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We propose an implicit iterative scheme and an explicit iterative scheme for finding a common element of the set of solutions of
system of equilibrium problems and a constrained convex minimization problem by the general iterative methods. In the setting of
real Hilbert spaces, strong convergence theorems are proved. Our results improve and extend the corresponding results reported
by Tian and Liu (2012) and many others. Furthermore, we give numerical example to demonstrate the effectiveness of our iterative
scheme.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨, ⟩ and
induced norm ‖ ⋅ ‖. Let𝐶 be a nonempty closed convex subset
of𝐻.

Let {𝐹𝑘} be a countable family of bifunctions from 𝐶 ×

𝐶 to R, where R is the set of real numbers. Combettes and
Hirstoaga [1] considered the following system of equilibrium
problems which is to find 𝑥 ∈ 𝐶 such that

𝐹𝑘 (𝑥, 𝑦) ≥ 0, ∀𝑘 ∈ Γ, ∀𝑦 ∈ 𝐶, (1)

where Γ is an arbitrary index set. If Γ is a singleton, then prob-
lem (1) becomes the following equilibrium problem:

finding 𝑥 ∈ 𝐶 such that 𝐹 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (2)

The solution set of (2) is denoted by EP(𝐹).
Numerous problems in physics, optimization, and eco-

nomics reduce to finding a solution of the equilibrium prob-
lem. Many methods have been proposed to solve the equilib-
riumproblem (2); see [2–4] and the references therein. In par-
ticular, somemethods have been proposed to solve the system
of equilibriumproblems. See [5–7] and the references therein.

On the other hand, we consider the following constrained
minimization problem:

minimize {𝑓 (𝑥) : 𝑥 ∈ 𝐶} , (3)
where 𝑓 : 𝐶 → R is a real-valued convex function. It is
known that the gradient projection algorithm (GPA) is a pow-
erful tool for solving the constrained minimization problems
and has extensively been studied; see for instance [8–10]. If 𝑓
is (Fréchet) differentiable, then the GPA generates a sequence
{𝑥𝑛} using the following recursive formula:

𝑥𝑛+1 = 𝑃𝐶 (𝑥𝑛 − 𝜆∇𝑓 (𝑥𝑛)) , ∀𝑛 ≥ 0, (4)
or more generally,

𝑥𝑛+1 = 𝑃𝐶 (𝑥𝑛 − 𝜆𝑛∇𝑓 (𝑥𝑛)) , ∀𝑛 ≥ 0, (5)
where in both (4) and (5) the initial guess 𝑥0 is taken from
𝐶 arbitrarily, and the parameters, 𝜆 or 𝜆𝑛, are positive real
numbers satisfying certain conditions. The convergence of
the algorithms (4) and (5) depends on the behavior of the
gradient ∇𝑓. As a matter of fact, it is known that if ∇𝑓 is
𝛼-strongly monotone and 𝐿-Lipschitzian with constants 𝛼,
𝐿 ≥ 0, then the operator

𝑇 := 𝑃𝐶 (𝐼 − 𝜆∇𝑓) (6)
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is a contraction; hence, the sequence {𝑥𝑛} defined by the algo-
rithm (4) converges in norm to the unique minimizer of (3).
However, if the gradient∇𝑓 fails to be stronglymonotone, the
operator 𝑇 by (6) would fail to be contractive; consequently,
the sequence {𝑥𝑛} generated by the algorithm (4) may fail
to converge strongly [11]. If ∇𝑓 is Lipschitzian, then the
algorithms (4) and (5) can still converge in the weak topology
under certain conditions [10, 12].

In 2007, Marino and Xu [3] introduced the general itera-
tivemethod and proved that the algorithm converged strong-
ly. In 2009, Liu [2] considered two iterative schemes by the
general iterative method for equilibrium problems and strict
pseudocontractions. In 2011, Xu [11] gave an alternative oper-
ator-oriented approach to algorithm (5), namely, an averaged
mapping approach. He gave his averaged mapping approach
to the GPA (5) and the relaxed GPA. Moreover, he construct-
ed a counter example which shows that the algorithm (4)
does not converge in norm in an infinite-dimensional space
and also presented two modifications of GPA which are
shown to have strong convergence. Recently, Ceng et al. [8]
proposed implicit and explicit iterative schemes for finding
the approximate minimizer of a constrained convex mini-
mization problem and proved that the sequences generated
by their schemes converges strongly to a solution of the
constrained convex minimization problem. Very recently,
Tian and Liu [9] proposed implicit and explicit composite
iterative algorithms for finding a common solution of an
equilibrium problem and a constrained convexminimization
problem; strong convergence theorems are obtained in [9].

In this paper, motivated by the above facts, we introduce
two iterative schemes by the composite general iterative
methods. Further we obtain strong convergence theorems for
finding a common element of the set of solutions of a
constrained convex minimization problems and the set of
solutions of the equilibrium problem

𝐹𝑘 (𝑥, 𝑦) ≥ 0, ∀𝑘 ∈ Γ, ∀𝑦 ∈ 𝐶, (7)
where Γ = {1, 2, . . . ,𝑀} is a finite index set.

2. Preliminaries

Throughout this paper, we always write ⇀ for weak con-
vergence and → for strong convergence. We need some
definitions and tools in a real Hilbert space𝐻which are listed
as below.

A mapping 𝑆 of 𝐶 is said to be a nonexpansive mapping
such that

󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 (8)

for all 𝑥, 𝑦 ∈ 𝐶.The set of fixed points of 𝑆 is denoted by 𝐹(𝑆);
that is, 𝐹(𝑆) = {𝑥 ∈ 𝐶 : 𝑆𝑥 = 𝑥}.

A mapping 𝑇 : 𝐻 → 𝐻 is said to be an averaged map-
ping if it can be written as the average of an identity 𝐼 and a
nonexpansive mapping; that is,

𝑇 = (1 − 𝛼) 𝐼 + 𝛼𝑆, (9)
where 𝛼 is a number in (0, 1) and 𝑆 is nonexpansive. More
precisely, we say that 𝑇 is 𝛼-averaged. It is known that the
projection is (1/2)-averaged.

Lemma 1. Let𝐻 be a real Hilbert space.There hold the follow-
ing identities:

(i) ‖𝑥 − 𝑦‖
2
= ‖𝑥‖

2
− ‖𝑦‖
2
− 2⟨𝑥 − 𝑦, 𝑦⟩, ∀𝑥, 𝑦 ∈ 𝐻,

(ii) ‖𝑡𝑥 + (1 − 𝑡)𝑦‖
2
= 𝑡‖𝑥‖

2
+(1−𝑡)‖𝑦‖

2
−𝑡(1−𝑡)‖𝑥 − 𝑦‖

2,
∀𝑡 ∈ [0, 1], ∀𝑥, 𝑦 ∈ 𝐻.

Lemma2 (see [10]). Assume that {𝛼𝑛} is a sequence of nonneg-
ative real numbers such that

𝛼𝑛+1 ≤ (1 − 𝛾𝑛) 𝛼𝑛 + 𝛿𝑛, (10)

where {𝛾𝑛} is a sequence in (0, 1) and {𝛿𝑛} is a sequence such
that

(i) ∑∞
𝑛=1

𝛾𝑛 = ∞;
(ii) lim sup

𝑛→∞
𝛿𝑛/𝛾𝑛 ≤ 0 or ∑∞

𝑛=1
|𝛿𝑛| < ∞.

Then, lim𝑛→∞𝛼𝑛 = 0.

Recall that given a nonempty closed convex subset 𝐶 of
a real Hilbert space 𝐻, for any 𝑥 ∈ 𝐻, there exists a unique
nearest point in 𝐶, denoted by 𝑃𝐶𝑥, such that

󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐶𝑥
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 (11)

for all 𝑦 ∈ 𝐶. Such a 𝑃𝐶 is called the metric (or the nearest
point) projection of𝐻 onto𝐶. As we all know, 𝑦 = 𝑃𝐶𝑥 if and
only if there holds the relation:

⟨𝑥 − 𝑦, 𝑦 − 𝑧⟩ ≥ 0, ∀𝑧 ∈ 𝐶. (12)

Lemma 3 (see [13]). Let 𝐴 : 𝐻 → 𝐻 be an 𝐿-Lipschitzian
and 𝜂-strongly monotone operator on a Hilbert space 𝐻 with
𝐿 > 0, 𝜂 > 0, 0 < 𝜇 < 2𝜂/𝐿

2 and 0 < 𝑡 < 1.Then 𝑆 = (𝐼−𝑡𝜇𝐴) :

𝐻 → 𝐻 is a contraction with contractive coefficient 1−𝑡𝜏 and
𝜏 = (1/2)𝜇(2𝜂 − 𝜇𝐿

2
).

Definition 4. A nonlinear mapping 𝐴 whose domain𝐷(𝐴) ⊆

𝐻 and range 𝑅(𝐴) ⊆ 𝐻 is said to be

(i) monotone if

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐷 (𝐴) ; (13)

(ii) 𝛽-strongly monotone if there exists 𝛽 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐷 (𝐴) ; (14)

(iii) ]-inverse strongly monotone (for short, ]-ism) if
there exists a constant ] > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ ]󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦
󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐷 (𝐴) . (15)

Lemma 5. Let 𝑉 : 𝐶 → 𝐻 be an 𝑙-Lipschitz mapping with
coefficient 𝑙 ≥ 0 and 𝐴 : 𝐶 → 𝐻 a strong positive bounded
linear operator with 𝛾 > 0. Then for 0 < 𝛾 < 𝜇𝛾/𝑙,

⟨𝑥 − 𝑦, (𝜇𝐴 − 𝛾𝑉) 𝑥 − (𝜇𝐴 − 𝛾𝑉) 𝑦⟩

≥ (𝜇𝛾 − 𝛾𝑙)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, 𝑥, 𝑦 ∈ 𝐻;

(16)

that is, 𝜇𝐴 − 𝛾𝑉 is strongly monotone with coefficient 𝜇𝛾 − 𝛾𝑙.
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Proof. Since 𝐴 : 𝐶 → 𝐻 is a strong positive bounded linear
operator with 𝛾 > 0. We have

𝛾
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
≤ ⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩

= ⟨𝑥 − 𝑦, 𝐴 (𝑥 − 𝑦)⟩ ≤ ‖𝐴‖
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
.

(17)

Hence 𝐴 is ‖𝐴‖-Lipschitz and 𝛾-strongly monotone:

⟨𝑥 − 𝑦, (𝜇𝐴 − 𝛾𝑉) 𝑥 − (𝜇𝐴 − 𝛾𝑉) 𝑦⟩

= 𝜇 ⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ − 𝛾 ⟨𝑥 − 𝑦, 𝑉𝑥 − 𝑉𝑦⟩

≥ (𝜇𝛾 − 𝛾𝑙)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, 𝑥, 𝑦 ∈ 𝐻.

(18)

Proposition 6. For given operators 𝑆, 𝑇, 𝑉 : 𝐻 → 𝐻.

(i) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
averaged and 𝑉 is nonexpansive, then 𝑇 is averaged.

(ii) 𝑇 is firmly nonexpansive if and only if the complement
𝐼 − 𝑇 is firmly nonexpansive.

(iii) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1), 𝑆 is
firmly nonexpansive, and 𝑉 is nonexpansive, then 𝑇 is
averaged.

(iv) The composite of finitely many averaged mappings is
averaged; that is, if each of the mapping {𝑇𝑖}

𝑁

𝑖=1
is

averaged, then so is the composite 𝑇1, . . . , 𝑇𝑁. In
particular, if 𝑇1 is 𝛼1-averaged and 𝑇2 is 𝛼2-averaged,
where 𝛼1, 𝛼2 ∈ (0, 1), then the composite 𝑇1𝑇2 is 𝛼-
averaged, where 𝛼 = 𝛼1 + 𝛼2 − 𝛼1𝛼2.

Proposition 7. Let 𝑇 : 𝐻 → 𝐻 be an operator from 𝐻 to
itself.

(i) 𝑇 is nonexpansive if and only if the complement 𝐼 − 𝑇

is (1/2)-ism.
(ii) If 𝑇 is ]-ism, then for 𝛾 > 0, 𝛾𝑇 is (]/𝛾)-ism.
(iii) 𝑇 is averaged if and only if the complement 𝐼 − 𝑇 is

]-ism for some ] > (1/2). Indeed, for 𝛼 ∈ (0, 1), 𝑇
is 𝛼-averaged if and only if the complement 𝐼 − 𝑇 is
(1/2𝛼)-ism.

For solving the equilibrium problem, let us assume that
the bifunction 𝐹 satisfies the following conditions.

(A1) 𝐹(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶.
(A2) 𝐹 is monotone; that is, 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0 for any

𝑥, 𝑦 ∈ 𝐶;
(A3) For each 𝑥, 𝑦, 𝑧 ∈ 𝐶, lim sup

𝑡→0
𝐹(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤

𝐹(𝑥, 𝑦).
(A4) 𝐹(𝑥, ⋅) is convex and lower semicontinuous for each

𝑥 ∈ 𝐶.

We recall some lemmas which will be needed in the rest
of this paper.

Lemma 8 (see [14]). Let𝐶 be a nonempty closed convex subset
of𝐻, let 𝐹 be bifunction from 𝐶×𝐶 toR satisfying (A1)–(A4),
and let 𝑟 > 0 and 𝑥 ∈ 𝐻. Then there exists 𝑧 ∈ 𝐶 such that

𝐹 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (19)

Lemma 9 (see [1]). For 𝑟 > 0, 𝑥 ∈ 𝐻, define a mapping 𝑇𝑟 :
𝐻 → 𝐶 as follows:

𝑇𝑟 (𝑥)={𝑧 ∈ 𝐶 | 𝐹 (𝑧, 𝑦)+
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶}

(20)

for all 𝑥 ∈ 𝐻. Then, the following statements hold:

(i) 𝑇𝑟 is single-valued;
(ii) 𝑇𝑟 is firmly nonexpansive; that is, for any 𝑥, 𝑦 ∈ 𝐻,

󵄩󵄩󵄩󵄩𝑇𝑟𝑥 − 𝑇𝑟𝑦
󵄩󵄩󵄩󵄩

2
≤ ⟨𝑇𝑟𝑥 − 𝑇𝑟𝑦, 𝑥 − 𝑦⟩ ; (21)

(iii) 𝐹(𝑇𝑟) = EP(𝐹);
(iv) EP(𝐹) is closed and convex.

Lemma 10 (see [4]). Let 𝐶,𝐻, 𝐹, and 𝑇𝑟𝑥 be as in Lemma 9.
Then the following holds:

󵄩󵄩󵄩󵄩𝑇𝑠𝑥 − 𝑇𝑡𝑥
󵄩󵄩󵄩󵄩

2
≤

𝑠 − 𝑡

𝑠
⟨𝑇𝑠𝑥 − 𝑇𝑡𝑥, 𝑇𝑠𝑥 − 𝑥⟩ (22)

for all 𝑠, 𝑡 > 0 and 𝑥 ∈ 𝐻.

Lemma 11 (see [13]). Let𝐻 be a Hilbert space, 𝐶 a nonempty
closed convex subset of 𝐻, and 𝑇 : 𝐶 → 𝐶 a nonexpansive
mapping with 𝐹(𝑇) ̸= 0. If {𝑥𝑛} is a sequence in 𝐶 weakly
converging to 𝑥 and if {(𝐼 − 𝑇)𝑥𝑛} converges strongly to 𝑦, then
(𝐼 − 𝑇)𝑥 = 𝑦.

3. Main Result

Throughout the rest of this paper, we always assume that 𝑉
is an 𝑙-Lipschitzian mapping with coefficient 𝑙 ≥ 0, and 𝐴 is
a strongly positive bounded linear operator with coefficient
𝛾. Then we obtain that 𝐴 is ‖𝐴‖-Lipschitzian and 𝛾-strongly
monotone. Let 𝑓 : 𝐶 → 𝑅 be a real-valued convex function
and assume that ∇𝑓 is ]-ism with ] > 0, which then implies
that 𝜆∇𝑓 is ]/𝜆-ism. So by Proposition 7, its complement
𝐼 − 𝜆∇𝑓 is 𝜆/(2])-averaged. Since the projection 𝑃𝐶 is 1/2-
averaged, we obtain from Proposition 6 that the composition
𝑃𝐶(𝐼 − 𝜆∇𝑓) is (2] + 𝜆)/(4])-averaged for 0 < 𝜆 < 2/𝐿.
Hence we have that, for each 𝑛,𝑃𝐶(𝐼−𝜆𝑛∇𝑓) is (2]+𝜆𝑛)/(4])-
averaged. Therefore, we can write

𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) =
2] − 𝜆𝑛

4]
𝐼 +

2] + 𝜆𝑛

4]
𝑆𝑛, (23)

where 𝑆𝑛 is nonexpansive.
Suppose that the minimization problem (3) is consistent

and let 𝑈 denote its solution set. Assume that 0 < 𝜇 <

2𝛾/‖𝐴‖
2 and 0 < 𝛾 < 𝜇(𝛾 − (𝜇‖𝐴‖

2
/2))/𝑙 = 𝜏/𝑙.
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Denote Θ𝑘
𝑛
= 𝑇
𝐹𝑘
𝑟𝑘,𝑛

⋅ ⋅ ⋅ 𝑇
𝐹2
𝑟2,𝑛

𝑇
𝐹1
𝑟1,𝑛

for every 𝑘 ∈ {1, 2, . . . ,𝑀}

and Θ
0

𝑛
= 𝐼 for all 𝑛 ∈ N. Define a mapping 𝑊𝑛 = 𝑆𝑛Θ

𝑀

𝑛
.

Since both 𝑆𝑛 and 𝑇
𝐹𝑘
𝑟𝑘,𝑛

, 𝑘 ∈ {1, 2, . . . ,𝑀} are nonexpansive,
it is easy to get that 𝑊𝑛 is also nonexpansive. Consider the
following mapping 𝐺𝑛 on𝐻 defined by

𝐺𝑛𝑥 = 𝛼𝑛𝛾𝑉Θ
𝑀

𝑛
𝑥 + (𝐼 − 𝛼𝑛𝜇𝐴)𝑊𝑛𝑥, ∀𝑥 ∈ 𝐻, 𝑛 ∈ 𝑁,

(24)

where 𝛼𝑛 ∈ (0, 1). By Lemmas 3 and 9, we have
󵄩󵄩󵄩󵄩𝐺𝑛𝑥 − 𝐺𝑛𝑦

󵄩󵄩󵄩󵄩

≤ 𝛼𝑛𝛾
󵄩󵄩󵄩󵄩𝑉𝑥 − 𝑉𝑦

󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛𝜏)
󵄩󵄩󵄩󵄩𝑊𝑛𝑥 −𝑊𝑛𝑦

󵄩󵄩󵄩󵄩

≤ 𝛼𝑛𝛾𝑙
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛𝜏)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

= (1 − 𝛼𝑛 (𝜏 − 𝛾𝑙))
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(25)

Since 0 < 1 − 𝛼𝑛(𝜏 − 𝛾𝑙) < 1, it follows that 𝐺𝑛 is a contrac-
tion. Therefore, by the Banach contraction principle, 𝐺𝑛 has
a unique fixed pointed 𝑥

𝑉

𝑛
∈ 𝐻 such that

𝑥
𝑉

𝑛
= 𝛼𝑛𝛾𝑉Θ

𝑀

𝑛
(𝑥
𝑉

𝑛
) + (𝐼 − 𝛼𝑛𝜇𝐴)𝑊𝑛𝑥

𝑉

𝑛
. (26)

For simplicity, we will write 𝑥𝑛 for 𝑥
𝑉

𝑛
provided no con-

fusion occurs. Next we prove the sequences {𝑥𝑛} converges
strongly to a point 𝑥∗ ∈ Ω = 𝑈 ∩ ∩

𝑀

𝑘=1
EP(𝐹𝑘) which solves

the variational inequality

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (27)

Equivalently, 𝑥∗ = 𝑃Ω(𝐼 − 𝜇𝐴 + 𝛾𝑉)𝑥
∗.

Theorem 12. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻 with 𝐶 ± 𝐶 ⊆ 𝐶, and let 𝐹𝑘, 𝑘 ∈

{1, 2, . . .𝑀} be bifunctions from 𝐶 × 𝐶 to R satisfying (A1)–
(A4). Let 𝑓 : 𝐶 → R be a real-value convex function and
∇𝑓]-ism with ] > 0. Assume the set Ω = 𝑈 ∩ ∩

𝑀

𝑘=1
EP(𝐹𝑘) ̸= 0.

Let 𝑉 : 𝐶 → 𝐶 be an 𝑙-Lipschitzian mapping with 𝑙 ≥ 0 and
𝐴 a strongly positive bounded linear operator with coefficient
𝛾 ≥ 0, 0 < 𝜇 < 2𝛾/‖𝐴‖

2 and 0 < 𝛾 < 𝜇(𝛾 − (𝜇‖𝐴‖
2
/2))/𝑙 =

𝜏/𝑙. Let {𝑥𝑛} and {𝑢𝑛} be sequences generated by the following
algorithm:

𝑢𝑛 = 𝑇
𝐹𝑀
𝑟𝑀,𝑛

𝑇
𝐹𝑀−1
𝑟𝑀−1,𝑛

⋅ ⋅ ⋅ 𝑇
𝐹2

𝑟2,𝑛

𝑇
𝐹1
𝑟1,𝑛

𝑥𝑛,

𝑥𝑛 = 𝛼𝑛𝛾𝑉𝑢𝑛 + (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛,

(28)

where𝑃𝐶(𝐼−𝜆𝑛∇𝑓) = 𝛽𝑛𝐼+(1−𝛽𝑛)𝑆𝑛,𝛽𝑛 = ((2]−𝜆𝑛)/4]), and
𝜆𝑛 ∈ (0, 2]); if {𝛼𝑛} and {𝑟𝑘,𝑛} satisfy the following conditions:

(i) {𝛼𝑛} ⊂ (0, 1), lim𝑛→∞𝛼𝑛 = 0;
(ii) {𝑟𝑘,𝑛} ⊂ (0,∞), lim inf𝑛→∞𝑟𝑘,𝑛 > 0 for 𝑘 ∈ {1, 2, . . . ,

𝑀},

then, as 𝛽𝑛 → 0(𝜆𝑛 → 2]), the sequence {𝑥𝑛} converges
strongly to a point 𝑥

∗
∈ Ω, which solves the variational

inequality (27).

Proof. The proof is divided into several steps.
𝑆𝑡𝑒𝑝 1. It shows first that {𝑥𝑛} is bounded.

First, since lim𝑛→∞𝛼𝑛 = 0, we can assume that 𝛼𝑛 ∈

(0, ‖𝐴‖
−1
). By Lemma 3, we have ‖𝐼 − 𝛼𝑛𝜇𝐴‖ ≤ 1 − 𝛼𝑛𝜏.

Take any 𝑝 ∈ Ω, since for each 𝑘 ∈ {1, 2, . . . ,𝑀}, 𝑇𝐹𝑘
𝑟𝑘,𝑛

is
nonexpansive, 𝑝 = 𝑇

𝐹𝑘
𝑟𝑘,𝑛

𝑝, and 𝑢𝑛 = Θ
𝑀

𝑛
𝑥𝑛; we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
Θ
𝑀

𝑛
𝑥𝑛 − Θ

𝑀

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 (29)

for all 𝑛 ∈ 𝑁.
Thus, by (28) and Lemma 3, we derive that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾𝑉𝑢𝑛 + (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑝

+𝛼𝑛𝛾𝑉𝑢𝑛 − 𝛼𝑛𝛾𝑉𝑝 + 𝛼𝑛𝛾𝑉𝑝 − 𝛼𝑛𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝛼𝑛𝜏)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛𝛾𝑙
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩(𝛾𝑉 − 𝜇𝐴) 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼𝑛 (𝜏 − 𝛾𝑙))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩(𝛾𝑉 − 𝜇𝐴) 𝑝

󵄩󵄩󵄩󵄩 .

(30)

It follows that ‖𝑥𝑛 − 𝑝‖ ≤ (‖(𝛾𝑉 − 𝜇𝐴)𝑝‖/(𝜏 − 𝛾𝑙)).
Hence, {𝑥𝑛} is bounded and so {𝑢𝑛}. It follows from

the Lipschitz continuity of 𝐴, ∇𝑓, and 𝑉 that {𝐴𝑥𝑛}, {𝐴𝑢𝑛},
{∇𝑓(𝑢𝑛)} and {𝑉𝑢𝑛} are also bounded. From the nonexpan-
sivity of 𝑆𝑛, it follows that {𝑆𝑛𝑢𝑛} is also bounded.
𝑆𝑡𝑒𝑝 2. It shows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (31)

Next we will show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, 𝑘 = 1, 2, . . . ,𝑀. (32)

Indeed, for 𝑝 ∈ Ω, it follows from the firmly nonexpan-
sivity of 𝑇𝐹𝑘

𝑟𝑘,𝑛
that for each 𝑘 ∈ {1, 2, . . . ,𝑀}, we have

󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹𝑘
𝑟𝑘,𝑛

Θ
𝑘−1

𝑛
𝑥𝑛 − 𝑇

𝐹𝑘
𝑟𝑘,𝑛

𝑝
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨Θ
𝑘

𝑛
𝑥𝑛 − 𝑝,Θ

𝑘−1

𝑛
𝑥𝑛 − 𝑝⟩

=
1

2
(
󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Θ
𝑘−1

𝑛
𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

) .

(33)

Thus we get

󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Θ
𝑘−1

𝑛
𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

, 𝑘 = 1, 2, . . . ,𝑀,

(34)
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which implies that for each 𝑘 ∈ {1, 2, . . . ,𝑀},
󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Θ
0

𝑛
𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Θ
𝑘−1

𝑛
𝑥𝑛 − Θ

𝑘−2

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

⋅ ⋅ ⋅ −
󵄩󵄩󵄩󵄩󵄩
Θ
1

𝑛
𝑥𝑛 − Θ

0

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

.

(35)

Thus, from Lemma 1 and (35), we get

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾𝑉𝑢𝑛 + (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑝

+𝛼𝑛𝛾𝑉𝑢𝑛 − 𝛼𝑛𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼𝑛𝜏)
2󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼𝑛 ⟨𝛾𝑉𝑢𝑛 − 𝜇𝐴𝑝, 𝑥𝑛 − 𝑝⟩

≤ (1 − 𝛼𝑛𝜏)
2󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼𝑛 ⟨𝛾𝑉𝑢𝑛 − 𝛾𝑉𝑝 + 𝛾𝑉𝑝 − 𝜇𝐴𝑝, 𝑥𝑛 − 𝑝⟩

≤ (1 − 𝛼𝑛𝜏)
2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

)

+ 2𝛼𝑛𝛾𝑙
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝛼𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑝 − 𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (𝛼𝑛𝜏)

2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− (1 − 𝛼𝑛𝜏)
2󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼𝑛
󵄩󵄩󵄩󵄩𝛾𝑉𝑝 − 𝜇𝐴𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(36)

It follows that

(1 − 𝛼𝑛𝜏)
2󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤ (𝛼𝑛𝜏)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝛼𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑝 − 𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(37)

Since 𝛼𝑛 → 0, (32) holds, then we have
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝑢𝑛 − Θ

𝑀−1

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
Θ
𝑀−1

𝑛
𝑥𝑛 − Θ

𝑀−2

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩󵄩
Θ
1

𝑛
𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0.

(38)

𝑆𝑡𝑒𝑝 3. It shows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (39)

Observe that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑢𝑛 + 𝑆𝑛𝑢𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝛾𝑉𝑢𝑛 − 𝜇𝐴𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 .

(40)

Since 𝛼𝑛 → 0 and ‖𝑢𝑛 − 𝑥𝑛‖ → 0, it is easy to get (39).

Thus,
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛 + 𝑥𝑛 − S𝑛𝑥𝑛 + 𝑆𝑛𝑥𝑛 − 𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩

≤ 2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩 .

(41)

We obtain ‖𝑢𝑛 − 𝑆𝑛𝑢𝑛‖ → 0.
Notice that

󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) 𝑢𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛽𝑛𝑢𝑛 + (1 − 𝛽𝑛) 𝑆𝑛𝑢𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

= (1 − 𝛽𝑛)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩 ,

(42)

where 𝛽𝑛 ∈ (0, 1/2). Hence we have
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 2]∇𝑓) 𝑢𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 2]∇𝑓) 𝑢𝑛 − 𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) 𝑢𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) 𝑢𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝐼 − 2]∇𝑓) 𝑢𝑛 − (𝐼 − 𝜆𝑛∇𝑓) 𝑢𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) 𝑢𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

≤ (2] − 𝜆𝑛)
󵄩󵄩󵄩󵄩∇𝑓 (𝑢𝑛)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 .

(43)

From the boundedness of {∇𝑓(𝑢𝑛)}, 𝛽𝑛 → 0 and ‖𝑆𝑛𝑢𝑛 −

𝑢𝑛‖ → 0, we conclude that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 2]∇𝑓) 𝑢𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 = 0. (44)

Since {𝑢𝑛} is bounded, there exists a subsequence {𝑢𝑛𝑗
}

which converges weakly to 𝑥
∗.

𝑆𝑡𝑒𝑝 4. It shows that 𝑥∗ ∈ Ω.
Since 𝐶 is closed and convex, 𝐶 is weakly closed. So we

have 𝑥∗ ∈ 𝐶. By Lemma 11 and (44), we have 𝑥∗ ∈ 𝑈.
Next we will show that 𝑥∗ ∈ ∩

𝑀

𝑖=1
EP(𝐹𝑘).

Indeed, by Lemma 9, we have that for each 𝑘 = 1, 2,

. . . ,𝑀,

𝐹𝑘 (Θ
𝑘

𝑛
𝑥𝑛, 𝑦) +

1

𝑟𝑘,𝑛

⟨𝑦 − Θ
𝑘

𝑛
𝑥𝑛, Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛⟩ ≥ 0,

∀𝑦 ∈ 𝐶.

(45)

From (A2), we get
1

𝑟𝑘,𝑛

⟨𝑦 − Θ
𝑘

𝑛
𝑥𝑛, Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛⟩ ≥ 𝐹𝑘 (𝑦, Θ

𝑘

𝑛
𝑥𝑛) ,

∀𝑦 ∈ 𝐶.

(46)

Hence,

⟨𝑦 − Θ
𝑘

𝑛𝑗
𝑥𝑛𝑗

,

Θ
𝑘

𝑛𝑗
𝑥𝑛𝑗

− Θ
𝑘−1

𝑛𝑗
𝑥𝑛𝑗

𝑟𝑘,𝑛𝑗

⟩ ≥ 𝐹𝑘 (𝑦,Θ
𝑘

𝑛𝑗
𝑥𝑛𝑗

) ,

∀𝑦 ∈ 𝐶.

(47)
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From (32), we obtain that Θ𝑘
𝑛𝑗
𝑥𝑛𝑗

⇀ 𝑥
∗ as 𝑗 → ∞ for each

𝑘 = 1, 2, . . . ,𝑀 (especially, 𝑢𝑛𝑗 = Θ
𝑀

𝑛𝑗
𝑥𝑛𝑗

). Together with (32),
condition (ii), and (A4)we have, for each 𝑘 = 1, 2, . . . ,𝑀, that

0 ≥ 𝐹𝑘 (𝑦, 𝑥
∗
) , ∀𝑦 ∈ 𝐶. (48)

For any, 0 < 𝑡 ≤ 1 and 𝑦 ∈ 𝐶, let 𝑦𝑡 = 𝑡𝑦 + (1 − 𝑡)𝑥
∗.

Since 𝑦 ∈ 𝐶 and 𝑥
∗
∈ 𝐶, we obtain that 𝑦𝑡 ∈ 𝐶, and hence

𝐹𝑘(𝑦𝑡, 𝑥
∗
) ≤ 0. So, we have

0 = 𝐹𝑘 (𝑦𝑡, 𝑦𝑡) ≤ 𝑡𝐹𝑘 (𝑦𝑡, 𝑦) + (1 − 𝑡) 𝐹𝑘 (𝑦𝑡, 𝑥
∗
)

≤ 𝑡𝐹𝑘 (𝑦𝑡, 𝑦) .

(49)

Dividing by 𝑡, we get, for each 𝑘 = 1, 2, . . . ,𝑀, that

𝐹𝑘 (𝑦𝑡, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (50)

Letting 𝑡 → 0 and from (A3), we get

𝐹𝑘 (𝑥
∗
, 𝑦) ≥ 0. (51)

For all 𝑦 ∈ 𝐶 and 𝑥
∗
∈ EP(𝐹𝑘) for each 𝑘 = 1, 2, . . . ,𝑀; that

is, 𝑥∗ ∈ ∩
𝑀

𝑘=1
EP(𝐹𝑘). Hence 𝑥

∗
∈ Ω.

𝑆𝑡𝑒𝑝 5. It shows that𝑥𝑛 → 𝑥
∗, where𝑥∗ = 𝑃Ω(𝐼−𝜇𝐴+𝛾𝑉)𝑥

∗

𝑥𝑛 − 𝑥
∗
= 𝛼𝑛 (𝛾𝑉𝑢𝑛 − 𝜇𝐴𝑥

∗
)

+ (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − (𝐼 − 𝜇𝛼𝑛𝐴) 𝑥
∗
.

(52)

Hence, we obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

= 𝛼𝑛 ⟨𝛾𝑉𝑢𝑛 − 𝜇𝐴𝑥
∗
, 𝑥𝑛 − 𝑥

∗
⟩

+ ⟨(𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − (𝐼 − 𝜇𝛼𝑛𝐴) 𝑥
∗
, 𝑥𝑛 − 𝑥

∗
⟩

≤ 𝛼𝑛 ⟨𝛾𝑉𝑢𝑛 − 𝜇𝐴𝑥
∗
, 𝑥𝑛 − 𝑥

∗
⟩

+ (1 − 𝛼𝑛𝜏)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
.

(53)

It follows that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
1

𝜏
⟨𝛾𝑉𝑢𝑛 − 𝜇𝐴𝑥

∗
, 𝑥𝑛 − 𝑥

∗
⟩

=
1

𝜏
(𝛾 ⟨𝑉𝑢𝑛 − 𝑉𝑥

∗
, 𝑥𝑛 − 𝑥

∗
⟩ + ⟨𝛾𝑉𝑥

∗
− 𝜇𝐴𝑥

∗
, 𝑥𝑛 − 𝑥

∗
⟩)

≤
1

𝜏
(𝛾𝑙

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ ⟨𝛾𝑉𝑥

∗
− 𝜇𝐴𝑥

∗
, 𝑥𝑛 − 𝑥

∗
⟩) .

(54)

This implies that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
≤

⟨𝛾𝑉𝑥
∗
− 𝜇𝐴𝑥

∗
, 𝑥𝑛 − 𝑥

∗
⟩

𝜏 − 𝛾𝑙
. (55)

In particular,

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑗

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤

⟨𝛾𝑉𝑥
∗
− 𝜇𝐴𝑥

∗
, 𝑥𝑛𝑗

− 𝑥
∗
⟩

𝜏 − 𝛾𝑙
. (56)

Since 𝑥𝑛𝑗
⇀ 𝑥
∗, it follows from (56) that 𝑥𝑛𝑗 → 𝑥

∗

as 𝑗 → ∞. Next, we show that 𝑥∗ solves the variational
inequality (27).

By the iterative algorithm (28), we have

𝑥𝑛 = 𝛼𝑛𝛾𝑉𝑢𝑛 + (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛. (57)

Therefore we have

𝛼𝑛 (𝜇𝐴 − 𝛾𝑉) 𝑥𝑛

= 𝛼𝑛 (𝜇𝐴 − 𝛾𝑉) (𝐼 −𝑊𝑛) 𝑥𝑛 + 𝛼𝑛 (𝜇𝐴 − 𝛾𝑉) 𝑆𝑛𝑢𝑛

+ 𝛼𝑛𝛾𝑉𝑢𝑛 + (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − 𝑥𝑛

= 𝛼𝑛 (𝜇𝐴 − 𝛾𝑉) (𝐼 −𝑊𝑛) 𝑥𝑛

+ 𝛼𝑛𝛾 (𝑉𝑢𝑛 − 𝑉𝑆𝑛𝑢𝑛) − (𝐼 − 𝑆𝑛Θ
𝑀

𝑛
) 𝑥𝑛;

(58)

that is,

(𝜇𝐴 − 𝛾𝑉) 𝑥𝑛 = (𝜇𝐴 − 𝛾𝑉) (𝐼 −𝑊𝑛) 𝑥𝑛

+ 𝛾 (𝑉𝑢𝑛 − 𝑉𝑆𝑛𝑢𝑛) −
1

𝛼𝑛

(𝐼 − 𝑊𝑛) 𝑥𝑛.

(59)

Due to the nonexpansivity of 𝑊𝑛, we have that 𝐼 − 𝑊𝑛 is
monotone; that is, ⟨𝑥 − 𝑦, (𝐼 −𝑊𝑛)𝑥 − (𝐼 −𝑊𝑛)𝑦⟩ ≥ 0, for all
𝑥, 𝑦 ∈ 𝐻. Hence for any 𝑝 ∈ Ω,

⟨(𝜇𝐴 − 𝛾𝑉) 𝑥𝑛, 𝑥𝑛 − 𝑝⟩

= −
1

𝛼𝑛

⟨(𝐼 − 𝑊𝑛) 𝑥𝑛 − (𝐼 −𝑊𝑛) 𝑝, 𝑥𝑛 − 𝑝⟩

+ ⟨(𝜇𝐴 − 𝛾𝑉) (𝐼 −𝑊𝑛) 𝑥𝑛, 𝑥𝑛 − 𝑝⟩

+ 𝛾 ⟨𝑉𝑢𝑛 − 𝑉𝑆𝑛𝑢𝑛, 𝑥𝑛 − 𝑝⟩

≤ ⟨(𝜇𝐴 − 𝛾𝑉) (𝐼 −𝑊𝑛) 𝑥𝑛, 𝑥𝑛 − 𝑝⟩

+ 𝛾
󵄩󵄩󵄩󵄩𝑉𝑢𝑛 − 𝑉𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ ⟨(𝜇𝐴 − 𝛾𝑉) (𝐼 −𝑊𝑛) 𝑥𝑛, 𝑥𝑛 − 𝑝⟩

+ 𝛾𝑙
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(60)

Now replacing 𝑛 in (60) with 𝑛𝑗 and letting 𝑗 → ∞, we
obtain

⟨(𝜇𝐴 − 𝛾𝑉) 𝑥
∗
, 𝑥
∗
− 𝑝⟩

= lim
𝑗→∞

⟨(𝜇𝐴 − 𝛾𝑉) 𝑥𝑛𝑗
, 𝑥𝑛𝑗

− 𝑝⟩

≤ lim
𝑗→∞

⟨(𝜇𝐴 − 𝛾𝑉) (𝑥𝑛𝑗
− 𝑆𝑛𝑗

𝑢𝑛𝑗
) , 𝑥𝑛𝑗

− 𝑝⟩ = 0;

(61)

that is, 𝑥∗ ∈ Ω is a solution of the variational inequality (27).
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Further, by the uniqueness of the solution of the varia-
tional inequality (27), we conclude that 𝑥𝑛 → 𝑥

∗ as 𝑛 → ∞.
We rewrite (27) as

⟨(𝐼 − 𝜇𝐴 + 𝛾𝑉) 𝑥
∗
− 𝑥
∗
, 𝑥
∗
− 𝑝⟩ ≥ 0, ∀𝑝 ∈ Ω. (62)

This is equivalent to the fixed point equation

𝑃Ω (𝐼 − 𝜇𝐴 + 𝛾𝑉) 𝑥
∗
= 𝑥
∗
. (63)

Theorem 13. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻 with 𝐶 ± 𝐶 ⊆ 𝐶, and let 𝐹𝑘, 𝑘 ∈

{1, 2, . . .𝑀} be bifunctions from 𝐶 × 𝐶 to R which satisfies
conditions (A1)–(A4). Let 𝑓 : 𝐶 → R be a real-value convex
function and ∇𝑓 a ]-ism mapping with ] > 0. Assume the set
Ω = 𝑈 ∩ ∩

𝑀

𝑖=1
EP(𝐹𝑘) ̸= 0. Let 𝑉 : 𝐶 → 𝐶 is an 𝑙-Lipschitzian

mapping with 𝑙 ≥ 0 and 𝐴 is a strongly positive bounded
linear operator with coefficient 𝛾 ≥ 0, 0 < 𝜇 < 2𝛾/‖𝐴‖

2 and
0 < 𝛾 < 𝜇(𝛾 − (𝜇‖𝐴‖

2
/2))/𝑙 = 𝜏/𝑙. Given 𝑥1 ∈ 𝐻, let {𝑥𝑛} and

{𝑢𝑛} be sequences generated by the following algorithm:

𝑢𝑛 = 𝑇
𝐹𝑀
𝑟𝑀,𝑛

𝑇
𝐹𝑀−1
𝑟𝑀−1,𝑛

⋅ ⋅ ⋅ 𝑇
𝐹2

𝑟2,𝑛

𝑇
𝐹1
𝑟1,𝑛

𝑥𝑛,

𝑥𝑛+1 = 𝛼𝑛𝛾𝑉𝑢𝑛 + (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛,

(64)

where 𝑃𝐶(𝐼 − 𝜆𝑛∇𝑓) = 𝛽𝑛𝐼 + (1 − 𝛽𝑛)𝑆𝑛, 𝛽𝑛 = ((2] − 𝜆𝑛)/4]),
and 𝜆𝑛 ∈ (0, 2]); if {𝛼𝑛}, {𝛽𝑛}, and {𝑟𝑘,𝑛} satisfy the following
conditions:

(i) {𝛼𝑛} ⊂ (0, 1), lim𝑛→∞𝛼𝑛 = 0 and ∑
∞

𝑛=1
|𝛼𝑛+1 − 𝛼𝑛| <

∞;

(ii) {𝑟𝑘,𝑛} ⊂ (0,∞), lim inf𝑛→∞𝑟𝑘,𝑛 > 0 and ∑
∞

𝑛=1
|𝑟𝑘,𝑛+1 −

𝑟𝑘,𝑛| < ∞ for 𝑘 ∈ {1, 2, . . .𝑀};

(iii) {𝛽𝑛} ⊂ (0, (1/2)), lim𝑛→∞𝛽𝑛 = 0 and ∑
∞

𝑛=1
|𝛽𝑛+1 −

𝛽𝑛| < ∞,

then, the sequence {𝑥𝑛} converges strongly to a point 𝑥∗ ∈ Ω,
which solves the variational inequality (27).

Proof. The proof is divided into several steps.
𝑆𝑡𝑒𝑝 1. It shows first that {𝑥𝑛} is bounded.

Take any 𝑝 ∈ Ω, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
Θ
𝑀

𝑛
𝑥𝑛 − Θ

𝑀

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 . (65)

Thus, by (64), we derive that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾𝑉𝑢𝑛 + (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑝

+𝛼𝑛𝛾𝑉𝑢𝑛 − 𝛼𝑛𝛾𝑉𝑝 + 𝛼𝑛𝛾𝑉𝑝 − 𝛼𝑛𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝛼𝑛𝜏)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛𝛾𝑙
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝛾𝑉𝑝 − 𝜇𝐴𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼𝑛 (𝜏 − 𝛾𝑙))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝛾𝑉𝑝 − 𝜇𝐴𝑝

󵄩󵄩󵄩󵄩

= (1 − 𝛼𝑛 (𝜏 − 𝛾𝑙))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛 (𝜏 − 𝛾𝑙)

󵄩󵄩󵄩󵄩𝛾𝑉𝑝 − 𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

𝜏 − 𝛾𝑙

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝛾𝑉𝑝 − 𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

𝜏 − 𝛾𝑙
} .

(66)

By induction, we obtain ‖𝑥𝑛 − 𝑝‖ ≤ max{‖𝑥1 − 𝑝‖, (‖𝛾𝑉𝑝 −

𝜇𝐴𝑝‖/(𝜏 − 𝛾𝑙))}, 𝑛 ≥ 1. Hence, {𝑥𝑛} is bounded and so {𝑢𝑛}.
It follows from the Lipschitz continuity of 𝐴, ∇𝑓, and 𝑉 that
{𝐴𝑥𝑛}, {𝐴𝑢𝑛}{∇𝑓(𝑢𝑛)}, and {𝑉𝑢𝑛} are also bounded. From the
nonexpansivity of 𝑆𝑛, it follows that {𝑆𝑛𝑢𝑛} is also bounded.
𝑆𝑡𝑒𝑝 2. It shows that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0. (67)

By (68), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾𝑉𝑢𝑛 + (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛

−𝛼𝑛−1𝛾𝑉𝑢𝑛−1 − (𝐼 − 𝜇𝛼𝑛−1𝐴) 𝑆𝑛−1𝑢𝑛−1
󵄩󵄩󵄩󵄩

≤ 𝛼𝑛𝛾
󵄩󵄩󵄩󵄩𝑉𝑢𝑛 − 𝑉𝑢𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 𝛾
󵄩󵄩󵄩󵄩𝑉𝑢𝑛−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛−1 − (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛−1𝑢𝑛−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛−1𝑢𝑛−1 − (𝐼 − 𝜇𝛼𝑛−1𝐴) 𝑆𝑛−1𝑢𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝛼𝑛𝛾𝑙
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

× (
󵄩󵄩󵄩󵄩𝛾𝑉𝑢𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝜇𝐴𝑆𝑛−1𝑢𝑛−1

󵄩󵄩󵄩󵄩)

+ (1 − 𝛼𝑛𝜏) (
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛−1 − 𝑆𝑛−1𝑢𝑛−1

󵄩󵄩󵄩󵄩)

≤ (1 − 𝛼𝑛 (𝜏 − 𝛾𝑙))
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝛾𝑉𝑢𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝜇𝐴𝑆𝑛−1𝑢𝑛−1

󵄩󵄩󵄩󵄩)

+ (1 − 𝛼𝑛𝜏)
󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛−1 − 𝑆𝑛−1𝑢𝑛−1

󵄩󵄩󵄩󵄩 .

(68)

Next we estimate ‖𝑆𝑛𝑢𝑛−1 − 𝑆𝑛−1𝑢𝑛−1‖.
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Observe that
󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛−1 − 𝑆𝑛−1𝑢𝑛−1

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) − 𝛽𝑛𝐼

1 − 𝛽𝑛

𝑢𝑛−1

−
𝑃𝐶 (𝐼 − 𝜆𝑛−1∇𝑓) − 𝛽𝑛−1𝐼

1 − 𝛽𝑛−1

𝑢𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4]𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) − (2] − 𝜆𝑛) 𝐼

2] + 𝜆𝑛

𝑢𝑛−1

−
4]𝑃𝐶 (𝐼 − 𝜆𝑛−1∇𝑓) − (2] − 𝜆𝑛−1) 𝐼

2] + 𝜆𝑛−1

𝑢𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4]𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓)

2] + 𝜆𝑛

𝑢𝑛−1

−
4]𝑃C (𝐼 − 𝜆𝑛−1∇𝑓)

2] + 𝜆𝑛−1

𝑢𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2] − 𝜆𝑛−1

2] + 𝜆𝑛−1

𝑢𝑛−1 −
2] − 𝜆𝑛

2] + 𝜆𝑛

𝑢𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(4] (2] + 𝜆𝑛−1) 𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) 𝑢𝑛−1

−4] (2] + 𝜆𝑛) 𝑃𝐶 (𝐼 − 𝜆𝑛−1∇𝑓) 𝑢𝑛−1)

× ((2] + 𝜆𝑛) (2] + 𝜆𝑛−1))
−1󵄩󵄩󵄩󵄩󵄩

+
4] 󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆𝑛−1

󵄨󵄨󵄨󵄨

(2] + 𝜆𝑛) (2] + 𝜆𝑛−1)

󵄩󵄩󵄩󵄩𝑢𝑛−1
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(4] (𝜆𝑛−1 − 𝜆𝑛) 𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) 𝑢𝑛−1 + 4] (2] + 𝜆𝑛)

× (𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) 𝑢𝑛−1 − 𝑃𝐶 (𝐼 − 𝜆𝑛−1∇𝑓) 𝑢𝑛−1))

× ((2] + 𝜆𝑛) (2] + 𝜆𝑛−1))
−1󵄩󵄩󵄩󵄩󵄩

+
4] 󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆𝑛−1

󵄨󵄨󵄨󵄨

(2] + 𝜆𝑛) (2] + 𝜆𝑛−1)

󵄩󵄩󵄩󵄩𝑢𝑛−1
󵄩󵄩󵄩󵄩

≤
4] 󵄨󵄨󵄨󵄨𝜆𝑛−1 − 𝜆𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) 𝑢𝑛−1
󵄩󵄩󵄩󵄩

(2] + 𝜆𝑛) (2] + 𝜆𝑛−1)

+
4] 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) 𝑢𝑛−1 − 𝑃𝐶 (𝐼 − 𝜆𝑛−1∇𝑓) 𝑢𝑛−1

󵄩󵄩󵄩󵄩

2] + 𝜆𝑛−1

+
4] 󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆𝑛−1

󵄨󵄨󵄨󵄨

(2] + 𝜆𝑛) (2] + 𝜆𝑛−1)

󵄩󵄩󵄩󵄩𝑢𝑛−1
󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆𝑛−1

󵄨󵄨󵄨󵄨 (
1

]
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) 𝑢𝑛−1

󵄩󵄩󵄩󵄩

+2
󵄩󵄩󵄩󵄩∇𝑓 (𝑢𝑛−1)

󵄩󵄩󵄩󵄩 +
1

]
󵄩󵄩󵄩󵄩𝑢𝑛−1

󵄩󵄩󵄩󵄩)

= 4] 󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨 (

1

]
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) 𝑢𝑛−1

󵄩󵄩󵄩󵄩

+2
󵄩󵄩󵄩󵄩∇𝑓 (𝑢𝑛−1)

󵄩󵄩󵄩󵄩 +
1

]
󵄩󵄩󵄩󵄩𝑢𝑛−1

󵄩󵄩󵄩󵄩)

≤ 𝑀1
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨 ,

(69)

where 𝑀1 = sup
𝑛
{4‖𝑃𝐶(𝐼 − 𝜆𝑛∇𝑓)𝑢𝑛−1‖ + 8]‖∇𝑓(𝑢𝑛−1)‖ +

4‖𝑢𝑛−1‖}.
Substitute (69) into (68), we get
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼𝑛 (𝜏 − 𝛾𝑙))
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝛾𝑉𝑢𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝜇𝐴𝑆𝑛−1𝑢𝑛−1

󵄩󵄩󵄩󵄩)

+ 𝑀1
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

≤ (1 − 𝛼𝑛 (𝜏 − 𝛾𝑙))
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1

󵄩󵄩󵄩󵄩

+ (
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨)

× (
󵄩󵄩󵄩󵄩𝛾𝑉𝑢𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝜇𝐴𝑆𝑛−1𝑢𝑛−1

󵄩󵄩󵄩󵄩 +𝑀1)

≤ (1 − 𝛼𝑛 (𝜏 − 𝛾𝑙))
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1

󵄩󵄩󵄩󵄩

+ 𝑀2 (
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨) ,

(70)

for some appropriate positive constant𝑀2 such that

𝑀2 = sup
𝑛

{
󵄩󵄩󵄩󵄩𝛾𝑉𝑢𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝜇𝐴𝑆𝑛−1𝑢𝑛−1

󵄩󵄩󵄩󵄩 +𝑀1} . (71)

Observe that
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
Θ
𝑀

𝑛+1
𝑥𝑛+1 − Θ

𝑀

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Θ
𝑀

𝑛+1
𝑥𝑛+1 − Θ

𝑀

𝑛+1
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
Θ
𝑀

𝑛+1
𝑥𝑛 − Θ

𝑀

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
Θ
𝑀

𝑛+1
𝑥𝑛 − Θ

𝑀

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹𝑀
𝑟𝑀,𝑛+1

Θ
𝑀−1

𝑛+1
𝑥𝑛 − 𝑇

𝐹𝑀
𝑟𝑀,𝑛

Θ
𝑀−1

𝑛+1
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹𝑀
𝑟𝑀,𝑛

Θ
𝑀−1

𝑛+1
𝑥𝑛 − 𝑇

𝐹𝑀
𝑟𝑀,𝑛

𝑇
𝐹𝑀−1
𝑟𝑀−1,𝑛

Θ
𝑀−2

𝑛+1
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹𝑀
𝑟𝑀,𝑛

𝑇
𝐹𝑀−1
𝑟𝑀−1,𝑛

⋅ ⋅ ⋅ Θ
2

𝑛+1
𝑥𝑛 − 𝑇

𝐹𝑀
𝑟𝑀,𝑛

⋅ ⋅ ⋅ 𝑇
𝐹2
𝑟2,𝑛

𝑇
𝐹1
𝑟1,𝑛+1

𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹𝑀
𝑟𝑀,𝑛

⋅ ⋅ ⋅ 𝑇
𝐹2
𝑟2,𝑛

𝑇
𝐹1
𝑟1,𝑛+1

𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹𝑀
𝑟𝑀,𝑛+1

Θ
𝑀−1

𝑛+1
𝑥𝑛 − 𝑇

𝐹𝑀
𝑟𝑀,𝑛

Θ
𝑀−1

𝑛+1
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
Θ
𝑀−1

𝑛+1
𝑥𝑛 − 𝑇

𝐹𝑀−1
𝑟𝑀−1,𝑛

Θ
𝑀−2

𝑛+1
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹2
𝑟2,𝑛+1

𝑇
𝐹1
𝑟1,𝑛+1

𝑥𝑛 − 𝑇
𝐹2
𝑟2,𝑛

𝑇
𝐹1
𝑟1,𝑛+1

𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹1
𝑟1,𝑛+1

𝑥𝑛 − 𝑇
𝐹1
𝑟1,𝑛

𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
.

(72)
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By Lemma 10, we get

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨𝑟𝑀,𝑛+1 − 𝑟𝑀,𝑛
󵄨󵄨󵄨󵄨

𝑟𝑀,𝑛+1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹𝑀
𝑟𝑀,𝑛+1

Θ
𝑀−1

𝑛+1
𝑥𝑛 − Θ

𝑀−1

𝑛+1
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨𝑟𝑀−1,𝑛+1 − 𝑟𝑀−1,𝑛
󵄨󵄨󵄨󵄨

𝑟𝑀−1,𝑛+1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹𝑀−1
𝑟𝑀−1,𝑛

Θ
𝑀−2

𝑛+1
𝑥𝑛 − Θ

𝑀−2

𝑛+1
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨𝑟2,𝑛+1 − 𝑟2,𝑛
󵄨󵄨󵄨󵄨

𝑟2,𝑛+1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹2
𝑟2,𝑛+1

𝑇
𝐹1
𝑟1,𝑛+1

𝑥𝑛 − 𝑇
𝐹1
𝑟1,𝑛+1

𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨𝑟1,𝑛+1 − 𝑟1,𝑛
󵄨󵄨󵄨󵄨

𝑟1,𝑛+1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹1
𝑟1,𝑛+1

𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
.

(73)

Combing (70) and (73), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩

≤ (1 − 𝛼𝑛 (𝜏 − 𝛾𝑙))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨𝑟𝑀,𝑛 − 𝑟𝑀,𝑛−1
󵄨󵄨󵄨󵄨

𝑟𝑀,𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹𝑀
𝑟𝑀,𝑛

Θ
𝑀−1

𝑛
𝑥𝑛−1 − Θ

𝑀−1

𝑛
𝑥𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨𝑟𝑀−1,𝑛 − 𝑟𝑀−1,𝑛−1
󵄨󵄨󵄨󵄨

𝑟𝑀−1,𝑛

×
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹𝑀−1
𝑟𝑀−1,𝑛−1

Θ
𝑀−2

𝑛
𝑥𝑛−1 − Θ

𝑀−2

𝑛
𝑥𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨𝑟2,𝑛 − 𝑟2,𝑛−1
󵄨󵄨󵄨󵄨

𝑟2,𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹2
𝑟2,𝑛

𝑇
𝐹1
𝑟1,𝑛

𝑥𝑛−1 − 𝑇
𝐹1
𝑟1,𝑛

𝑥𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨𝑟1,𝑛 − 𝑟1,𝑛−1
󵄨󵄨󵄨󵄨

𝑟1,𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝐹1
𝑟1,𝑛

𝑥𝑛−1 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩

+𝑀2 (
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨) .

(74)

By Lemma 2, It follows from conditions (i)–(iii) that (67)
holds. Further from (73), we have

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0. (75)

𝑆𝑡𝑒𝑝 3. It shows that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (76)

For any 𝑝 ∈ Ω, as the same proof of Theorem 12, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

. (77)

Then from (64) and (77), we derive that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾𝑉𝑢𝑛 + (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛−(𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑝 + 𝛼𝑛𝛾𝑉𝑢𝑛−𝛼𝑛𝜇𝐴𝑝

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼𝑛𝜏)
2󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛼𝑛𝜏) 𝛼𝑛
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝛾𝑉𝑢𝑛 − 𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

+ 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑢𝑛 − 𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛼𝑛𝜏) 𝛼𝑛
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝛾𝑉𝑢𝑛 − 𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

+ 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑢𝑛 − 𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

2
.

(78)

From 𝛼𝑛 → 0 and (67), we have

󵄩󵄩󵄩󵄩󵄩
Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

󳨀→ 0. (79)

Further we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (80)

Next,
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1 + 𝑥𝑛+1 − 𝑆𝑛𝑢𝑛 + 𝑆𝑛𝑢𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝛾𝑉𝑢𝑛 − 𝜇𝐴𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 .

(81)

It follows from (67) and (80) that (76) holds. Further we have
‖𝑢𝑛 − 𝑆𝑛𝑢𝑛‖ → 0.
𝑆𝑡𝑒𝑝 4. It shows that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗
, 𝑥𝑛 − 𝑥

∗
⟩ ≤ 0, (82)

where 𝑥∗ = 𝑃Ω(𝐼 − 𝜇𝐴 + 𝛾𝑉)𝑥
∗ is a unique solution of the

variational inequality (27). Indeed, take a subsequence {𝑥𝑛𝑗}
of {𝑥𝑛} such that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗
, 𝑥𝑛 − 𝑥

∗
⟩

= lim
𝑗→∞

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗
, 𝑥𝑛𝑗

− 𝑥
∗
⟩ .

(83)

Since {𝑥𝑛𝑗} is bounded, there exists a subsequence {𝑥𝑛𝑗𝑘 } of
{𝑥𝑛𝑗

}which converges weakly to 𝑞. Without loss of generality,
we can assume 𝑥𝑛𝑗 ⇀ 𝑞. By the same argument as in the proof
ofTheorem 12, we have 𝑞 ∈ Ω. Since 𝑥∗ = 𝑃Ω(𝐼−𝜇𝐴+𝛾𝑉)𝑥

∗,
it follows that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗
, 𝑥𝑛 − 𝑥

∗
⟩

= lim
𝑗→∞

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗
, 𝑥𝑛𝑗

− 𝑥
∗
⟩

= ⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗
, 𝑞 − 𝑥

∗
⟩ ≤ 0.

(84)
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𝑆𝑡𝑒𝑝 5. It shows that

𝑥𝑛 󳨀→ 𝑥
∗
. (85)

Consider
⟨(𝛾𝑉 − 𝜇𝐴) 𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

= ⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗
, 𝑥𝑛+1 − 𝑥𝑛⟩

+ ⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗
, 𝑥𝑛 − 𝑥

∗
⟩

≤
󵄩󵄩󵄩󵄩(𝛾𝑉 − 𝜇𝐴) 𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩

+ ⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗
, 𝑥𝑛 − 𝑥

∗
⟩ .

(86)

It follows from (67) and (82) that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗
, 𝑥𝑛+1 − 𝑥

∗
⟩ ≤ 0,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾𝑉𝑢𝑛 + (𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − (𝐼 − 𝜇𝛼𝑛𝐴) 𝑥

∗

+𝛼𝑛 (𝛾𝑉𝑢𝑛 − 𝜇𝐴𝑥
∗
)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝛼𝑛𝐴) 𝑆𝑛𝑢𝑛 − (𝐼 − 𝜇𝛼𝑛𝐴) 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼𝑛 ⟨𝛾𝑉𝑢𝑛 − 𝜇𝐴𝑥
∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

≤ (1 − 𝛼𝑛𝜏)
2󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼𝑛 ⟨𝛾𝑉𝑢𝑛 − 𝛾𝑉𝑥
∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

+ 2𝛼𝑛 ⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

≤ (1 − 𝛼𝑛𝜏)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝛼𝑛𝛾𝑙 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2
)

+ 2𝛼𝑛 ⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗
, 𝑥𝑛+1 − 𝑥

∗
⟩ .

(87)

This implies that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤
(1 − 𝛼𝑛𝜏)

2
+ 𝛼𝑛𝛾𝑙

1 − 𝛼𝑛𝛾𝑙

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+
2𝛼𝑛

1 − 𝛼𝑛𝛾𝑙
⟨(𝛾𝑉 − 𝜇𝐴) 𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

≤ (1 −
2𝛼𝑛 (𝜏 − 𝛾𝑙)

1 − 𝛼𝑛𝛼𝛾
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+
2𝛼𝑛

1 − 𝛼𝑛𝛾𝑙
⟨(𝛾𝑉 − 𝜇𝐴) 𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩ +

(𝛼𝑛𝜏)
2

1 − 𝛼𝑛𝛾𝑙
𝑀3,

(88)

where𝑀3 = sup
𝑛
‖𝑥𝑛 − 𝑥

∗
‖
2, 𝑛 ≥ 1. It is easily to see that 𝛾𝑛 =

((2𝛼𝑛(𝜏 − 𝛾𝑙))/(1 − 𝛼𝑛𝛾𝑙)). Hence by Lemma 2, the sequence
{𝑥𝑛} converges strongly to 𝑥

∗.

Remark 14. If 𝑀 = 1, 𝜇 = 1, then Theorem 13 reduces to
Theorem 3.2 of Tian and Liu [9].

Table 1: 𝑥(1) = (0, 0)
⊤ (initial guess).

n (iterative number) 𝑥
(𝑛) errors (n) 𝑓

(𝑛)

2262 (1.9986, 1.9979) 2.5 × 10
−3

−1.9986
22627 (1.9999, 1.9998) 2.479 × 10

−4
−1.9999

226274 (2.0000, 2.0000) 2.478 × 10
−5

−2.0000

4. Numerical Result

In this section, we consider the following simple example to
demonstrate the effectiveness, realization and convergence of
the algorithm inTheorem 13.

Let𝑅2 be the two dimensional Euclidean space with usual
inner product ⟨𝑥

(1)
, 𝑥
(2)
⟩ = 𝑥

(1)

1
𝑥
(2)

1
+ 𝑥
(1)

2
𝑥
(2)

2
, (∀𝑥(1) =

(𝑥
(1)

1
, 𝑥
(1)

2
)
⊤
, 𝑥
(2)

= (𝑥
(2)

1
, 𝑥
(2)

2
)
⊤

∈ 𝑅
2
) and induced norm

‖𝑥‖ = √𝑥
2

1
+ 𝑥
2

2
(∀𝑥 = (𝑥1, 𝑥2)

⊤
∈ 𝑅
2
). Next, we consider

the following simple example.

Example 15. Consider the following constrained convexmin-
imization problem:

minimize 𝑓 (𝑥) = 𝑥
2

1
+
1

2
𝑥
2

2
− 𝑥1𝑥2 − 2𝑥1, 𝑥 ∈ 𝑅

2
,

s.t. 𝑥1 ≥ 0, 𝑥2 ≥ 0.

(89)

In Theorem 13, let𝐻 = 𝑅
2, 𝐶 = [0,∞) × [0,∞), and 𝐹𝑘 ≡ 0,

for all 𝑥, 𝑦 ∈ 𝐶, 𝑘 ∈ {1, 2, . . . ,𝑀}. Give 𝐴 = 𝐼, 𝑉𝑥 = 2𝑥, for
all 𝑥 ∈ 𝐻, with Lipschitz coefficient 𝑙 = 2.

Compute the gradient of 𝑓, we have ∇𝑓(𝑥) = (2𝑥1 − 𝑥2 −

2, 𝑥2 − 𝑥1)
⊤ is (1/3)-ism and ∇𝑓

2
(𝑥) = (

2 −1
−1 1

) is positively
definite; thus 𝑓 is convex. Give the parameters 𝛼𝑛 = (1/𝑛),
𝛽𝑛 = (1/4𝑛) for every 𝑛 ≥ 1, fix 𝜇 = 1, and 𝛾 = (1/10). Then
{𝑥
(𝑛)
} is the sequence generated by

𝑥
(𝑛+1)

=
1

5𝑛
𝑥
(𝑛)

+
𝑛 − 1

𝑛
𝑆𝑛𝑥
(𝑛)
, (90)

where

𝑆𝑛𝑥
(𝑛)

=
𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) 𝑥

(𝑛)
− 𝛽𝑛𝑥

(𝑛)

1 − 𝛽𝑛

. (91)

As 𝑛 → ∞, we have {𝑥(𝑛)} → 𝑥
∗
= (2, 2)

⊤, 𝑓(𝑥∗) = −2.

Take the initial guess 𝑥(1) = (0, 0)
⊤, we obtain the numer-

ical results as shown in Table 1.
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