝑅

◻((𝐿 ∧ (¬𝑅)) →

((¬𝑅) 𝑊 (𝑃 ∧

(¬𝑅))))

(𝑇 precedes 𝑃) Between 𝐿 and 𝑅
◻((𝐿 ∧ (¬𝑅) ∧ ⬦𝑅) →

((¬𝑃) 𝑈 (𝑇 ∨ 𝑅)))

After 𝐿 until 𝑅
◻((𝐿 ∧ (¬𝑅)) →

((¬𝑅) 𝑈 (𝑃∧(¬𝑅))))

After 𝐿 until 𝑅
◻(𝐿 ∧ (¬𝑅) →

((¬𝑃) 𝑊 (𝑇 ∨ 𝑅)))

Global ◻(𝑃 → ⬦𝑇)

Before 𝑅 ⬦𝑅 → (𝑃 → ((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅)))) 𝑈 𝑅

Response After 𝐿 ◻(𝐿 → ◻(𝑃 → ⬦𝑇))

(𝑃 responds 𝑇) Between 𝐿 and 𝑅 ◻((𝐿 → (¬𝑅) ∧ ⬦𝑅) → (𝑃 → ((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅)))) 𝑈 𝑅)

After 𝐿 until 𝑅 ◻((𝐿 ∧ (¬𝑅)) → (𝑃 → ((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅)))) 𝑊 𝑅)

As shown in Table 1, for each scope there is an LTL formu-
la corresponding to a pattern, which results in 25 formulae.

Next, we provide proofs that the SPS can be simplified
from 5 patterns and 5 scopes to only 3 patterns (Absence, Exis-
tence, and Precedence) and 1 scope (After 𝐿 until 𝑅). This can
significantly reduce the number of formulae from 25 to 3.

First, we take pattern Absence as an example to prove that
scope Before 𝑅 can be derived from scope After 𝐿 until 𝑅.
According to the semantics of LTL, if 𝐿 is always true, that is,
◻𝐿, scope Before 𝑅 can be derived from scope After 𝐿 until
𝑅, that is, ◻𝐿 ∧ ◻(𝐿 ∧ (¬𝑅)) → ((¬𝑃) 𝑊𝑅) ⇒ ⬦𝑅 →

((¬𝑃) 𝑈 𝑅). Now we prove that this proposition holds.

Proposition 2. Consider◻𝐿∧◻(𝐿∧(¬𝑅)) → ((¬𝑃) 𝑊 𝑅) ⇒

⬦𝑅 → ((¬𝑃) 𝑈 𝑅).

Proof. By contradiction, assume (◻𝐿 ∧ ◻(𝐿 ∧ (¬𝑅)) →

((¬𝑃) 𝑊 𝑅)) ∧ ¬(⬦𝑅 → ((¬𝑃) 𝑈 𝑅)):

(1) ¬((¬ ⬦ 𝑅) ∨ ((¬𝑃) 𝑈 𝑅)) (by assumption),
(2) ◻𝐿 (given),
(3) ◻((𝐿 ∧ (¬𝑅)) → ((¬𝑃) 𝑊 𝑅)) (given),
(4) ⬦𝑅 ∧ ¬(⬦𝑅 ∧ ((¬𝑃)𝑊 𝑅)) (by (1)),
(5) ⬦𝑅 ∧ (¬(⬦𝑅) ∨ ¬((¬𝑃) 𝑊 𝑅)) (by (4)),
(6) (⬦𝑅 ∧ ¬(⬦𝑅)) ∨ (⬦𝑅 ∧ ¬((¬𝑃) 𝑊 𝑅)) (by (5)),
(7) ⬦𝑅 ∧ ¬((¬𝑃) 𝑊 𝑅) (by (6)),
(8) ⬦R (by (7)),
(9) ¬((¬𝑃) 𝑊 𝑅) (by (7)),

(10) 𝐿 ∧ (¬𝑅) → ((¬𝑃) 𝑊 𝑅) (by (3)),
(11) 𝐿 (by (2)),
(12) (¬𝑅) → ((¬𝑃) 𝑊 𝑅) (by (10), (11)),
(13) 𝑅 (by (9), (12)),
(14) ¬𝑃 𝑈 𝑅 (by (13)),
(15) ¬(((¬𝑃) 𝑊 𝑅) ∨ ◻(¬𝑃)) (by (9)),
(16) ¬((¬𝑃) 𝑈 𝑅) (by (15)).

By (14), (16), we get a contradiction. So, we conclude that
proposition ◻𝐿 ∧ ◻(𝐿 ∧ (¬𝑅)) → ((¬𝑃) 𝑊 𝑅) ⇒ ⬦𝑅 →

((¬𝑃) 𝑈 𝑅) holds.

Next, if 𝑅 is always false, that is, ◻(¬𝑅), we can prove that
for patternAbsence the formula corresponding to scopeAfter
𝐿 can be derived from the formula corresponding to scope
After 𝐿 until 𝑅.

Proposition 3. Consider ◻(¬𝑅) ∧ ◻((𝐿 ∧ (¬𝑅)) →

((¬𝑃) 𝑊 𝑅)) ⇒ ◻(𝐿 → ◻(¬𝑃)).

Proof. One has

(1) ◻(¬𝑅) (given),
(2) ◻((𝐿 ∧ (¬𝑅)) → ((¬𝑃) 𝑊 𝑅)) (given),
(3) ¬𝑅 (by (1)),
(4) 𝐿 ∧ (¬𝑅) → ((¬𝑃) 𝑊 𝑅) (by (2)),
(5) 𝐿 → ((¬𝑃) 𝑊 𝑅) (by (3), (4)),
(6) 𝐿 → (((¬𝑃) 𝑈 𝑅) ∨ ◻(¬𝑃)) (by (5)),

Journal of Applied Mathematics 5

(7) ¬(⬦𝑅) (by (1)),
(8) ¬(⬦𝑅) ∨ (¬((¬𝑃) 𝑊 𝑅)) (by (7)),
(9) ¬(⬦𝑅 ∧ ((¬𝑃) 𝑊 𝑅)) (by (8)),
(10) ¬((¬𝑃) 𝑈 𝑅) (by (9)),
(11) 𝐿 → ◻(¬𝑃) (by (6), (10)),
(12) ◻(𝐿 → ◻(¬𝑃)) (by (11)).

Next, we prove that if 𝑅 holds eventually, that is, ⬦𝑅, we
canderive the formula corresponding to scopeBetween𝐿 and
𝑅 from the formula corresponding to scope After 𝐿 until 𝑅.

Proposition 4. Consider ⬦𝑅 ∧ ◻((𝐿 ∧ (¬𝑅)) →

((¬𝑃) 𝑊 𝑅)) ⇒ ◻((𝐿 ∧ (¬𝑅) ∧ ⬦𝑅) → ((¬𝑃) 𝑈 𝑅)).

Proof. One has

(1) ◻((𝐿 ∧ (¬𝑅)) → ((¬𝑃) 𝑊 𝑅)) (given),
(2) 𝐿 ∧ (¬𝑅) → ((¬𝑃) 𝑊 𝑅)) by (1),
(3) ⬦𝑅 (given),
(4) 𝐿 ∧ (¬𝑅) ∧ ⬦𝑅 → ((¬𝑃) 𝑊 𝑅) ∧ ⬦𝑅 (by (2), (3)),
(5) 𝐿 ∧ (¬𝑅) ∧ ⬦𝑅 → ((¬𝑃) 𝑈 𝑅) (by (4)),
(6) ◻(𝐿 ∧ (¬𝑅) ∧ ⬦𝑅 → ((¬𝑃) 𝑈 𝑅)) (by (1), (5)).

Now we have proved that the formulae corresponding to
three scopes (After 𝐿, Before 𝑅, and Between 𝐿 and 𝑅) can
be derived from the formulae corresponding to scope After
𝐿 until 𝑅. If 𝐿 always holds and 𝑅 always does not hold, that
is, ◻𝐿 ∧ ◻(¬𝑅), the formula corresponding to scope Global
can be derived from that of scope After 𝐿 until 𝑅. This proof
is straightforward and is easy to be reasoned about. For page
limit, we do not present it in this paper.

Next, we prove that only pattern Absence, Existence, and
Precedence are core patterns, the rest patterns in SPS can be
derived from these three patterns. Firstly, when we replace
¬𝑃 in the formulae corresponding to pattern Absence with
𝑃, and the formulae corresponding to pattern Universality
can be derived. Pattern Absence and Universality are dual of
each other. Next, we present as follows the explicit proofs of
the derivation of pattern Response from pattern Absence and
Existence, in scope After 𝐿 until 𝑅. Lemmas 5 and 6 will be
used in this reasoning.

Lemma 5. Consider (¬𝑅) 𝑈 (𝑃 ∧ (¬𝑅)) ⇔ ((¬𝑅) 𝑈 (𝑃 ∧

(¬𝑅))) 𝑊 𝑅.

Proof. One has

(⇒)

(¬𝑅) 𝑈 (𝑃 ∧ (¬𝑅))

⇒ ((¬𝑅) 𝑈 (¬𝑅)) ∧ ((¬𝑅) 𝑈 𝑃)

⇒ ◻ (¬𝑅) ∧ ((¬𝑅) 𝑈 𝑃)

⇒ ((¬𝑅) 𝑈 (𝑃 ∧ (¬𝑅))) 𝑊 𝑅

(⇐)

((¬𝑅) 𝑈 (𝑃 ∧ (¬𝑅))) 𝑊 𝑅

⇒ (((¬𝑅) 𝑈 (𝑃 ∧ (¬𝑅))) 𝑈 𝑅)

∨ ◻ ((¬𝑅) 𝑈 (𝑃 ∧ (¬𝑅)))

⇒ (⬦𝑅 ∧ ((¬𝑅) 𝑊 (𝑃 ∧ (¬𝑅))))

∨ ((¬𝑅) 𝑈 (𝑃 ∧ (¬𝑅)))

⇒ ⬦𝑅 ∧ ((¬𝑅) 𝑈 (𝑃 ∧ (¬𝑅)))

⇒ (¬𝑅) 𝑈 (𝑃 ∧ (¬𝑅)) .

(1)

Lemma 6. Consider ((¬𝑃) 𝑊 𝑅) ∨ ((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅))) ⇒

(𝑃 → ((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅)))) 𝑊 𝑅.

Proof. By Lemma 5,

((¬𝑃) 𝑊 𝑅) ∨ ((¬𝑅) 𝑈 (𝑇 ∧ ¬𝑅))

⇐⇒ ((¬𝑃) 𝑊 𝑅) ∨ ((¬𝑅) 𝑈 (𝑇 ∧ ¬𝑅)) 𝑊 𝑅

⇐⇒ ((¬𝑃) ∨ ((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅)))) 𝑊 𝑅

⇐⇒ (𝑃 → ((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅)))) 𝑊 𝑅.

(2)

Proposition7. Consider◻((𝐿∧(¬𝑅) → ((¬𝑃) 𝑊 𝑅)∧◻((𝐿∧

(¬𝑅) → ((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅)))) ⇒ ◻((𝐿 ∧ (¬𝑅)) → (𝑃 →

((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅)))) 𝑊 𝑅.

Proof. One has
(1) ◻(𝐿 ∧ (¬𝑅) → (¬𝑃) 𝑊 𝑅) (given),
(2) 𝐿 ∧ (¬𝑅) → (¬𝑃) 𝑊 𝑅 (by (1)),
(3) ◻((𝐿 ∧ (¬𝑅)) → ((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅)))) (given),
(4) 𝐿 ∧ (¬𝑅) → ((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅))) (by (3)),
(5) 𝐿 ∧ (¬𝑅) → ((¬𝑃) 𝑊 𝑅) ∨ ((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅)))

(by (2), (4)),
(6) 𝐿 ∧ (¬𝑅) → (𝑃 → ((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅)))) 𝑊 𝑅 (by

Lemma 6),
(7) ◻((𝐿 ∧ (¬𝑅)) → (𝑃 → ((¬𝑅) 𝑈 (𝑇 ∧ (¬𝑅)))) 𝑊 𝑅)

(by (6)).

Finally, we obtain a simplified pattern system that consists
of only 3 patterns (Absence, Existence, and Precedence) and
one scope (After ⋅ ⋅ ⋅ until), as shown in Figure 4. As we can
see, this simplified pattern system is far more concise than
SPS.

2.3. Syntax. Based on the simplified SPS, we can define the
basic relationships between tasks in ASBPQL. One is Exis-
tence, and the other is Precedence. And two other relation-
ships are in very common use in business process manage-
ment. One is Exclusive, and the other is Concurrence. As

6 Journal of Applied Mathematics

Property pattern

Property patternOccurrence Order

Absence
AbsenceUniversality

Existence
Existence

Precedence
Precedence

Response

Global

State sequence

State sequenceBefore 𝐿
After 𝑅

Between 𝐿 and 𝑅

After 𝐿
𝐿 𝐿

until 𝑅

After 𝐿
𝐿 𝐿

until 𝑅
𝑅

𝑅

Figure 4: The simplification of SPS.

discussed in Section 1, after defining the basic semantic rela-
tionships between tasks, we have to determine whether these
relationships hold in just some process executions or in every
process execution of a business process. Combining with
all these considerations, we can define 6 basic predicates to
capture the occurrence of tasks and the relationships between
tasks in some or every process execution. In the following, the
first two basic predicates, posoccur and alwoccur, capture the
occurrence of a given task in some or every process execution
of a process model. These two basic predicates are based on
pattern Existence:

(1) 𝑝𝑜𝑠𝑜𝑐𝑐𝑢𝑟(𝑡
1
, 𝑟): there exists some executions of

process model 𝑟 where at least one instance of 𝑡
1

occurs,

(2) 𝑎𝑙𝑤𝑜𝑐𝑐𝑢𝑟(𝑡
1
, 𝑟): in every execution of process

model 𝑟, at least one instance of 𝑡
1
occurs.

The next two basic predicates, concur and exclusive, cap-
ture the concurrent and exclusive relationships between tasks,
respectively. Note that these two basic predicates do not
assume that an instance of 𝑡

1
and 𝑡
2
should eventually occur:

(3) 𝑒𝑥𝑐𝑙𝑢𝑠𝑖V𝑒(𝑡
1
, 𝑡
2
, 𝑟): 𝑡
1
and 𝑡
2
are both executable

tasks (i.e., not dead tasks) of process model 𝑟; in every
process execution of 𝑟, it is never possible that an
instance of 𝑡

1
and an instance of 𝑡

2
both occur;

(4) 𝑐𝑜𝑛𝑐𝑢𝑟(𝑡
1
, 𝑡
2
, 𝑟): 𝑡
1
and 𝑡
2
are both executable tasks

of process model 𝑟; 𝑡
1
and 𝑡
2
are not causally related;

and in every execution of 𝑟, if an instance of 𝑡
1
occurs,

then an instance of 𝑡
2
occurs and vice versa.

The last two basic predicates, pospred and alwpred,
capture the basic relationship Precedence between tasks in
some or every process execution of a given process model,
respectively:

(5) 𝑎𝑙𝑤𝑝𝑟𝑒𝑑(𝑡
1
, 𝑡
2
, 𝑟): in every process execution of

process model 𝑟, it holds that an instance of 𝑡
1
occurs

before an instance of 𝑡
2
;

(6)𝑝𝑜𝑠𝑝𝑟𝑒𝑑(𝑡
1
, 𝑡
2
, 𝑟): there exists some process execu-

tions of processmodel 𝑟where an instance of 𝑡
1
occurs

before an instance of 𝑡
2
.

Finally, we define ASBPQL by BNF grammar. A Query
in ASBPQL is a Condition. The result of the Query is
those process models that satisfy the Condition. A Condi-
tion can consist of ⟨𝑇𝑎𝑠𝑘⟩“𝑝𝑜𝑠𝑜𝑐𝑐𝑢𝑟, ” with the intended
semantics what the basic predicate 𝑝𝑜𝑠𝑜𝑐𝑐𝑢𝑟(𝑡

1
, 𝑟) specifies,

a ⟨𝑇𝑎𝑠𝑘⟩“𝑎𝑙𝑤𝑜𝑐𝑐𝑢𝑟, ” with the intended semantics what the
basic predicate 𝑎𝑙𝑤𝑜𝑐𝑐𝑢𝑟(𝑡

1
, 𝑟) specifies, and a ⟨𝑇𝑎𝑠𝑘𝑅𝑒𝑙⟩,

with the intended semantics that all processmodels satisfying
that particular relation between tasks must be retrieved, or
it can be recursively defined as a binary or unary Condi-
tion through the application of logical operators, that is,
⟨𝐵𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ or ⟨𝑈𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩. Specifically, a disjunction
retrieves the union of the process models of the conditions
involved, while a conjunction retrieves the intersection. The
negation of a condition retrieves the process models that do
not satisfy the condition. A task can be defined as its label
which is a string as follows:

⟨𝑄𝑢𝑒𝑟𝑦⟩ ::= ⟨𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩

⟨𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ ::= ⟨𝑇𝑎𝑠𝑘⟩ “𝑝𝑜𝑠𝑜𝑐𝑐𝑢𝑟” |⟨𝑇𝑎𝑠𝑘⟩ “𝑎𝑙𝑤𝑜𝑐𝑐𝑢𝑟”|

⟨𝑇𝑎𝑠𝑘𝑅𝑒𝑙⟩ |⟨𝐵𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩| ⟨𝑈𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ ,

⟨𝑇𝑎𝑠𝑘⟩ ::= “““ ⟨𝑇𝑎𝑠𝑘𝐿𝑎𝑏𝑒𝑙⟩ ”””,

⟨𝑇𝑎𝑠𝑘𝐿𝑎𝑏𝑒𝑙⟩ ::= “ (∼ [”]) + ”,

⟨𝑇𝑎𝑠𝑘𝑅𝑒𝑙⟩ ::= ⟨𝑇𝑎𝑠𝑘⟩ ⟨𝑇𝑎𝑠𝑘𝐶𝑜𝑚𝑝𝑂𝑝⟩ ⟨𝑇𝑎𝑠𝑘⟩ ,

Journal of Applied Mathematics 7

⟨𝑇𝑎𝑠𝑘𝐶𝑜𝑚𝑝𝑂𝑝⟩ ::= “𝑐𝑜𝑛𝑐𝑢𝑟” | “𝑒𝑥𝑐𝑙𝑢𝑠𝑖V𝑒” | “𝑝𝑜𝑠𝑝𝑟𝑒𝑑” | “𝑎𝑙𝑤𝑝𝑟𝑒𝑑”,

⟨𝐵𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ ::= ⟨𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ ⟨𝐵𝑖𝑛𝐿𝑜𝑔𝑖𝑐⟩ ⟨𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ ,

⟨𝐵𝑖𝑛𝐿𝑜𝑔𝑖𝑐⟩ ::= “𝑎𝑛𝑑” | “𝑜𝑟”,

⟨𝑈𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ ::= “𝑛𝑜𝑡” ⟨𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ .

(3)

Using ASBPQL, we can capture the semantics-based
compliance rules in which we are interested, including the
relationship between tasks and the occurrence of tasks in
some or every process execution. For example, rule “A”
pospred “B” and “B” alwpred “C”mean that we want to search
for all process models where in some process execution task
A occurs before task B and in every execution task B occurs
before task C.

3. Petri Nets and Unfoldings

In this section, we discuss the basic concepts of Petri nets
and unfolding on which we base our work. For more details,
readers can refer to [8] for an in-depth introduction to
Petri nets and to [6, 7, 9, 10] for unfolding and its related
definitions.

3.1. Petri Nets. Petri nets are a formal notation system which
can be employed to specify workflow systems (see, e.g., [11,
12]). Petri nets are also used as a formal foundation for defin-
ing the semantics of other process modeling languages or for
reasoning about process models specified in these languages,
for example, BPMN [13], BPEL [14, 15], and EPCs [16]. A
formal definition of Petri nets is presented as follows.

Definition 8 (Petri nets). A Petri net is a tuple (𝑃, 𝑇, 𝐹), where

(i) 𝑃 is a finite set of places;
(ii) 𝑇 is a finite set of transitions, with 𝑃 ∩ 𝑇 = 0 and

𝑃 ∪ 𝑇 ̸= 0;
(iii) 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is a finite set of directed arcs

representing the flow relation, connecting transitions
and places together.

The conditions that the sets of places and transitions
should be finite and that every transition has at least one
input place and at least one output place derive from [7]. For
notational convenience we adopt a commonly used notation,
where ∙𝑛 represents all the inputs of a node 𝑛 (which can be a
place or a transition) and 𝑛∙ captures all its outputs.

Next, a labeled Petri net is basically a Petri net with
annotated transitions and the annotation does not affect the
semantics of the net.

Definition 9 (Labeled Petri nets). A labeled Petri net is a tuple
(𝑃, 𝑇, 𝐹, 𝐴, 𝐿), where

(i) (𝑃, 𝑇, 𝐹) is a Petri net;
(ii) 𝐴 is a finite set of task names;

(iii) 𝐿 : 𝑇 → 𝐴 ∪ {𝜏} is a label mapping function for 𝑇,
where 𝜏 ∉ 𝐴 is a silent action (i.e., an action not visible
to the outside world).

A marking of a Petri net is an assignment of tokens to its
places. A marking represents a state of the net, and a transi-
tion, if enabled, may change a marking into another marking,
thus capturing a state change, by firing.

Definition 10 (marking, enabling, and firing of a transition).
Let 𝑃𝑁 = (𝑃, 𝑇, 𝐹) be a Petri net.

(i) A marking 𝑀 of 𝑃𝑁 is a mapping 𝑀 : 𝑃 → N. A
marking may be represented as a collection of pairs,
for example, {(𝑝

0
, 2), (𝑝

1
, 3), (𝑝

2
, 0)} or as a vector, for

example, 2𝑝
0
+3𝑝
1
(in that case we drop places that do

not have any tokens assigned to them). A labeled Petri
net system is a labeled Petri net with an initial marking
usually represented as 𝑀

0
.

(ii) Markings can be comparedwith each other,𝑀
1

≥ 𝑀
2

if and only if for all 𝑝 ∈ 𝑃, 𝑀
1
(𝑝) ≥ 𝑀

2
(𝑝). Similarly,

one can define >, <, ≤, =.
(iii) A transition 𝑡 is enabled in a marking 𝑀, denoted

as 𝑀

𝑡

→, if and only if the following holds: ∀𝑝 ∈

∙𝑡, 𝑀(𝑝) > 0.
(iv) A transition 𝑡 that is enabled in a marking 𝑀 may fire

and change marking 𝑀 into 𝑀
. This is denoted as

𝑀

𝑡

→ 𝑀
.

Themarkings of a Petri net system and the transition relation
between these markings constitute a state space. In this
paper we consider 𝑛-bounded Petri net systems (noting that
such systems are always finite) which are necessary for the
application of unfoldings.

Definition 11 (reachability and boundedness). Let Σ = (𝑃, 𝑇,

𝐹, 𝑀
0
) be a Petri net system.

(i) A marking 𝑀 is called reachable if a transition
sequence 𝜎 = 𝑡

1
𝑡
2

⋅ ⋅ ⋅ 𝑡
𝑛
exists such that 𝑀

0

𝑡
1

→

𝑀
1

𝑡
2

→ 𝑀
2

⋅ ⋅ ⋅

𝑡
𝑛

→ 𝑀, which may also be denoted as
𝑀
0

𝜎

→ 𝑀 or, if the choice of 𝜎 does not really matter,
𝑀
0

∗

→ 𝑀.
(ii) Σ is called a finite Petri net system if and only if its set

of reachable markings is finite.
(iii) Σ is called 𝑛-bounded if and only if for every reachable

marking 𝑀 and every place 𝑝 ∈ 𝑃: 𝑀(𝑝) ≤ 𝑛.

8 Journal of Applied Mathematics

3.2. Unfolding. It is well known that Petri nets may suffer
from the state space explosion problem [17]. As such a naive
exploration of the state space, especially in the context of a
Petri net which allows highly concurrent behaviour, may not
be tractable. In order to deal with this,McMillan [6] proposed
a state space search technique based on the use of unfolding
(this techniquewas later on improved by Esparza et al. [7] and
is discussed in the next subsection). Unfoldings are applied
to 𝑛-bounded (or called 𝑛-safe in [7]) Petri net systems and
provide a method of searching the state space of concurrent
systems without considering all possible interleavings of
concurrent events. The concept of unfolding was firstly
introduced by Nielsen et al. [9] and later elaborated upon
by Engelfriet [10] using the term branching processes. In the
following we introduce the necessary concepts and notations
tomake this paper self-contained and to be able to build upon
this theory. Most of these defintions are adopted from [7].

Firstly, various types of relationship may hold between
pairs of nodes in a Petri net.

Definition 12 (node relations (based on [7])). Let 𝑃𝑁 = (𝑃, 𝑇,

𝐹) be a Petri net.

(i) 𝐹
+ is the irreflexive transitive closure of 𝐹, while 𝐹

∗

is its reflexive transitive closure. The partial orders
defined by these closures are denoted as < and ≤,
respectively. Hence, for example, 𝑥

1
< 𝑥
2
if and only

if (𝑥
1
, 𝑥
2
) ∈ 𝐹
+, and we say that 𝑥

1
causally precedes

𝑥
2
.

(ii) If 𝑥
1

< 𝑥
2
or 𝑥
2

< 𝑥
1
, then 𝑥

1
and 𝑥

2
are causally

related.
(iii) Nodes 𝑥

1
and 𝑥

2
are in conflict, denoted by 𝑥

1
#𝑥
2
, if

and only if there exist distinct transitions 𝑡
1
, 𝑡
2

∈ 𝑇

such that ∙𝑡
1

∩ ∙𝑡
2

̸= 0, 𝑡
1

≤ 𝑥
1
, and 𝑡

2
≤ 𝑥
2
. A node 𝑥

is in self-conflict if and only if 𝑥#𝑥.
(iv) Nodes 𝑥

1
and 𝑥

2
are concurrent, denoted as 𝑥

1
co 𝑥
2
,

if and only if 𝑥
1
and 𝑥
2
are neither causally related nor

in conflict.

The unfolding of a Petri net is an occurrence net, usually
infinite but with a simple, acyclic structure.

Definition 13 (occurrence net (based on [7])). An occurrence
net is a net 𝑁

= (𝐵, 𝐸, 𝐹), where

(i) 𝐵 is a set of conditions;
(ii) 𝐸 is a set of events, with 𝐵 ∩ 𝐸 = 0;
(iii) 𝐹 ⊆ 𝐵 × 𝐸 ∪ 𝐵 × 𝐸 such that (1) for all 𝑏 ∈ 𝐵, | ∙ 𝑏| ≤ 1,

(2) 𝐹 is acyclic; that is, 𝐹
+ is a strict partial order, and

(3) for all 𝑥 ∈ 𝐵 ∪ 𝐸 the set of nodes 𝑦 ∈ 𝐵 ∪ 𝐸 for
which 𝑦 < 𝑥 is finite;

(iv) No node is in self-conflict; that is, for all 𝑥 ∈ 𝐵 ∪ 𝐸,
¬(𝑥#𝑥).

We also adopt the notion of Min(𝑁

), as in [7], to denote

the set of minimal elements of 𝑁
 with respect to the strict

partial order 𝐹
+. As for transitions in Petri nets, we only

consider events that have at least one input and at least

one output condition. The minimal elements are therefore
conditions only, and intuitively Min(𝑁

) can be seen as an

initial marking of the net.

Definition 14 (branching process (based on [10])). A branch-
ing process of a Petri net system Σ = (𝑁, 𝑀

0
), with 𝑁 =

(𝑃, 𝑇, 𝐹), is a pair (𝑁

, ℎ), where

(i) 𝑁

= (𝐵, 𝐸, 𝐹) is an occurrence net;
(ii) ℎ : 𝑁

→ 𝑁 is a homomorphism which, follow-

ing [10], means that

(a) ℎ(𝐵 ∪ 𝐸) → (𝑃 ∪ 𝑇);
(b) ℎ ⊆ (𝐵 × 𝑃) ∪ (𝐸 × 𝑇); that is, conditions are
mapped to places and events to transitions;
(c) for every 𝑡 ∈ 𝑇, ℎ[∙𝑡] is a bijection between
∙𝑡 and ∙ℎ(𝑡), and ℎ[𝑡∙] is a bijection between 𝑡∙

and ℎ(𝑡)∙;
(d) ℎ[Min(𝑁

)] is a bijection between Min(𝑁

)

and {𝑝 ∈ 𝑃|𝑀
0
(𝑝) > 0};

(iii) for all 𝑒, 𝑒

∈ 𝐸, if ℎ(𝑒) = ℎ(𝑒

) and ∙𝑒 = ∙𝑒

, then
𝑒 = 𝑒
.

Note that the definition allows for infinite branching
processes. In [10] it is shown that, up to isomorphism, every
net systemhas a uniquemaximal branching process. For a net
system Σ, this unique process is referred to as the unfolding
of Σ and it is denoted as Unf

Σ
. For example, in Figure 5 the

Petri nets in (a) can be unfolded into the occurrence net in
(b). Note that in Figure 5(b) all (condition/event) nodes are
identified by integers and annotated by the corresponding
place or transition identifiers in Figure 5(a).

3.3. Complete Finite Prefix. The unfolding of a Petri net is
infinite when the net is cyclic, as, for example, Unf

Σ
in

Figure 5(b). In [6], McMillan proposed an algorithm for the
construction of a so-called truncated unfolding, which is
a finite initial part of an unfolding and contains as much
reachability information as the unfolding itself but may be
much larger than necessary. In [7], Ezparza et al. referred to
this truncated unfolding as complete finite prefix (CFP) and
proposed an improved algorithm for computing a minimal
CFP. For example, as illustrated in Figure 5(c) (the dashed
arcs should be ignored for the moment), Fin

Σ
is a minimal

CFP of Σ. Note that in Figure 5(c) the tuple of conditions
positioned next to an event node represents the marking of
the net upon the occurrence of that event.

The main theoretical notions required to understand the
concepts of a CFP are that of configuration and local configu-
ration of events. Firstly, a configuration represents a possible
partially ordered run of the net.

Definition 15 (configuration [7]). A configuration 𝐶 of an
occurrence net 𝑁 = (𝐵, 𝐸, 𝐹) is a set of events, that is, 𝐶 ⊆ 𝐸,
satisfying the following two conditions:

(i) 𝐶 is causally downward closed, that is, (𝑒 ∈ 𝐶 ∧ 𝑒

≤

𝑒) ⇒ 𝑒

∈ 𝐶;
(ii) 𝐶 is conflict free, that is, for all 𝑒, 𝑒

∈ 𝐶 : ¬(𝑒#𝑒

).

Journal of Applied Mathematics 9

A

B C D

H

G

I

F
E

𝑆8

𝑆7

𝑆5

𝑆2

𝑆0

𝑆1

𝑆4𝑆3

𝑆6

(a) A Petri net Σ

...
...

...
...

...
...

...
...

A

B

B

F FG G

B DCC D

C D

F G

I IE EH H

45

41 42 43 44

1

2

3 4

5 6 7

8 9 10

11 12

13 14 15 16

17 18 19 20 21 22

23 24 25 26 27 28

29 30 31 32 33 34

35 36 37 38 39 40

46 47 48 49 50 51 52

𝑆0

𝑆1 𝑆2

𝑆3 𝑆4 𝑆5

𝑆6 𝑆7 𝑆6 𝑆7

𝑆8

𝑆3 𝑆4 𝑆5 𝑆3 𝑆4 𝑆5

𝑆6 𝑆7𝑆6 𝑆7 𝑆6 𝑆7𝑆6 𝑆7

𝑆8𝑆1 𝑆1𝑆2 𝑆2

(b) The unfolding UnfΣ

A

F G

B C D

F G

B DC

41

45 46 47 48

42

1

2

3

8 9 10

11

13 14 15 16

18 19

24 25 23

17

29

35 36 37

30 31

12

5 6 7

4

E H I

{𝑠1, 𝑠5}{𝑠2, 𝑠4}{𝑠2, 𝑠3}

{𝑠1, 𝑠2}

{𝑠6, 𝑠7}

{𝑠3, 𝑠7} {𝑠5, 𝑠6}{𝑠4, 𝑠7}

{𝑠1, 𝑠7}
{𝑠2, 𝑠6}

{𝑠6, 𝑠7}

{𝑠6, 𝑠7}{𝑠6, 𝑠7}

{𝑠8}

𝑆0

𝑆1

𝑆5𝑆3 𝑆4

𝑆2

𝑆6 𝑆7 𝑆6 𝑆7

𝑆1 𝑆2 𝑆8

𝑆3 𝑆4 𝑆5

𝑆6 𝑆7 𝑆6 𝑆7

(c) The CFP FinΣ annotated with explicit
links from cut-off events to continuation
events

Figure 5: Illustration of unfolding and complete finite prefix using the Petri net Σ adapted from [7] (the net in (a) without 𝑠
0
, 𝑠
8
, 𝐴, and 𝐼 is

the same as the example net in Figure 1 in [7]).

Given a configuration 𝐶 the set of places 𝐶𝑢𝑡
𝐶
represents a

reachable marking, which is denoted by 𝑀𝑎𝑟𝑘(𝐶). In other
word, 𝑀𝑎𝑟𝑘(𝐶) is the marking to reach by firing the config-
uration 𝐶. For example, in the unfolding Unf

Σ
in Figure 5(b)

we have 𝑀𝑎𝑟𝑘({2, 5, 7, 11, 17}) = {𝑠
8
}.

Definition 16 (cut [7]). Let Σ be a Petri net system, and let
(𝑁

, ℎ) be its unfolding.The set of conditions associated with

a configuration of 𝑁
 is called a cut and is defined as 𝐶𝑢𝑡

𝐶
=

(Min(𝑁

) ∪ 𝐶∙) \ ∙𝐶. A cut uniquely defines a reachable

marking in Σ: 𝑀𝑎𝑟𝑘(𝐶) = ℎ(𝐶𝑢𝑡
𝐶

).

The concepts thus far can be used to introduce the unfold-
ing algorithm. In [7] a branching process (𝑁

, ℎ) of a Petri net

system Σ is specified as a collection of nodes.These nodes are
either conditions or events. A condition is a pair (𝑠, 𝑒)where 𝑒

is the input event of 𝑠, while an event is a pair (𝑡, 𝐵) where 𝑡 is
a transition and 𝐵 is its input conditions. A set of conditions
of a branching process is a coset if its elements are pairwise in
corelation. For example, in Figure 5(b) each of the node sets
{13, 14}, {15, 16}, {45, 46}, {47, 48}, {49, 50}, and {51, 52} is a
coset.

During the process of unfolding the collection of nodes
increases where the function 𝑃𝐸(𝑁

, ℎ) (which denotes the

possible extensions) is applied to determine the nodes to

be added. The possible extensions are given in the form of
event pairs (𝑡, 𝐵), where 𝐵 is a coset of conditions of (𝑁

, ℎ)

and 𝑡 is a transition of Σ such that (1) ℎ(𝐵) = ∙𝑡, and
(2) no event 𝑒 exists for which ℎ(𝑒) = 𝑡 and ∙𝑒 = 𝐵.
In the unfolding algorithm, nodes from the set of possible
extensions 𝑃𝐸(𝑁

, ℎ) are added to the unfolding of the net

till this set is empty (i.e., there are no more extensions).
In the complete finite prefix approach, it is observed that

a finite prefix of an unfolding may contain all reachability-
related information. The key to obtain a CFP is to identify
those events at which we can cease unfolding (e.g., events 12,
41, and 42 in Fin

Σ
in Figure 5(c)) without loss of reachability

information. Such events are referred to as cut-off events,
and they are defined in terms of an adequate order on
configurations.

Definition 17 (adequate order [7]). Let Σ = (𝑃, 𝑇, 𝐹, 𝑀
0
) be

a Petri net system, and let ≺ be a partial order on the finite
configurations of one of its branching processes, then ≺ is an
adequate order if and only if

(i) ≺ is well founded;
(ii) for all configurations𝐶

1
and𝐶

2
,𝐶
1

⊂ 𝐶
2

⇒ 𝐶
1

≺ 𝐶
2
;

(iii) the ≺ order is preserved in the context of finite exten-
sions; that is, if 𝐶

1
≺ 𝐶
2
and 𝑀𝑎𝑟𝑘(𝐶

1
) = 𝑀𝑎𝑟𝑘(𝐶

2
),

10 Journal of Applied Mathematics

then if we extend𝐶
1
with𝐸 to𝐶

1
, andwe extend𝐶

2
to

𝐶

2
by using an extension isomorphic to 𝐸 then 𝐶

1
≺

𝐶

2
.

The last clause of this definition is not fully formalised
here as it requires a certain amount of formalism, and we
hope that the idea is sufficiently clear from an intuitive point
of view. We refer the reader to [7] for a complete formal
definition of this notion. Note that, as pointed out in [7], the
order ≺ is essentially a parameter to the approach.

The concept of local configuration captures the idea of all
preceding events to an event such that these events form a
configuration.

Definition 18 (local configuration [7]). Let 𝑁 = (𝐵, 𝐸, 𝐹) be
an occurrence net, and the local configuration of an event 𝑒 ∈

𝐸, denoted [𝑒], is the set of events 𝑒
, where 𝑒

∈ 𝐸, such that

𝑒

≤ 𝑒.

Definition 19 (cut-off event [7]). Let Σ be a Petri net system,
let 𝑁
 be one of its branching processes, and let ≺ be an

adequate order on the configurations of 𝑁
; then an event 𝑒 is

a cut-off event if and only if 𝑁
 contains a local configuration

[𝑒

] for which 𝑀𝑎𝑟𝑘([𝑒]) = 𝑀𝑎𝑟𝑘([𝑒

]) and [𝑒

] ≺ [𝑒].

Without loss of reachability information, we can cease
unfolding from an event 𝑒, if 𝑒 takes the net to a marking
which can be caused by some earlier other event 𝑒

. So in
Figure 5(c), we remove the part after event 12 from Unf

Σ

because it is isomorphic to that after event 11; that is, the con-
tinuation after event 12 is essentially the same as the continua-
tion after event 11. For a proof of this approach we refer to [7].

4. Evaluation

In this section, we demonstrate how the basic predicates
introduced in Section 2 can be derived for Petri nets based
on the process executions extracted from CFPs.

4.1. Annotating Complete Finite Prefix. In this work, the
repository of process models are captured in terms of CFPs.
All predicates between tasks are determined by examining the
possible firing sequences in the CFP of each process model.
To facilitate our algorithms for determining these predicates
(presented in the next subsection), we would like to represent
the continuation from cut-off events slightly more explicit in
a CFP. The idea is that for each of the cut-off events 𝑒 in a
CFP we mark out some earlier other event 𝑒

 that can lead
to the same marking as 𝑒 (i.e., 𝑀𝑎𝑟𝑘([𝑒]) = 𝑀𝑎𝑟𝑘([𝑒

]) and

[𝑒

] ≺ [𝑒]). We referred to 𝑒

 as the continuation event of 𝑒 in
the CFP. We then annotate the CFP with links that connect
from each cut-off event to its continuation event.

Definition 20 (notations of continuation events and cut-off
events). Let Σ = (𝑁, 𝑀

0
) be a Petri net system, with 𝑁 =

(𝑃, 𝑇, 𝐹), and let 𝜌 = (𝑁

, ℎ), with 𝑁

= (𝐵

, 𝐸

, 𝐹

), be an

unfolding of Σ; then we define the following:
(i) Eq(𝑀, 𝜌) = {𝑒 ∈ E | 𝑀𝑎𝑟𝑘([𝑒]) = 𝑀} for any reach-

able marking 𝑀 of 𝑁. If 𝜌 is clear from the context,

we will simply omit it and write Eq(𝑀) (a similar
convention holds for the remainder of this definition,
and 𝜌 is not introduced explicitly anymore);

(ii) continuation(𝑀) which refers to the continuation
node in 𝜌 for a reachable marking 𝑀. It is defined
as the unique event 𝑒

∈ Eq(𝑀) such that for all

𝑒 ∈ Eq(𝑀), if 𝑒 ̸= 𝑒
 then [𝑒

] ≺ [𝑒];

(iii) cutoff(𝑀) = Eq(𝑀) \ {continuation(𝑀)} which
denotes the set of cut-off events for a reachable
marking 𝑀.

Definition 21 (annotated complete finite prefix). Let Σ =

(𝑁, 𝑀
0
) be a Petri net system, and Fin𝑎

Σ
denotes a CFP of

Σ that is annotated with links from cut-off events to their
continuation events, shortly referred to as an annotated CFP:
Fin𝑎
Σ

= (Fin
Σ

, 𝐿), where

(i) Fin
Σ

= (𝐵, 𝐸, 𝐺) is the CFP of Σ;
(ii) 𝐿 is a set of links defined as 𝐿 ⊆ 𝐸 × 𝐸, and if and only

if (𝑒, 𝑒

) ∈ 𝐿, then there is a reachablemarking𝑀 such

that 𝑒

= continuation(𝑀) and 𝑒 ∈ cutoff(𝑀).

Example 22. Consider Fin𝑎
Σ
as shown in Figure 5(c). For this

annotated CFP, 𝐿 = {(41, 11), (42, 11), (12, 11)}.

To generate an annotatedCFP,we propose a slight adapta-
tion of the algorithm for computing a CFP for a 𝑛-safe
net system in [7]. This adapted algorithm is presented as
Algorithm 1. Based on Definition 21, the data structure for
the representation of an annotated CFP comprises that of
a CFP in [7] (written Fin𝑎.𝑁) and a set of links (written
Fin𝑎.𝐿). 𝑃𝐸 (Fin𝑎.𝑁) is the set of events that can be added
to a branching process Fin𝑎.𝑁 (i.e., possible extensions of
Fin𝑎.𝑁), as defined in [7]. Application of 𝑚𝑖𝑛𝑖𝑚𝑎𝑙(𝑝𝑒, ≺)

yields an event 𝑒which satisfies the following condition taken
from [7]: 𝑒 ∈ 𝑝𝑒 and [𝑒] is minimal with respect to ≺. The
predicate 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑒, 𝑐𝑢𝑡 𝑜𝑓𝑓) is an abbreviation
of [𝑒] ∩ 𝑐𝑢𝑡 𝑜𝑓𝑓 = 0, the condition used in [7]. Next,
𝑐𝑢𝑡 𝑜𝑓𝑓 𝑒V𝑒𝑛𝑡(𝑒, Fin𝑎.𝑁, 𝑐) returns the result of whether or
not 𝑒 is a cut-off event of Fin𝑎.𝑁 (as in [7]), and during
its application, the corresponding continuation event for 𝑒 is
returned in the local variable 𝑐, so that it does not need to
be determined again when adding links. Note that we use
𝑋 ∪ := 𝑌 as an abbreviation for 𝑋 := 𝑋 ∪ 𝑌 and 𝑋\ := 𝑌

for 𝑋 := 𝑋 \ 𝑌.

4.2. Determining the Basic Predicates. In Section 2, we
defined a set of 6 basic predicates based on process execution
semantics and to check if such a predicate holds requires in
principle exploration of all process executions. Since different
process executions result from choices in a process model,
we propose to preprocess the annotated CFP of each process
model (Algorithm 2) as follows: first we transform such a
CFP to a set of conflict-free CFPs (specified by function
GetAllExecutions in Algorithms 3) and then convert each
resulting CFP to a directed bipartite graph (or bigraph)
(specified by AnnotatedCFP2Bigraph in Algorithm 5).

In Algorithm 3, GetLeafCondCoSets yields all cosets of
leaf conditions in the input CFP. By traversing backwards

Journal of Applied Mathematics 11

Input: An 𝑛-safe Petri net system Σ = (𝑃, 𝑇, 𝐹, 𝑀
0
)

Output: Fin𝑎 (𝑁 : 𝑁𝑒𝑡, 𝐿 : 𝐿𝑖𝑛𝑘𝑠) an annotated CFP of Σ

begin
Fin
𝑎

.𝑁 := {(𝑠, 0) | 𝑀
0
(𝑠) > 0 ∧ 𝑠 ∈ 𝑃};

Fin
𝑎
. 𝐿 := 0;

𝑝𝑒 := 𝑃𝐸(Fin𝑎. 𝑁);
𝑐𝑢𝑡 𝑜𝑓𝑓 := 0;
while 𝑝𝑒 ̸= 0 do

𝑒 := 𝑚𝑖𝑛𝑖𝑚𝑎𝑙(𝑝𝑒, ≺);
If 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑒, 𝑐𝑢𝑡 𝑜𝑓𝑓) then

Fin
𝑎
. 𝑁 ∪ := {(𝑒.𝑡, ∙𝑒)} ∪ {(𝑠, 𝑒) | 𝑠 ∈ 𝑒.𝑡∙};

𝑝𝑒 := 𝑃𝐸(Fin
𝑎
. 𝑁);

if 𝑐𝑢𝑡 𝑜𝑓𝑓 𝑒V𝑒𝑛𝑡(𝑒, Fin𝑎. 𝑁, 𝑐) then
𝑐𝑢𝑡 𝑜𝑓𝑓 ∪ := {𝑒};
Fin
𝑎
. 𝐿 ∪ := {(𝑒, 𝑐)};

else 𝑝𝑒 \ := {𝑒}

Algorithm 1: Computation of an annotated CFP via an adaption of Algorithm 4.7 in [7].

function 𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠

Input: An annotated CFP 𝑈 = (𝜌, 𝐿) where 𝜌 = (𝐵, 𝐸, 𝐹) and 𝐿 ⊆ 𝐸 × 𝐸

Output: A set of bigraphs G
begin

G := 0;
U:= GetAllExecutions(𝑈);
for 𝑈 ∈ U do

G∪ :=A𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑𝐶𝐹𝑃2𝐵𝑖𝑔𝑟𝑎𝑝ℎ(𝑈)

Algorithm 2: Preprocessing an annotated CFP to a set of directed bigraphs.

the input CFP (without considering the set of links) from
each of these co-sets, ComputeCFPs produces the set of
CFPs as a decomposition of the input CFP. This set of CFPs
are free of conflicts due to the corelation between the leaf
conditions in each co-set. For illustration, Figure 6 depicts
the set of conflict-free CFPs as decomposition of Fin

Σ
in

Figure 5(c) via computation of GetLeafCondCoSets and
ComputeCFPs.

Next, we convert the link annotations of the input CFP
to the link annotations for each of the conflict-free CFPs
(that result from the above decomposition of the input CFP).
If such a CFP does not contain a cut-off event (𝐸

𝑐𝑢𝑡𝑜𝑓𝑓
=

0), there is no link annotation, and the CFP will remain
as it is. Otherwise, for a CFP with cut-off events, there are
two cases to consider depending on whether a cut-off event
(𝑒
𝑐𝑢𝑡
) in the CFP links to a continuation event (𝑒

𝑐𝑜𝑛𝑡
) within

or outside this CFP. If the CFP contains both events, the
link (𝑒

𝑐𝑢𝑡
, 𝑒
𝑐𝑜𝑛𝑡

) is directly added into the link annotations
of the CFP. Otherwise, if the CFP contains 𝑒

𝑐𝑢𝑡
but not

𝑒
𝑐𝑜𝑛𝑡

, we propose to update the CFP (specified by function
GetUpdatedCFPs in Algorithm 4) and the link annotations
till there exists no link across two different CFPs.

Algorithm 4 specifies how to update a CFP with a cut-
off event linking to a continuation event outside the CFP.The
basic idea is to identify among the set of conflict-free CFPs
(Γ) those (𝜌

𝑖
) that contain 𝑒

𝑐𝑜𝑛𝑡
and to replace the part before

and including 𝑒
𝑐𝑜𝑛𝑡

in such a CFP (𝜌
𝑖
) with the part before and

including 𝑒
𝑐𝑢𝑡

in the original CFP (𝜌).This results in the same
number of updated CFPs (𝜌) as that of the CFPs containing
𝑒
𝑐𝑜𝑛𝑡

. Since 𝑒
𝑐𝑜𝑛𝑡

is replaced by 𝑒
𝑐𝑢𝑡

in the updated CFPs and
(𝑒
𝑐𝑢𝑡

, 𝑒
𝑐𝑜𝑛𝑡

) is not used any more, the link annotations need
update as well.

Back to Algorithm 3, we retrieve the links (𝐿
𝑎𝑑𝑑

) that
lead to 𝑒

𝑐𝑜𝑛𝑡
except for (𝑒

𝑐𝑢𝑡
, 𝑒
𝑐𝑜𝑛𝑡

) and replace 𝑒
𝑐𝑜𝑛𝑡

with 𝑒
𝑐𝑢𝑡

in these links. Accordingly, the flag 𝑓
𝑢𝑝𝑑𝑎𝑡𝑒

is set to TRUE
signaling the fact that CFP updates have been applied, and
the updated CFPs are added to the set of remaining CFPs
(Γ
𝑡𝑚𝑝

) for processing of link annotations. For a given CFP
(𝜌), if all the cut-off events in the CFP are processed without
CFP updates (¬𝑓

𝑢𝑝𝑑𝑎𝑡𝑒
), the set of links (𝐿) that are computed

from such processing is added as the CFP’s link annotations.
The previous procedure for converting link annotations is
repeated till there are nomore remainingCFPs (Γ

𝑡𝑚𝑝
= 0). For

illustration, Figure 7 depicts the set of conflict-free annotated
CFPs as decomposition of Fin𝑎

Σ
in Figure 5(c) via compu-

tation of Algorithm 3. Note that Figures 7(d)–7(f) show the
three updated CFPs as result of combining the part before
and including cut-off event 12 in the CFP in Figure 6(d)
with the part after continuation event 11 in each of the
CFPs in Figures 6(a)-6(c), respectively, and then replacing
continuation event 11 with event 12 in the corresponding
CFPs.

12 Journal of Applied Mathematics

function 𝐺𝑒𝑡𝐴𝑙𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠

Input: An annotated CFP 𝑈 = (𝜌, 𝐿) where 𝜌 = (𝐵, 𝐸, 𝐹) and 𝐿 ⊆ 𝐸 × 𝐸

Output: A set of annotated CFPs U
begin

U := 0;
Γ := 0;
/∗ compute CFPs from each of the co-sets of leaf conditions ∗/
CS:= GetLeafCondCoSets(𝜌);
for 𝑐𝑠 ∈ 𝐶𝑆 do

Γ ∪ := {ComputeCFP(𝜌, 𝑐𝑠)};
/∗ generate annotated CFPs from the above (conflict-free) CFPs ∗/
Γ
𝑡𝑚𝑝

:= Γ;
repeat

Select 𝜌

∈ Γ
𝑡𝑚𝑝

;
𝐿

:= 0;
𝐸
𝑐𝑢𝑡𝑜𝑓𝑓

:= GetCutoffEvents(𝜌);
𝑓
𝑢𝑝𝑑𝑎𝑡𝑒

:= FALSE; /∗ the flag changes to TRUE if there are CFP updates ∗/
while 𝐸

𝑐𝑢𝑡𝑜𝑓𝑓
̸= 0 ∧ ¬𝑓

𝑢𝑝𝑑𝑎𝑡𝑒
do

Select 𝑒
𝑐𝑢𝑡

∈ 𝐸
𝑐𝑢𝑡𝑜𝑓𝑓

;
𝑒
𝑐𝑜𝑛𝑡

:= GetContinuationEvent(𝐿, 𝑒
𝑐𝑢𝑡
);

if 𝑒
𝑐𝑜𝑛𝑡

∈ 𝜌

⋅ 𝐸 then
𝐿

∪ := {(𝑒
𝑐𝑢𝑡

, 𝑒
𝑐𝑜𝑛𝑡

)};
else

Γ
𝑎𝑑𝑑

:= GetUpdatedCFPs(𝜌, Γ, 𝑒
𝑐𝑢𝑡

, 𝑒
𝑐𝑜𝑛𝑡

); /∗ see Algorithm 4 ∗/
Γ \ := {𝜌

};

Γ ∪ := Γ
𝑎𝑑𝑑

;
𝐿
𝑎𝑑𝑑

:= GetLinks to(𝐿, 𝑒
𝑐𝑜𝑛𝑡

) \ {(𝑒
𝑐𝑢𝑡

, 𝑒
𝑐𝑜𝑛𝑡

)};
for 𝑒 𝑤ℎ𝑒𝑟𝑒 (𝑒, 𝑒

𝑐𝑜𝑛𝑡
) ∈ 𝐿
 do

𝐿
𝑎𝑑𝑑

∪ := {(𝑒, 𝑒
𝑐𝑢𝑡

)}

𝐿 \ := {(𝑒
𝑐𝑢𝑡

, 𝑒
𝑐𝑜𝑛𝑡

)};
𝐿 ∪ := 𝐿

𝑎𝑑𝑑
;

𝑓
𝑢𝑝𝑑𝑎𝑡𝑒

:= TRUE; /∗ set the flag to TRUE upon CFP updates ∗/
Γ
𝑡𝑚𝑝

∪ := Γ
𝑎𝑑𝑑

; /∗ add to the remaining CFPs for link annotations ∗/
𝐸
𝑐𝑢𝑡𝑜𝑓𝑓

\ := {𝑒
𝑐𝑢𝑡

};
if¬𝑓
𝑢𝑝𝑑𝑎𝑡𝑒

then
U∪ := {(𝜌

, 𝐿

)};

Γ
𝑡𝑚𝑝

\ := {𝜌

}

until Γ
𝑡𝑚𝑝

= 0;

Algorithm 3: Transforming an annotated CFP into a set of conflict-free annotated CFPs.

Finally, Algorithm 5 specifies how to convert an anno-
tated CFP into a directed bigraph. The transformation is
straight-forward where the events in the CFP become event
nodes in the bigraph, conditions become condition nodes, the
arcs become the directed edges, and the links are converted
to the edges leading from a cut-off event to each of the
immediate successors (conditions) of the corresponding con-
tinuation event. For illustration, Figure 8 depicts an example
of converting an annotated CFP to a directed bigraph.

During preprocessing, we first generate a CFP from a
Petri net, and then from the CFP we extract one of more
bigraphs. As we only add link information in an annotated
CFP, the complexity of the adapted CFP generation algorithm
(cf. Algorithm 1) is the same as that of the original CFP
algorithm, which is exponential on the number of arcs of the
Petri net [7]. The complexity of generating a bigraph from a
CFP (cf. Algorithm 2) is linear on the size of the CFP, since

the latter is traversed depth-first in reverse order (i.e., starting
from a leaf condition).

Now we define the algorithms for determining the 6
basic predicates. First, we introduce two common functions:
RetrieveBigraphs which returns the set of bigraphs for
a process model (𝑟) from the above preprocessing, and
RetrieveAllEvents which returns the set of event nodes
for (i.e., labeled with) a task (𝑡) in a bigraph (𝐺). Each such
bigraph represents a possible execution of the corresponding
process, and each event node labeled with a task identifier in
the bigraph captures an occurrence of the corresponding task
in that process execution. For a short notation, an event node
labeled with task 𝑡 is hereafter referred to as an 𝑡-event node.

Algorithms 6 and 7 specify how to evaluate the two unary
predicates. Predicates posoccur or alwoccur of task 𝑡 in process
model 𝑟 can be determined by checking the presence of a 𝑡-
event node in any or all bigraphs of 𝑟. Based on the fact that

Journal of Applied Mathematics 13

function 𝐺𝑒𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐶𝐹𝑃𝑠

Input: A CFP 𝜌 = (𝐵, 𝐸, 𝐹), a set of CFPs Γ, a (cut-off) event 𝑒
𝑐𝑢𝑡
, a (continuation) event 𝑒

𝑐𝑜𝑛𝑡

Output: A set of (updated) CFPs Γ

begin
Γ

:= 0;
/∗ get 𝜌 ready by removing the successor conditions of 𝑒

𝑐𝑢𝑡
(in 𝜌) ∗/

𝐵
𝑡𝑚𝑝

:= iSuccessors(𝜌, 𝑒
𝑐𝑢𝑡
);

𝜌 ⋅ 𝐵 \ := 𝐵
𝑡𝑚𝑝

;
𝜌 ⋅ 𝐹 \ := {𝑒

𝑐𝑢𝑡
} × 𝐵
𝑡𝑚𝑝

;
/∗ retrieve and process the CFPs that contain 𝑒

𝑐𝑜𝑛𝑡
in Γ ∗/

for 𝜌
𝑖

∈ Γ 𝑤ℎ𝑒𝑟𝑒 𝑒
𝑐𝑜𝑛𝑡

∈ 𝜌
𝑖

⋅ 𝐸 do
/∗ remove from 𝜌 the part before 𝑒

𝑐𝑜𝑛𝑡
, 𝑒
𝑐𝑜𝑛𝑡

itself, and the outgoing edges of 𝑒
𝑐𝑜𝑛𝑡

∗/
𝐻 := GetSubCFP to(𝜌

𝑖
, 𝑒
𝑐𝑜𝑛𝑡

);
𝜌
𝑖

⋅ 𝐵 \ := 𝐻 ⋅ 𝐵;
𝜌
𝑖

⋅ 𝐸 \ := 𝐻 ⋅ 𝐸;
𝜌
𝑖

⋅ 𝐹 \ := 𝐻 ⋅ 𝐹 ∪ ({𝑒
𝑐𝑜𝑛𝑡

} × iSuccessors(𝜌
𝑖
, 𝑒
𝑐𝑜𝑛𝑡

));
/∗ connect the above (updated) 𝜌 and 𝜌

𝑖
to 𝜌

∗/
𝜌

⋅ 𝐵 := 𝜌 ⋅ 𝐵 ∪ 𝜌
𝑖

⋅ 𝐵;
𝜌

⋅ 𝐸 := 𝜌 ⋅ 𝐸 ∪ 𝜌
𝑖

⋅ 𝐸;
𝜌

⋅ 𝐹 := 𝜌 ⋅ 𝐹 ∪ 𝜌
𝑖

⋅ 𝐹 ∪ ({𝑒
𝑐𝑢𝑡

} × InitialConditions(𝜌
𝑖
));

Γ

∪ := {𝜌

}

Algorithm 4: Updating a CFP with a cut-off event that links to a continuation event outside the CFP.

Function 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑𝐶𝐹𝑃2𝐵𝑖𝑔𝑟𝑎𝑝ℎ

Input: An annotated CFP 𝑈 = (𝜌, 𝐿) where 𝜌 = (𝐵, 𝐸, 𝐹) and 𝐿 ⊆ 𝐸 × 𝐸

Output: A directed bigraph 𝐺 = (𝑉
𝑐𝑜𝑛𝑑

: condition nodes, 𝑉
𝑒V𝑒𝑛𝑡: event nodes, 𝐴: directed edges)

begin
𝑉
𝑐𝑜𝑛𝑑

:= 𝐵;
𝑉
𝑒V𝑒𝑛𝑡 := 𝐸;

𝐴 := 𝐹;
for (𝑒

1
, 𝑒
2
) ∈ 𝐿 do

𝐵
1

:= iSuccessors(𝑒
1
);

𝐵
2

:= iSuccessors(𝑒
2
);

𝑉
𝑐𝑜𝑛𝑑

\ := 𝐵
1
;

𝐴 \ := {𝑒
1
} × 𝐵
1
;

𝐴 ∪ := {𝑒
1
} × 𝐵
2
;

Algorithm 5: Converting an annotated CFP to a directed bigraph.

the set of bigraphs of process model 𝑟 is each free of choices,
the exclusive relation between two tasks 𝑡 and 𝑡

 is determined
by checking in every bigraph of 𝑟 if there are both a 𝑡-event
node and a 𝑡

-event node, as specified in Algorithm 8. In
Algorithm 9, the concur relation between 𝑡 and 𝑡

 in 𝑟 holds if
and only if in each bigraph of 𝑟 either (1) there are no 𝑡- and
𝑡
-event nodes at all, or (2) there are both an 𝑡-event node and
an 𝑡
-event node, and no directed path exists between the two

nodes.
Next, the remaining algorithms are defined for basic

predicates capturing causal relationships between tasks. Eval-
uation of each such predicate is based on the result of evaluat-
ing the corresponding intermediate predicate in individual
process executions. Given a process model 𝑟, predicate
alwpred holds onlywhen its intermediate predicate (i.e., Pred)
holds in all process executions of 𝑟, while predicate pospred
holds as long as its intermediate predicate (i.e., Pred) holds

in one process execution of 𝑟. To capture such semantics, we
apply logical operator∧ (for predicate alwpred) or∨ (for pred-
icate pospred) between the intermediate predicate over the set
of bigraphs (G) of 𝑟 in the algorithms. Algorithm 10 spec-
ifies the evaluation of predicate alwpred, and Algorithm 11
specifies the evaluation of pospred.

Let us move on to the algorithms for evaluation of
intermediate predicates Pred. Consider an execution 𝑖 of
process model 𝑟 and two tasks 𝑡

1
and 𝑡
2
in 𝑟. Algorithm 12

specifies the evaluation of Pred. In this algorithm, 𝑡
𝑓𝑜𝑟𝑚𝑒𝑟

refers to 𝑡
1
and 𝑡
𝑙𝑎𝑡𝑡𝑒𝑟

to 𝑡
2
in the previous discussion, and

function Precedes (which we will shortly describe in more
detail) is used to evaluate causal relationship between two
specific task occurrences.

Finally, we introduce the definition of function Precedes.
In Algorithm 13, function Precedes determines if a given 𝑒-
event node eventually precedes a given 𝑒

-event node in

14 Journal of Applied Mathematics

A

1

2

3

5

8 10

11

14

17

23

13

4

7B D

F

I

𝑆0

𝑆1

𝑆6 𝑆7

𝑆3 𝑆5

(a)

A

1

2

11

3 4

5 7B D

F

E H

8 10

1413

1918

2524

3635

41

45 46

3129 D

F

B

𝑆0

𝑆1

𝑆3

𝑆6

𝑆1

𝑆3 𝑆5

𝑆6 𝑆7

𝑆2

𝑆7

𝑆5

𝑆2

(b)

A

1

2

3 4

5 7B D

11
F

8 10

E H 1918

2524

37

42

36

47 48

3130 D

G

C

1413

𝑆0

𝑆1 𝑆2

𝑆3

𝑆6 𝑆7

𝑆1 𝑆2

𝑆5

𝑆5
𝑆4

𝑆6 𝑆7

(c)

A

1

2

3 4

6 7DC

G

10

12

15 16

9

𝑆0

𝑆1 𝑆2

𝑆4 𝑆5

𝑆6 𝑆7

(d)

Figure 6: The set of conflict-free CFPs as decomposition of Fin
Σ
in Figure 5(c).

bigraph 𝐺 (representing a process execution). Following
a typical graph search algorithm, it traverses bigraph 𝐺

from the 𝑒-event node (via recursively calling itself) until
reaching the 𝑒

-event node (𝑛 = 𝑚), the end of the
graph (iSuccessors (𝐺, 𝑛) = 0 where iSuccessors (𝐺, 𝑛)

denotes the immediate successors of node 𝑛 in graph 𝐺),
or a node that was visited before (𝑛 ∈ 𝑉 where 𝑉 stores
the set of visited nodes). Also, we consider that the Precedes
relationship is irreflexive; that is, a task occurrence cannot
have a Precedes relationship with itself. Hence, when 𝑒 and
𝑒
 refer to the same task occurrence (𝑛 = 𝑚 ∧ 𝑉 = 0), Precedes
returns a negative result.

A basic predicate is evaluated by traversing breadth first
each bigraph of each process model in the repository; thus
this operation is linear on the size 𝑠 of a bigraph. Let 𝑏 be the
total number of bigraphs in the repository, and let 𝑝 be the
number of basic predicates in a compliance rule. Hence, the
complexity of evaluating a single rule (cf. Algorithms 6, 7, 8,
9, 10, 11, and 12) is linear on 𝑝 times 𝑏 timesmax

𝑠
, where max

𝑠

is the size of the largest bigraph in the repository.
It should be noted that for our purposes the adapted CFP

generation algorithm and bigraph extraction algorithm are
applied to computing the basic predicates over a repository
of process models specified as Petri nets. Hence, these
operations are performed when inserting a Petri net in the
repository.This means that the cost of evaluating a rule is not
determined by the complexity of these two algorithms, as the
computation of the basic behavioural relations would already
have taken place (so essentially we trade space for time).

5. Experiments

In this section, we first describe the implementation of
ASBPQL in a software tool, and then we report on the per-
formance of ASBPQL which we measured using this tool.

5.1. Implementation. In order to evaluate the performance of
ASBPQL we implemented a tool, namely, ASBPQL Querier,
that supports compliance checking for business processmod-
els with ASBPQL. A screen shot of ASBPQLQuerier is shown
in Figure 9.The tool is part of the BeehiveZ toolset v3.0. Bee-
hiveZ is an open-source BPM analysis system based on Java
(BeehiveZ can be downloaded from http://code.google.com/
p/beehivez/downloads/list).

The architecture of the ASBPQL Querier and of the
process model repository with which the ASBPQL Querier
interacts inside BeehiveZ is illustrated in Figure 10. The core
of the ASBPQL Querier is the query engine: it takes as input
the compliance rules produced by users via the query editor
and generates as output the results of compliance checking
via the query results display. The query editor uses the
syntax of ASBPQL. Using this syntax, users can easily specify
the semantic relationships in which they are interested. For
example, “A” alwpred “B” and “C” concur “F” mean that the
users want to retrieve all process models where in every
execution task A precedes task B as well as task C occurs
parallel with task F.

Under the hoods, the query engine exploits an internal
parser which converts each query statement into a grammar
tree. This parser is built by JavaCC (http://javacc.java.net/)

Journal of Applied Mathematics 15

A

B

F

I

D

1

2

3 4

5

8 10

11

13 14

17

23

7

𝑆0

𝑆1

𝑆3 𝑆5

𝑆6 𝑆7

𝑆8

𝑆2

(a)

A

1

8 10

F

E H

B

F

D

11

13 14

24 25

29

35

31

37

41

45 46

18 19

B D5 7

3 4

2

𝑆0

𝑆1

𝑆3 𝑆5

𝑆6

𝑆1

𝑆3

𝑆6 𝑆7

𝑆5

𝑆2

𝑆7

𝑆2

(b)

A

1

8 10

G

C D

F 11

24 25

30

36 37

47 48

42

31

E H18 19

13 14

B D5 7

3 4

2

𝑆0

𝑆1

𝑆3 𝑆5

𝑆6

𝑆1 𝑆2

𝑆4

𝑆6 𝑆7

𝑆5

𝑆7

𝑆2

(c)

A

C

G

E

B D

F

H

D

1

2

3 4

9 10

12

13 14

24

29

35 37

45 46

31

41

25

18 19

6 7

𝑆0

𝑆1 𝑆2

𝑆4 𝑆5

𝑆6

𝑆1 𝑆2

𝑆3 𝑆5

𝑆6 𝑆7

𝑆7

(d)

C

G

D

9 10

G 12

13 14

36

47 48

37

42

3130

24 25

E H18 19

C D6 7

A

1

2

3 4

𝑆0

𝑆1 𝑆2

𝑆4 𝑆5

𝑆6

𝑆1 𝑆2

𝑆4 𝑆5

𝑆6 𝑆7

𝑆7

(e)

9 10

G

I

12

13 14

17

23

C D6 7

A

1

2

3 4

𝑆0

𝑆1

𝑆4 𝑆5

𝑆6 𝑆7

𝑆8

𝑆2

(f)

Figure 7: The set of conflict-free annotated CFPs transformed from Fin𝑎
Σ
in Figure 5(c) according to Algorithm 3.

16 Journal of Applied Mathematics

1

2

3

5

8 10

11

13 1314

18 19

24 25

29 31

35 37

45 46 45 46

41 41

35 37

24 25

14

11

7

4

A

F

E H

D

F F

B 29 31DB

18 19E H

F

B D

1

2

3

5

8 10

7

4

A

B D

𝑆0 𝑆0

𝑆1

𝑆3 𝑆3𝑆5

𝑆6

𝑆1 𝑆1𝑆2

𝑆3

𝑆6 𝑆6𝑆7 𝑆7

𝑆3𝑆5 𝑆5

𝑆2

𝑆6
𝑆7 𝑆7

𝑆5

𝑆1𝑆2 𝑆2

Figure 8: Converting a conflict-free annotated CFP to a directed bigraph.

function posoccur
Input: A taskID 𝑡, a process model 𝑟

Output: A boolean value
begin

G := RetrieveBigraphs(𝑟);
return ⋁

𝐺∈G

(RetrieveAllEvents(𝐺, 𝑡) ̸= 0)

Algorithm 6: Determining the (unary) basic predicate posoccur.

function alwoccur
Input: A taskID 𝑡, a process model 𝑟

Output: A boolean value
begin

G := RetrieveBigraphs(𝑟);
return ⋀

𝐺∈G

(RetrieveAllEvents(𝐺, 𝑡) ̸= 0)

Algorithm 7: Determining the (unary) basic predicate alwoccur.

Journal of Applied Mathematics 17

function exclusive
Input: Two taskID 𝑡 and 𝑡

, a process model 𝑟

Output: A boolean value
begin

G := RetrieveBigraphs(𝑟);
return ⋀

𝐺∈G

¬(RetrieveAllEvents(𝐺, 𝑡) ̸= 0 ∧RetrieveAllEvents(𝐺, 𝑡

) ̸= 0)

Algorithm 8: Determining the basic predicate exclusive.

function concur
Input: Two taskID 𝑡 and 𝑡

, a process model 𝑟

Output: A boolean value
begin

G := RetrieveBigraphs(𝑟);
return ⋀

𝐺∈G

((RetrieveAllEvents(𝐺, 𝑡) = 0 ∧ RetrieveAllEvents(𝐺, 𝑡

) = 0) ∨

(RetrieveAllEvents(𝐺, 𝑡) ̸= 0 ∧ RetrieveAllEvents(𝐺, 𝑡

) ̸= 0 ∧

∀
𝑒∈RetrieveAllEvents(𝐺,𝑡)∀𝑒∈RetrieveAllEvents(𝐺,𝑡)[NoDirectedPath(𝑒, 𝑒

, 𝐺) ∧ NoDirectedPath(𝑒

, 𝑒, 𝐺)]))

Algorithm 9: Determining the basic predicate concur.

function alwpred
Input: Two taskID 𝑡

𝑓𝑜𝑟𝑚𝑒𝑟
and 𝑡
𝑙𝑎𝑡𝑡𝑒𝑟

, a process model 𝑟

Output: A boolean value
begin

G := RetrieveBigraphs(𝑟);
return ⋀

𝐺∈G

𝑃𝑟𝑒𝑑(𝑡
𝑓𝑜𝑟𝑚𝑒𝑟

, 𝑡
𝑙𝑎𝑡𝑡𝑒𝑟

, 𝐺)

Algorithm 10: Determining the basic predicate alwpred.

function pospred
Input: Two taskID 𝑡

𝑓𝑜𝑟𝑚𝑒𝑟
and 𝑡
𝑙𝑎𝑡𝑡𝑒𝑟

, a process model 𝑟

Output: A boolean value
begin

G := RetrieveBigraphs(𝑟);
return ⋁

𝐺∈G

𝑃𝑟𝑒𝑑(𝑡
𝑓𝑜𝑟𝑚𝑒𝑟

, 𝑡
𝑙𝑎𝑡𝑡𝑒𝑟

, 𝐺)

Algorithm 11: Determining the basic predicate pospred.

function pred
Input: Two taskID 𝑡

𝑓𝑜𝑟𝑚𝑒𝑟
and 𝑡
𝑙𝑎𝑡𝑡𝑒𝑟

, a bigraph 𝐺

Output: A boolean value
begin

𝑊 := RetrieveAllEvents(𝐺, 𝑡
𝑓𝑜𝑟𝑚𝑒𝑟

);
𝑋 := RetrieveAllEvents(𝐺, 𝑡

𝑙𝑎𝑡𝑡𝑒𝑟
);

return ∃
𝑒∈𝑊

∃
𝑒

∈𝑋

𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝐺, 𝑒, 𝑒

, 0)

Algorithm 12: Determining the intermediate predicate Pred.

18 Journal of Applied Mathematics

Function Precedes
Input: A bigraph 𝐺, a node 𝑚, a event node 𝑛, a set of nodes 𝑉 (the set of visited nodes)
Output: A boolean value
Begin

if 𝑛 = 𝑚 ∧ 𝑉 = 0 then
return FALSE;

else
if 𝑛 = 𝑚 ∧ 𝑉 ̸= 0 then

return TRUE;
else

if 𝑛 ∈ 𝑉 ∨ iSuccessors(𝐺, 𝑛) = 0 then
return FALSE;

else
return ⋁

𝑠∈iSuccessors(𝐺,𝑛)

𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝐺, 𝑠, 𝑚, 𝑉 ∪ {𝑛})

Algorithm 13: Determining the Precedes relationship in the bigraph of a conflict-free annotated CFP.

Figure 9: A screenshot of ASBPQL Querier.

which is a widely used open source parser generator and
lexical analyzer generator for Java. Grammar trees are then
used by the evaluator to identify all process models in the
repository that satisfy the requirements of a given query. To
do so, the evaluator needs to get access to the collection of
process models stored in the process model repository in
Petri net format, as well as the directed bigraphs which have
been constructed from the annotated CFPs of each Petri net
by the annotated CFP decomposer using Algorithm 2. The
generation of annotated CFPs is performed by the annotated
CFP generator using Algorithm 1. For an annotated CFP, the
data structure of conditions, events, and directed arcs are
represented by nodes of doubly linked lists which support in
particular fast insertion of nodes and backward traversing.

Moreover, for efficiency reasons, we keep an inverted
index for every node label that appears in the set of annotated
CFPs. We use Apache Lucene to manage these indexes
(http://lucene.apache.org/). Specifically, for each label we
record all processes which contain that label in some nodes.
Based on this index, after a compliance rule is issued the tool
can instantly filter out a set of candidate models containing
the labels used in the compliance rule. The rest of the models

are thus ignored since they are not relevant to the current
rule. This step typically reduces the scope of searching and
increases the tool’s performances. Furthermore, an advantage
of using inverted indexes is that they can be easily updated as
a result of changing a node label in the repository. For more
details on this index, we refer to previous work [18].

5.2. Performance Measurements. We prepared a set of eight
sample rules using various ASBPQL basic predicates and
measured the evaluation of each of these rules over three pro-
cess model collections. The first two collections are real-life
repositories: the SAP R/3 reference model, consisting of 604
EPCmodels, and the IBMBIT library, consisting of 1,128 Petri
nets. The SAP dataset is used by SAP consultants to deploy
the SAP enterprise resource planning system within organi-
zations [19].The IBM BIT library includes five collections (A,
B1, B2, C1, and C2) of process models from various domains,
including insurance and banking [20]. The third dataset
contains 10,000 artificially-generated models. (This dataset is
available at http://code.google.com/p/beehivez/downloads/
list.)

Since the SAP dataset is represented in the EPC notation,
we first transformed these models into Petri nets using ProM
(http://www.processmining.org/). This resulted in 591 Petri
nets for the SAP dataset (13 SAP reference models could not
be mapped into Petri nets through ProM). In the resulting
dataset there are 4,439 transitions out of which 1,494 are
uniquely labeled (33% of the total), while in the IBM dataset
there are 9,083 transitions with 946 uniquely labeled one
(10% of the total). The structural characteristics of the three
datasets used in the experiments are reported in Table 2. In
particular, we can see that the SAP and IBM collections have
models of comparable sizes based on the average number of
their elements (transitions, places, and arcs).

We generated the third dataset using BeehiveZ based on
the reduction rules from [8].The number of nodes per model
follows a normal distribution. Specifically, the number of
transitions per model ranges from 1 to 50 (average 24.85), the
number of places from 1 to 47 (average 16.81), and the number
of arcs from 2 to 162 (average 63.22). The labels of transitions

Journal of Applied Mathematics 19

ASBPQL executor

Users
Query
results

Query
results

Grammar
trees

Parser

Evaluator

Query

Query engine

Queries

editor

display

Process model repository

Inverted index
for task labels

Inverted index

Directed bigraphs

generator

Annotated CFP
decomposer

Annotated CFP
generator

Annotated CFPs

Process models
of Petri nets

Figure 10: BeehiveZ: architecture of ASBPQL Querier and Process Models Repository.

Table 2: Structural characteristics of the three datasets.

Dataset Models Transitions Unique transitions Avg. transitions Avg. places Avg. arcs
SAP 591 4,439 1,494 (33%) 7.5 12.7 19.7
IBM 1,128 9,083 946 (10%) 8.06 10.97 21.47
AG 10,000 248,493 62 (0.026%) 24.85 16.81 63.22
AG: artificially generated dataset.

were randomly chosen from a fixed label set comprising the
characters “A–Z” and “a–z” and the numbers “0–9”, each label
being made by a single character or number. In total, this led
to 248,493 transitions in this dataset, with 62 unique labels
(corresponding to 0.026% of the total number of transitions).
As we mentioned earlier that we deployed inverted labels
for each task label, we chose such a very low set of unique
labels compared to the total number of transitions in order
to increase the number of models that can potentially satisfy
a rule; thus we can get precise measurement result about
the efficiency of executing a compliance rule. All models

used in the experiments are bounded Petri net, which is a
requirement for unfolding according to [21].

We conducted our tests on an Intel Core i7-2600
@3.4GHz and 8GB RAM, running Windows 7 ultimate and
JDK6. The heap memory for the JVM was set to 1 GB. We
executed each compliance rule twelve times and measured
each response time.We then discarded the highest and lowest
response times for each rule and computed the average
response time over the remaining ten values. The test rules
and the response times for the three datasets are reported in
Table 3.

20 Journal of Applied Mathematics

Table 3: Response times to execute eight sample compliance rules over the three datasets.

Candidate Returned Response
Queries models models time [ms]

SAP IBM AG SAP IBM AG SAP IBM AG
𝑟
1

[𝑥
1
] posoccur 5 2 3674 5 2 3674 2.9 53 85

𝑟
2

[𝑥
1
] alwoccur 4 2 3307 1 1 286 7.6 131 374

𝑟
3

[𝑥
1
] posoccur and [𝑥

2
] alwoccur 6 1 1646 2 1 143 11.4 193 411

𝑟
4

[𝑥
1
] concur [𝑥

2
] 1 1 603 1 0 22 17.5 318 1392

𝑟
5

[𝑥
1
] exclusive [𝑥

2
] 1 2 549 1 0 18 18.6 360 1451

𝑟
6

[𝑥
1
] pospred [𝑥

2
] 1 1 552 1 1 72 12.8 294 633

𝑟
7

[𝑥
1
] alwpred [𝑥

2
] 3 1 540 1 1 46 14.7 253 804

𝑟
8

[𝑥
1
] pospred [𝑥

2
] or [𝑥

2
] alwpred [𝑥

3
] 4 1 593 2 0 33 12.5 187 638

In particular, 𝑟
1
to 𝑟
3
are used to test the unary basic

predicates posoccur and alwoccur, and 𝑟
4
and 𝑟
5
are for the

concur and exclusive predicates, while 𝑟
6
to 𝑟
8
are for causal

relation predicates. For readability, in the table we use‘ficti-
tious labels for transitions (e.g., 𝑥

1
). The real labels from the

three datasets, can be found in the Appendix.
The second and third columns of Table 3 show for each

rule the number of models being filtered by BeehiveZ’s
inverted index (“candidate models”) and the number of
models that actually satisfy the rule (“returned models”).
These numbers are very low for the SAP and IBM datasets
(e.g., 𝑟

3
yields sixmodels in the SAPdataset, out of which only

two satisfies the rule), due to the high number of unique labels
within these collections (see Table 2). However, as expected,
these numbers grow significantly in the artificially generated
collection (as an example, 𝑟

6
yields 552 models of which 72

satisfy the rule).
The last column of Table 3 shows the response times to

execute the sample queries. These times are in the order of
milliseconds for the SAP and IBMdatasets (average 15ms and
254.7ms) and less than one second for the artificial dataset
(average 850.4ms). This shows that the technique is highly
scalable to very large datasets. Having said that our technique
shifts computation time from compliance checking to model
insertion. In other words, most of the time is employed in
generating the CFPs rather than in executing the compliance
checking. Specifically, the overall time for building the set of
CFPs and the corresponding bigraphs for the three datasets
is 12.6mins (SAP dataset), 28.5mins (IBM), and 8.1 hours
(artificial dataset). However, since we build annotated CFPs
incrementally as we insert each Petri net into the repository,
in practice the time for creating a single CFP is very short:
only 1.28 s on average for a model from the SAP dataset, 1.52 s
for a model from the IBM dataset, and 2.92 s for a model
from the artificial dataset. These times are reasonable since
repository users typically insert or remove single process
models, or small groups thereof, at once, rather than inserting
or removing entire model collections at once.

As expected, the storage size of the CFPs (including
the label indexes) and corresponding bigraphs can be large.
While it is only 26.8MB for the SAP dataset and 18.1MB for
the IBM dataset, this value gets to 3.38GB for the artificial
dataset. However, this space is still acceptable considering

that in organizational settings dedicated servers are typically
employed to host process model repositories, rather than
single desktop machines.

6. Related Work

Based on the importance of query languages for business
process models, in 2004, the Business Process Management
Initiative (BPMI) planned to define a standard process model
query language. While such a standard has never been
published, two major research efforts have been dedicated to
the development of query languages for process models. One
is known as BP-QL [1], a graphical query language based on
an abstract representation of BPEL and supported by a formal
model of graph grammars for processing of queries. BP-QL
can be used to query process specifications written in BPEL
rather than possible executions and ignores the run-time
semantics of certain BPEL constructs such as conditional
execution and parallel execution.

The other effort, namely, BPMN-Q [2, 3], is also a visual
query language which extends a subset of the BPMN mod-
elling notation and supports graph-based query processing.
Similar to BP-QL, BPMN-Q only captures the structural
(i.e., syntactical) relationships between tasks. BPMN-Q uses
a directed path (enhanced by operators like ≪leads to≫

and ≪precedes≫) connecting two activities to capture the
requirement that they occur in order. The processing of
BPMN-Q queries includes several steps. In short, BPMN-Q
query engine searches for the process models that contain
subgraphs that structurally match a query, reduces these
subgraphs (remove elements that are not relevant to the
query), translates the reduced subgraphs into Petri nets, and
then calculates the corresponding reachability graph for each
Petri net. Next, the query is translated into temporal logic
formula which is fed into a model checker together with
the reachability graphs generated from Petri nets. Finally,
the model checker would output the process models that
satisfy the query. Although part of the evaluation of BPMN-
Q queries is based on LTL formulae, one of the most impor-
tant step is subgraph matching which is totally structure
based. For example, for the BPMN-Q query in Figure 2, the
subgraphs obtained from the process model (c) in Figure 1
is shown in Figure 11. If only consider this subgraph, this

Journal of Applied Mathematics 21

Ordinary
account Open ordinary

account Analyse
customer

credit history

Receive
customer
request Open

international
accountInternational

account

Figure 11:The resulting subgraph of the processmodel in Figure 1(c)
after executing the query in Figure 2.

BPMN-Q query holds, but this is not the case for the
process execution where task “open VIP account” occurs.
Accordingly, as discussed in Section 1, the main problem of
BPMN-Q is that it cannot answer the question whether for
the resulting processes the requirements of a query hold in
every process execution or in just some process executions.
BPMN-Q only returns process models where requirements
hold in some process executions, rather than in every process
execution. A comparison between ASBPQL and BPMN-
Q is shown in Figure 12 where empty cells mean that the
corresponding requirements cannot be captured by BPMN-
Q. In [22], the authors explore the use of an information
retrieval technique to derive similarities of activity names and
develop an ontological expansion of BPMN-Q to tackle the
problem of querying business processes that are developed
with different terminologies. A framework of tool support
for querying process model repositories using BPMN-Q
and its extensions is presented in [23]. In [24], the authors
proposed an indexing mechanism to improve the efficiency
of evaluating BPMN-Q queries.

ASBPQL provides three distinguishing features com-
pared to the previous languages. First, its abstract syntax and
semantics have been purposefully defined to be independent
of a specific process modelling language (such as BPEL or
BPMN). This allows ASBPQL and its query evaluation tech-
nique to be implemented for a variety of process modelling
languages. Second, ASBPQL can express various temporal-
ordering relations (precedence/succession, concurrence, and
exclusivity) between individual tasks, between an individual
task and a set of tasks, and between different sets of tasks (in
some or every process execution). Third, these rich querying
constructs are evaluated over the execution semantics of
process models, rather than their structural relationships. In
fact, structural characteristics alone are not able to capture
all possible order relations among tasks which can occur
during execution, in particular with respect to cycles and task
occurrences (recall the discussions in Section 1).

In earlier work [25], we provided an initial attempt at
defining a query language based on execution semantics of
process models. The language was written in linear temporal
logic (LTL) and only supported precedence/succession rela-
tions among individual tasks (not sets of tasks). Queries in
this language are evaluated based directly on annotated CFPs
(i.e., TPCFPs in [25]), rather than on the directed bigraphs
which are built from decomposing the annotated CFPs (a
directed bigraphs represents an execution of a process). As a
result, this language only returns the process models which

satisfy the requirements just in some process executions,
rather than in every execution. In addition, using LTL for-
mulae as queries is not very user friendly for ordinary users.
In [26], the authors proposed an business query language
(BQL) to capture 4 types of relations (Exist, ParallelWith,
Exclude, and Precede). A query in BQL returns processes of
which some executions satisfy these four types of relations.
Furthermore, BQL suffers from a drawback that the formal
semantics of it has not been defined.

In addition to the development of a specific process
model query language, other techniques are available in
the literature which can be useful for querying process
model repositories. In [27, 28] the authors focus on querying
the content of business process models based on metadata
search. In [29], an XML-based process query language,
IPM-PQM, was designated to express search requirements.
IPM-PQM can express four types of search conditions:
Process-Has-Attribute, Process-Has-Activity, Process-Has-
Subprocess, and Process-Has-Transition. IPM-PQM is a typ-
ical structure-based process querying technology. VisTrails
system [30] allows users to query scientific workflows by
example and to refine workflows by analogies. WISE [31]
is a workflow information search engine which supports
keyword search on workflow hierarchies. In [32] the authors
use graph reduction techniques to find a match to the query
graph in the process graph for querying process variants,
and the approach, however, works on acyclic graphs only.
In [33–36], a group of similarity-based techniques has been
proposed which can be used to support process querying.
In previous work, we designed a technique to query process
model repositories based on an input Petri net [18]. In
[37], the authors introduced an execution-log-based query
language which enables users to find elements and their
relationships in process logs. In [38, 39], an approach that
supports “static” and “dynamic” querying of process has been
presented. As for the static querying, this approach searches
for matching processes which contains specified context
elements, such as business function, roles, and resources.This
is based on keyword matching. As for the dynamic querying,
similar to BPMN-Q, it tries to find process models where
the requirements hold in just some process instances. In
[40], the authors proposed an approach to searching business
process models.This approach induces relationships between
activities from their labels; it provides an approximate process
model search mechanism. Finally, in [41], the notion of
behavioural profile of a process model is defined, which
captures dedicated behavioural relations like exclusiveness or
potential occurrence of activities.These behavioural relations
are derived from the structure of the unfolding of a process
model. However, the main foundation of beavioural profile
is the weak order (two transitions 𝑡

1
, 𝑡
2
are in weak order, if

there exists an process execution inwhich 𝑡
1
occurs before 𝑡

2
).

Thus, for the reasons mentioned above, behavioural profile
only provides an approximation of a processmodel’s behavior
which just holds in some process executions, whereas we
can precisely determine whether a process model satisfies
or not a given query in every process execution. Moreover,
the efficient computation of this approach requires process
models to be sound free-choice Petri nets, whereas our query

22 Journal of Applied Mathematics

Requirements ASBPQL

A pospred B

A alwpred B

A concur B

A exclusive B

A posoccur

A alwoccur

BPMN-Q

A

A

BSelect all process where in some process
executions task A precedes task B
Select all process where in every process
executions task A precedes task B
Select all process where in every process
execution task A occurs in parallel with task B
Select all process where in every process
execution task A occurs exclusively with task B
Select all process where in some process
executions task A occurs
Select all process where in every process
execution task A occurs

Figure 12: A comparison between ASBPQL and BPMN-Q.

Table 4: Mapping of the task labels used in Table 3 with those in the SAP, IBM and AG datasets.

Queries Labels SAP IBM AG
𝑟
1

𝑥
1 Customer quotation processing process.s0000009##s000001827.outputCriterion.s00000859 Z

𝑟
2

𝑥
1 Goods receipt process.s00000275##s00002184.outputCriterion.s00000838 K

𝑟
3

𝑥
1
, Customer quotation processing, process.s00000285##s00002171.outputCriterion.s00000743, R,

𝑥
2 Sales order processing process.r00000266##n00002468.outputCriterion.s00000773 S

𝑟
4

𝑥
1
, Subsequent acquisition process.s00000247##s00002258.outputCriterion.s00000772, A,

𝑥
2 Processing of asset acquisition process.s00000266##s00002468.outputCriterion.s00000773 H

𝑟
5

𝑥
1
, Product structure management for

variant products, process.s00000265##s00002061.outputCriterion.s00000774, M,

𝑥
2 Product structure management via CAD process.r00000266##s00009387.outputCriterion.s00000721 R

𝑟
6

𝑥
1
, Subsequent acquisition, process.s00000247##s00002258.outputCriterion.s00000772, M,

𝑥
2 Processing of asset acquisition process.s00000266##s00002468.outputCriterion.s00000773 N

𝑟
7

𝑥
1
, Customer quotation processing, process.s00000285##s00002171.outputCriterion.s00000743, X,

𝑥
2 Sales order processing process.r00000266##n00002468.outputCriterion.s00000773 Y

𝑥
1
, Settlement account assignment, process.s00000243##s00002261.outputCriterion.s00005267, J,

𝑟
8

𝑥
2
, Periodic settlement, process.r00000106##n00002617.outputCriterion.s00000704, W,

𝑥
3 Contact release order process.r00000231##n00006324.outputCriterion.s00001894 t

evaluation technique only requires Petri nets to be bounded,
in order to unfold them.

7. Conclusions

In this paper, we simplify SPS by logic reasoning to
define a concise and expressive retrieval language to specify
semantics-based compliance rules. And we contribute an
efficient technology based on unfolding to explore the seman-
tics of process models. In such a technology, we can extract
every independent execution from business process models
without suffering from well-known state explosion. The
language and its evaluation have been implemented as a
component of the process analysis tool BeehiveZ. We also
conduct experiments over three large datasets to evaluate
the efficiency of our technology. Indeed, the performance
measurements show that the technique can efficiently cope
with very large datasets (the artificial collection counted
10,000 process models).

In the future, we will introduce graphical interface for
querying in order to make BeehiveZ more intuitionistic.

Appendix

In Table 4, we provide the mapping between the fictitious
labels used in Table 3 and the real labels used in the SAP, IBM,
and artificial datasets.

Acknowledgments

Song, Wang, and Wen are supported by the National
Basic Research Program of China (2009CB320700), the
National High-Tech Development Program of China
(2012AA040904), the Project of National Natural Science
Foundation of China (90718010,61003099), the Program
for New Century Excellent Talents in University of China,
and the Ministry of Education and China Mobile Research
Foundation (MCM20123011).

Journal of Applied Mathematics 23

References

[1] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo, “Querying
business processes with BP-QL,” Information Systems, vol. 33,
no. 6, pp. 477–507, 2008.

[2] A. Awad, “BPMN-Q: a language to query business processes,”
in Proceedings of the 2nd International Workshop on Enterprise
Modelling and Information Systems Architectures (EMISA ’07),
M. Reichert, S. Strecker, and K. Turowski, Eds., pp. 115–128,
St.Goar, Germany, October 2007.

[3] A. Awad, G. Decker, and M. Weske, “Efficient compliance
checking using BPMN-Q and temporal logic,” in Business
Process Management, 6th International Conference, BPM 2008,
Milan, Italy, September 2–4, 2008. Proceedings, M. Dumas,
M. Reichert, and M. Shan, Eds., Lecture Notes in Computer
Science, pp. 326–341, Springer, Berlin, Germany.

[4] OMG, Business Process Model and Notation (BPMN) ver. 2.0,
January 2011, http://www.omg.org/spec/BPMN/2.0.

[5] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Property
specification patterns for finite-state verification,” inProceedings
of the 2nd Workshop on Formal Methods in Software Practice
(FMSP ’98), pp. 7–15, ACM, March 1998.

[6] K. L. McMillan, “A technique of state space search based on
unfolding,” Formal Methods in System Design, vol. 6, no. 1, pp.
45–65, 1995.

[7] J. Esparza, S. Römer, and W. Vogler, “An improvement of
McMillan’s unfolding algorithm,” Formal Methods in System
Design, vol. 20, no. 3, pp. 285–310, 2002.

[8] T. Murata, “Petri nets: properties, analysis and applications,”
Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[9] M. Nielsen, G. D. Plotkin, and G. Winskel, “Petri nets, event
structures and domains,” in Semantics of Concurrent Com-
putation, Proceedings of the International Symposium, Evian,
France, July 2–4, 1979, G. Kahn, Ed., Lecture Notes in Computer
Science, pp. 266–284, Springer, London, UK, 1979.

[10] J. Engelfriet, “Branching processes of Petri nets,”Acta Informat-
ica, vol. 28, no. 6, pp. 575–591, 1991.

[11] W.M. P. van derAalst, “The application of Petri nets toworkflow
management,” Journal of Circuits, Systems and Computers, vol.
8, no. 1, pp. 21–66, 1998.

[12] W. M. P. van der Aalst, “Petri-net-based workflowmanagement
software,” in Proceedings of the NFSWorkshop onWorkflow and
Process Automation in Information Systems, A. Sheth, Ed., pp.
114–118, Citeseer, 1996.

[13] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and
analysis of business process models in BPMN,” Information and
Software Technology, vol. 50, no. 12, pp. 1281–1294, 2008.

[14] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel, M.
Dumas, and A. H. M. ter Hofstede, “Formal semantics and
analysis of control flow in WS-BPEL,” Science of Computer
Programming. Methods of Software Design: Techniques and
Applications, vol. 67, no. 2-3, pp. 162–198, 2007.

[15] N. Lohmann, “A feature-complete petri net semantics for ws-
bpel 2.0,” in Proceedings of the 4th International Workshop
on Web Services and Formal Methods (WS-FM ’07), Brisbane,
Australia, September 2007.

[16] W.M. P. van der Aalst, “Formalization and verification of event-
driven process chains,” Information and Software Technology,
vol. 41, no. 10, pp. 639–650, 1999.

[17] A. Valmari, “The state explosion problem,” in Lectures on Petri
Nets I: Basic Models, Advances in Petri Nets, the Volumes Are
Based on the Advanced Course on Petri Nets, Held in Dagstuhl,
Germany, September 1996,W. Reisig andG. Rozenberg, Eds., pp.
429–528, Springer, 1996.

[18] T. Jin, J. Wang, N. Wu, M. La Rosa, and A. H. M. ter Hofstede,
“Efficient and accurate retrieval of business process models
through indexing (short paper),” in On the Move to Meaningful
Internet Systems: OTM 2010-Confederated International Confer-
ences: CoopIS, IS, DOAandODBASE,Hersonissos, Crete, Greece,
October 25–29, Proceedings, Part I, R. Meersman, T. S. Dillon,
and P. Herrero, Eds., vol. 6426 of Lecture Notes in Computer
Science, pp. 402–409, Springer, 2010.

[19] G. Keller and T. Teufel, SAP R/3 Process Oriented Implementa-
tion, Addison-Wesley Longman, Boston, Mass, USA, 1998.

[20] D. Fahland, C. Favre, B. Jobstmann et al., “Instantaneous
soundness checking of industrial business process models,”
in Business Process Management, 7th International Conference,
BPM 2009, Ulm, Germany, September 8–10, 2009. Proceedings,
vol. 5701 of Lecture Notes in Computer Science, Springer, 2009.

[21] J. Esparza, S. Römer, and W. Vogler, “An improvement of
McMillan’s unfolding algorithm,” in Tools and Algorithms For
Construction and Analysis of Systems, Second International
Workshop, TACAS ’96, Passau, Germany, March 27–29, 1996,
Proceedings, T. Margaria and B. Steffen, Eds., vol. 1055 of Lecture
Notes in Computer Science, pp. 87–106, Springer, London, UK,
1996.

[22] A. Awad, A. Polyvyanyy, and M. Weske, “Semantic querying
of business process models,” in Proceedings of the 12th IEEE
International Enterprise Distributed Object Computing Confer-
ence (EDOC ’08), pp. 85–94, IEEE Computer Society, Munich,
Germany, September 2008.

[23] S. Sakr and A. Awad, “A framework for querying graph-
based business process models,” in Proceedings of the 19th
International World Wide Web Conference (WWW ’10), M.
Rappa, P. Jones, J. Freire, and S. Chakrabarti, Eds., pp. 1297–
1300, ACM, Raleigh, NC, USA, April 2010.

[24] A. Awad and S. Sakr, “On efficient processing of BPMN-Q
queries,”Computers in Industry, vol. 63, no. 9, pp. 867–881, 2012.

[25] L. Song, J. Wang, L. Wen, W.Wang, S. Tan, and H. Kong, “Que-
rying process models based on the temporal relations between
tasks,” in Proceedings of the 15th IEEE International Enterprise
Distributed Object Computing Conference (EDOCW ’11), pp.
213–222, IEEE Computer Society, Helsinki, Finland, September
2011.

[26] T. Jin, J. Wang, and L. Wen, “Querying business process models
based on semantics,” in Proceedings of the 16th International
Conference on Database Systems for Advanced Applications
(DASFAA ’11), Part II, Hong Kong, April 2011.

[27] J. Vanhatalo, J. Koehler, and F. Leymann, “Repository for busi-
ness processes and arbitrary associated metadata,” in Business
Process Management, 4th International Conference, BPM 2006,
Vienna, Austria, September 5–7, 2006, Proceedings, S. Dustdar,
J. L. Fiadeiro, and A. P. Sheth, Eds., vol. 4102 of Lecture Notes in
Computer Science, pp. 426–431, Springer, Vienna, Austria, 2006.

[28] A. Wasser, M. Lincoln, and R. Karni, “ProcessGene Query—a
tool for querying the content layer of business process models,”
in Business Process Management, 4th International Conference,
BPM2006, Vienna, Austria, September 5–7, 2006, Proceedings, S.
Dustdar, J. L. Fiadeiro, and A. P. Sheth, Eds., vol. 4102 of Lecture

24 Journal of Applied Mathematics

Notes in Computer Science, pp. 1–8, Springer, Vienna, Austria,
2006.

[29] I. Choi, H. Jeong, M. Song, and Y. U. Ryu, “IPM-EPDL: an
XML-based executable process definition language,”Computers
in Industry, vol. 56, no. 1, pp. 85–104, 2005.

[30] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. T.
Silva, “Querying and Re-using workflows with VIsTralls,” in
Proceedings of the International Conference on Management of
Data (SIGMOD ’08), J. T. Wang, Ed., pp. 1251–1254, Vancouver,
BC, Canada, June 2008.

[31] Q. Shao, P. Sun, and Y. Chen, “WISE: a workflow information
search engine,” in Proceedings of the 25th IEEE International
Conference on Data Engineering (ICDE ’09), pp. 1491–1494,
IEEE, Shanghai, China, April 2009.

[32] R. Lu and S. W. Sadiq, “Managing process variants as an
information resource,” in Business Process Management, 4th
International Conference, BPM 2006, Vienna, Austria, Eptember
5–7, 2006, Proceedings, S. Dustdar, J. L. Fiadeiro, andA. P. Sheth,
Eds., vol. 4102 ofLectureNotes inComputer Science, pp. 426–431,
Springer, Vienna, Austria, 2006.

[33] M. Momotko and K. Subieta, “Process query language: a way
to make workflow processes more flexible,” in Proceedings of
the 8th East European Conference on Advances in Databases
and Information Systems (ADBIS ’04), pp. 306–321, Budapest,
Hungary, September 2004.

[34] W. M. P. van der Aalst, A. K. A. de Medeiros, and A. J. M. M.
Weijters, “Process equivalence: comparing two process models
based on observed behavior,” in Proceedings of the 4th Interna-
tional Conference on Business Process Management (BPM ’06),
Vienna, Austria, September 2006.

[35] M. Ehrig, A. Koschmider, and A. Oberweis, “Measuring sim-
ilarity between semantic business process models,” in Con-
ceptual Modelling 2007, Proceedings of the Fourth Asia-Pacific
Conference on Conceptual Modelling (APCCM 2007), Ballarat,
Victoria, Australia, January 30-February 2, 2007, Proceedings, J.
F. Roddick and A. Hinze, Eds., CRPIT, pp. 71–80, Australian
Computer Society, Darlinghurst, Australia, 2007.

[36] B. Dongen, R. Dijkman, and J. Mendling, “Measuring similarity
between business process models,” in Advanced Information
Systems Engineering, 20th International Conference, CAiSE,
Montpellier, France, June 16-20, 2008, Proceedings, Z. Bellahsene
and M. Léonard, Eds., vol. 5074 of Lecture Notes in Computer
Science, pp. 450–464, Springer, Berlin, Germany, 2008.

[37] S. Beheshti, B. Benatallah, H. R. M. Nezhad, and S. Sakr, “A
query language for analyzing business processes execution,” in
Proceedings of the 9th International Conference Business Process
Management (BPM ’11), Clermont-Ferrand, France, September
2011.

[38] I. Markovic, A. C. Pereira, D. de Francisco Marcos, and H.
Muñoz, “Querying in business process modeling,” in Pro-
ceedings of the International Conference on Service Oriented
Computing (ICSOC ’07), Vienna, Austria, September 2007.

[39] I. Markovic, A. C. Pereira, and N. Stojanovic, “A framework
for querying in business process modelling,” inMultikonferenz
Wirtschaftsinformatik (MKWI ’08),München,Germany, Febru-
ary 2008.

[40] M. Lincoln andA. Gal, “Searching business process repositories
using operational similarity,” in On the Move to Meaning-
ful Internet Systems: OTM 2011—Confederated International

Conferences: CoopIS, DOA-SVI, and ODBASE 2011, Part I,
Hersonissos, Crete, Greece, October 2011.

[41] M.Weidlich, J. Mendling, and M.Weske, “Efficient consistency
measurement based on behavioral profiles of process models,”
IEEE Transactions on Software Engineering, vol. 37, no. 3, pp.
410–429, 2011.

