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Without the continuity and nondecreasing property of the comparison function, we in this paper prove some fixed point theorems
of generalized contractions of rational type in ordered partial metric spaces, which generalize and improve the corresponding
results of Luong andThuan. An example is given to support the usability of our results.

1. Introduction and Preliminaries

Throughout this paper, R
+
and N will denote the set of

nonnegative real numbers and the set of all positive integer
numbers.

It is well known that the Banach contraction principle
is one of the pivotal results of analysis. Generalizations of
this principle have been obtained in several directions. In [1],
Jaggi introduced a contraction of rational type in a metric
space and proved the unique existence of fixed point as the
contraction is continuous and the metric space is complete,
which was then extended to the case of orderedmetric spaces
byHarjani et al. [2]. In [3], Luong andThuan consideredweak
contractions of rational type in ordered metric spaces and
proved the following fixed point theorem.

Theorem1 (see [3]). Let (𝑋, 𝑑, ⪯) be a complete orderedmetric
space and 𝑇 : 𝑋 → 𝑋 a nondecreasing mapping such that
there exists a function 𝜂 : R

+
→ R
+
with 𝜂−1({0}) = {0} such

that
𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑀

𝑑⋅𝑟
(𝑥, 𝑦) − 𝜂 (𝑀

𝑑⋅𝑟
(𝑥, 𝑦)) , (1)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦 and 𝑥 ̸= 𝑦, where 𝑀
𝑑⋅𝑟

(𝑥, 𝑦) =

max{𝑑(𝑥, 𝑦), ((𝑑(𝑥, 𝑇𝑥) ⋅ 𝑑(𝑦, 𝑇𝑦))/𝑑(𝑥, 𝑦))}. Assume that 𝜂 is
lower semicontinuous, and 𝑋 has the following property:

(A1) if {𝑥
𝑛
} is a nondecreasing sequence in𝑋 such that 𝑥

𝑛

𝑑

󳨀→

𝑥, then 𝑥 = sup{𝑥
𝑛
}.

If there exists 𝑥
0

∈ 𝑋 such that 𝑥
0

⪯ 𝑇𝑥
0
, then 𝑇 has a fixed

point.

In [4], Matthews introduced the partial metric space and
extended the Banach contraction principle to the case of
partial metric spaces, which was then improved by Oltra and
Valero [5]. In [6–8], the authors studied the unique existence
of fixed point of generalized contractions in partial metric
spaces. Recall that a mapping 𝑇 : 𝑋 → 𝑋 is called a 𝑀

𝑖

𝑝
-

generalized contraction (𝑀𝑖
𝑝
-GC) if there exists a comparison

function 𝜑 : R
+

→ R
+
such that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑀
𝑖

𝑝
(𝑥, 𝑦)) , (2)

where (𝑋, 𝑝) is a partial metric space, 𝑀1
𝑝
(𝑥, 𝑦) =

max{𝑝(𝑥, 𝑦), 𝑝(𝑥, 𝑇𝑥), 𝑝(𝑦, 𝑇𝑦), (𝑝(𝑥, 𝑇𝑦)+𝑝(𝑦, 𝑇𝑥))/2}, and
𝑀2
𝑝
(𝑥, 𝑦) = max{𝑝(𝑥, 𝑦), 𝑝(𝑥, 𝑇𝑥), 𝑝(𝑦, 𝑇𝑦)}. Under several

different assumptionsmade on 𝜑, they obtained the following
fixed point results.

Theorem 2 (see Theorem 1 of [6], Theorem 1 of [7], and
Theorems 3 and 4 of [8]). Let (𝑋, 𝑝) be a complete partial
metric space. Assume the following.

(i)𝑇 : 𝑋 → 𝑋 is a 𝑀
1

𝑝
-GC and one of the following con-

ditions is satisfied:
(H1) 𝜑 is continuous and nondecreasing, and 𝜑(𝑡) < 𝑡 for all
𝑡 > 0;
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(H2) 𝜑 is nondecreasing, and the series∑∞
𝑛=0

𝜑𝑛(𝑡) is convergent
for all 𝑡 > 0 (𝜑𝑛 denotes the 𝑛th iterate of 𝜑);
(H3) 𝜑 is upper semicontinuous from the right, and 𝜑(𝑡) < 𝑡 for
all 𝑡 > 0.

Or (ii)𝑇 : 𝑋 → 𝑋 is a𝑀
2

𝑝
-GC and the following condition

is satisfied:
(H4) 𝜑 is nondecreasing, and lim

𝑛→∞
𝜑𝑛(𝑡) = 0 for all 𝑡 > 0.

Then 𝑇 has a unique fixed point.

For other references concerned with various fixed point
results and common fixed point results for contractions in
the setting of metric-like, partial metric, and ordered partial
metric spaces, we refer the readers to [9–24].

In this paper, we establish some fixed point theorems for
generalized contractions of rational type in ordered partial
metric spaces, which generalize and improveTheorems 1 and
2. An example is given to support the usability of our results.
Even in the setting of metric spaces, the results presented in
this paper are still new since the comparison function 𝜑 is
not necessarily assumed to be upper semicontinuous from the
right or nondecreasing.

Following [4, 5], a partial metric on a set 𝑋 is a function
𝑝 : 𝑋 × 𝑋 → R

+
such that, for each 𝑥, 𝑦, 𝑧 ∈ 𝑋,

(p1) 𝑝(𝑥, 𝑦) = 𝑝(𝑥, 𝑥) = 𝑝(𝑦, 𝑦) if and only if 𝑥 = 𝑦;
(p2) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥);
(p3) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦);
(p4) 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧).

Observe that, if 𝑝(𝑥, 𝑦) = 0, then 𝑥 = 𝑦. A partial metric
space is a pair (𝑋, 𝑝) such that 𝑋 is a set and 𝑝 is a partial
metric on𝑋. Each partialmetric𝑝on𝑋 induces a𝑇

0
topology

𝜏
𝑝
on 𝑋 which has as a base of the family of open balls

{𝐵
𝑝
(𝑥, 𝜀) : 𝑥 ∈ 𝑋, 𝜀 > 0}, where 𝐵

𝑝
(𝑥, 𝜀) = {𝑦 ∈ 𝑋 : 𝑝(𝑥, 𝑦) <

𝜀 + 𝑝(𝑥, 𝑥)} for all 𝑥 ∈ 𝑋 and 𝜀 > 0.
Let (𝑋, 𝑝) be a partial metric space and {𝑥

𝑛
} a sequence of

𝑋. The sequence {𝑥
𝑛
} converges, with respect to 𝜏

𝑝
, to a point

𝑥 ∈ 𝑋 (denoted by 𝑥
𝑛

𝑝

󳨀→ 𝑥) if lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑥) = 𝑝(𝑥, 𝑥).

Define a function 𝑝𝑠 : 𝑋 ×𝑋 → R
+
by 𝑝𝑠(𝑥, 𝑦) = 2𝑝(𝑥, 𝑦) −

𝑝(𝑥, 𝑥)−𝑝(𝑦, 𝑦).Then 𝑝𝑠 is a metric on𝑋.The sequence {𝑥
𝑛
}

converges, with respect to 𝜏
𝑝
𝑠 , to a point 𝑥 ∈ 𝑋 (denoted by

𝑥
𝑛

𝑝
𝑠

󳨀→ 𝑥) if and only if

lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑥) = lim

𝑚,𝑛→∞

𝑝 (𝑥
𝑚
, 𝑥
𝑛
) = 𝑝 (𝑥, 𝑥) . (3)

The sequence {𝑥
𝑛
} is called a Cauchy sequence if

lim
𝑚,𝑛→∞

𝑝(𝑥
𝑚
, 𝑥
𝑛
) exists and is finite; (𝑋, 𝑝) is called

complete if every Cauchy sequence {𝑥
𝑛
} ⊂ 𝑋 converges,

with respect to 𝜏
𝑝
, to a point 𝑥 ∈ 𝑋 such that 𝑝(𝑥, 𝑥) =

lim
𝑚,𝑛→∞

𝑝(𝑥
𝑚
, 𝑥
𝑛
). In particular, {𝑥

𝑛
} is called a 0-Cauchy

sequence if lim
𝑚,𝑛→∞

𝑝(𝑥
𝑚
, 𝑥
𝑛
) = 0; (𝑋, 𝑝) is called 0-

complete if every 0-Cauchy sequence {𝑥
𝑛
} ⊂ 𝑋 converges,

with respect to 𝜏
𝑝
, to a point 𝑥 ∈ 𝑋 such that 𝑝(𝑥, 𝑥) = 0.

Every complete partial metric space (𝑋, 𝑝) is 0-complete, but
the converse may not be true; see [17].

Remark 3 (see [4, 5]). A partial metric space (𝑋, 𝑝) is
complete if and only if (𝑋, 𝑝

𝑠) is complete.

2. Fixed Point Theorems

Let (𝑋, 𝑝, ⪯) be an ordered partial metric space and 𝑇 : 𝑋 →

𝑋. For all 𝑥, 𝑦 ∈ 𝑋 with 𝑝(𝑥, 𝑦) > 0, set

𝑀
1

𝑝⋅𝑟
(𝑥, 𝑦) = max{𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦) ,

𝑝 (𝑥, 𝑇𝑥) ⋅ 𝑝 (𝑦, 𝑇𝑦)

𝑝 (𝑥, 𝑦)

,

𝑝 (𝑥, 𝑇𝑦) + 𝑝 (𝑦, 𝑇𝑥)

2

} ,

𝑀
2

𝑝⋅𝑟
(𝑥, 𝑦) = max{𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦) ,

𝑝 (𝑥, 𝑇𝑥) ⋅ 𝑝 (𝑦, 𝑇𝑦)

𝑝 (𝑥, 𝑦)

} .

(4)

A mapping 𝑇 : 𝑋 → 𝑋 is said to be a 𝑀𝑖
𝑝.𝑟
-generalized

contraction of rational type (𝑀𝑖
𝑝.𝑟
-GCRT), if there exists a

comparison function 𝜑 : R
+

→ R
+
such that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑀
𝑖

𝑝.𝑟
(𝑥, 𝑦)) , (5)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦 and 𝑝(𝑥, 𝑦) > 0.

Lemma4. Let (𝑋, 𝑝, ⪯) be an ordered partial metric space and
𝑇 : 𝑋 → 𝑋 a nondecreasing 𝑀1

𝑝.𝑟
-GCRT. Assume that

(H5) 𝜑(𝑠) < 𝑠 and lim sup
𝑡→ 𝑠
+(𝜑(𝑡)/𝑡) < 1 for all 𝑠 > 0.

For each 𝑥
0

∈ 𝑋 such that 𝑥
0

⪯ 𝑇𝑥
0
, let 𝑥

𝑛
= 𝑇𝑛𝑥

0
for all

𝑛 ∈ N. If 𝑥
𝑛

̸= 𝑥
𝑛−1

for all 𝑛 ∈ N, then

lim
𝑚,𝑛→∞

𝑝 (𝑥
𝑚
, 𝑥
𝑛
) = 0. (6)

Proof. Note that 𝑇 is nondecreasing and 𝑥
0
⪯ 𝑇𝑥
0
; then {𝑥

𝑛
}

is nondecreasing. Since 𝑥
𝑛

̸= 𝑥
𝑛−1

for all 𝑛 ∈ N, then

𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) > 0, (7)

for all 𝑛 ∈ N. By (4) and (p4), for all 𝑛 ∈ N, we have

max {𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)}

≤ max{𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
) ,

𝑝 (𝑥
𝑛−1
, 𝑥
𝑛+1
) + 𝑝 (𝑥

𝑛
, 𝑥
𝑛
)

2

}

= 𝑀
1

𝑝⋅𝑟
(𝑥
𝑛−1
, 𝑥
𝑛
)

≤ max{𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
) ,

𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)

2

}

= max {𝑝 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)} .

(8)

Thus by the nondecreasing property of {𝑥
𝑛
}, (7), and (8),

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜑 (𝑀
1

𝑝⋅𝑟
(𝑥
𝑛−1

, 𝑥
𝑛
))

= 𝜑 (max {𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

)}) ,

(9)
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for all 𝑛 ∈ N. Now, we claim that, for all 𝑛 ∈ N,

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) . (10)

Suppose, on the contrary, that there exists some 𝑛 ∈ N such
that 𝑝(𝑥

𝑛
, 𝑥
𝑛+1

) > 𝑝(𝑥
𝑛−1

, 𝑥
𝑛
). Then by (8), (9), and 𝜑(𝑠) < 𝑠

for all 𝑠 > 0, we have

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜑 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)) < 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) . (11)

This is a contradiction and hence (10) is true. Consequently,
{𝑝(𝑥
𝑛
, 𝑥
𝑛+1

)} is a decreasing sequence of positive real num-
bers. This yields that there exists 𝛼 ≥ 0 such that

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) 󳨀→ 𝛼
+

. (12)

In the following, we will show that 𝛼 = 0. Suppose, on the
contrary, that 𝛼 > 0. It follows from (8), (9), and (10) that, for
all 𝑛 ∈ N,

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)

𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
)

≤
𝜑 (𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
))

𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
)

. (13)

Letting 𝑛 → ∞ in (13), by (12), (H5), and 𝛼 > 0, we get a
contradiction 1 ≤ lim sup

𝑡→𝛼
+( 𝜑(𝑡)/𝑡) < 1. Hence 𝛼 = 0,

and consequently by (12)

lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (14)

Now, we show that conclusion (6) is true. If otherwise, there
exist some 𝛽 > 0 and subsequences {𝑚

𝑘
}
𝑘∈N and {𝑛

𝑘
}
𝑘∈N inN,

with 𝑚
𝑘
> 𝑛
𝑘
≥ 𝑘, such that, for all 𝑘 ∈ N,

𝑝 (𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

) ≥ 𝛽. (15)

From (15) we may assume that, without loss of generality, for
all 𝑘 ∈ N,

𝑝 (𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘
−1

) < 𝛽. (16)

Then by (p4), for all 𝑘 ∈ N, we have

𝛽 ≤ 𝑝 (𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

) ≤ 𝑝 (𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘
−1

) + 𝑝 (𝑥
𝑚
𝑘

, 𝑥
𝑚
𝑘
−1

)

< 𝛽 + 𝑝 (𝑥
𝑚
𝑘

, 𝑥
𝑚
𝑘
−1

) .

(17)

Letting 𝑘 → ∞ in the above inequality, by (14), we get

lim
𝑘→∞

𝑝 (𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

) = 𝛽. (18)

Also by (p4), for all 𝑘 ∈ N, we have

𝑝 (𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

) − 𝑝 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

) − 𝑝 (𝑥
𝑚
𝑘

, 𝑥
𝑚
𝑘
+1

)

≤ 𝑝 (𝑥
𝑛
𝑘
+1

, 𝑥
𝑚
𝑘
+1

)

≤ 𝑝 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

) + 𝑝 (𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

) + 𝑝 (𝑥
𝑚
𝑘

, 𝑥
𝑚
𝑘
+1

) .

(19)

Letting 𝑘 → ∞ in the above inequality, by (14) and (18), we
get

lim
𝑘→∞

𝑝 (𝑥
𝑛
𝑘
+1

, 𝑥
𝑚
𝑘
+1

) = 𝛽. (20)

Similarly, we can obtain

lim
𝑘→∞

𝑝 (𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘
+1

) = lim
𝑘→∞

𝑝 (𝑥
𝑛
𝑘
+1

, 𝑥
𝑚
𝑘

) = 𝛽. (21)

By the nondecreasing property of {𝑥
𝑛
}, (5), and (15), we get,

for all 𝑘 ∈ N,

𝑝 (𝑥
𝑛
𝑘
+1

, 𝑥
𝑚
𝑘
+1

) = 𝑝 (𝑇𝑥
𝑛
𝑘

, 𝑇𝑥
𝑚
𝑘

) ≤ 𝜑 (𝑀
1

𝑝.𝑟
(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

)) ,

(22)

where 𝑀1
𝑝.𝑟

(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

) = max{𝑝(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

), 𝑝(𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

),
𝑝(𝑥
𝑚
𝑘

, 𝑥
𝑚
𝑘
+1

), (𝑝((𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

) ⋅ 𝑝(𝑥
𝑚
𝑘

, 𝑥
𝑚
𝑘
+1

))/𝑝(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

)),
(𝑝(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘
+1

) + 𝑝(𝑥
𝑛
𝑘
+1

, 𝑥
𝑚
𝑘

)/2)}. By (14) and (18), we have

lim
𝑘→∞

𝑝 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1

) ⋅ 𝑝 (𝑥
𝑚
𝑘

, 𝑥
𝑚
𝑘
+1

)

𝑝 (𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

)
= 0, (23)

which together with (14), (18), and (21) implies that there
exists 𝑘

1
∈ N such that, for all 𝑘 ≥ 𝑘

1
,

𝑀
1

𝑝⋅𝑟
(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

) = 𝑀
1
(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

) , (24)

where 𝑀
1
(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

) = max{𝑝(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

), (𝑝(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘
+1

) +

𝑝(𝑥
𝑛
𝑘
+1

, 𝑥
𝑚
𝑘

))/2}. It follows from (15), (18), and (21) that

𝑀
1
(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

) 󳨀→ 𝛽
+

, (25)

By (15), (22), and (24), we have, for all 𝑘 ≥ 𝑘
1
,

𝑝 (𝑥
𝑛
𝑘
+1

, 𝑥
𝑚
𝑘
+1

)

𝑀
1
(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

)
≤

𝜑 (𝑀
1
(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

))

𝑀
1
(𝑥
𝑛
𝑘

, 𝑥
𝑚
𝑘

)
. (26)

Letting 𝑘 → ∞ in (26), by (20), (25), (H5), and 𝛽 > 0,
we get a contradiction 1 ≤ lim sup

𝑡→𝛽
+(𝜑(𝑡)/𝑡) < 1. Hence

conclusion (6) is true. The proof is complete.

Remark 5. It is easy to see that Lemma 4 is still valid for𝑀2
𝑝⋅𝑟
-

GCRT and 𝑀1
𝑝
-GC.

Theorem 6. Let (𝑋, 𝑝, ⪯) be a 0-complete ordered partial
metric space and 𝑇 : 𝑋 → 𝑋 a nondecreasing 𝑀1

𝑝⋅𝑟
-GCRT.

Assume that

(H6) 𝜑(𝑠) < 𝑠 and lim sup
𝑡→ 𝑠

(𝜑(𝑡)/𝑡) < 1, for all 𝑠 > 0,
and 𝑋 has the following property:

(A2) if {𝑥
𝑛
} is a nondecreasing sequence in 𝑋 such that

𝑥
𝑛

𝑝
𝑠

󳨀→ 𝑥, then 𝑥 = sup{𝑥
𝑛
}.

If there exists 𝑥
0

∈ 𝑋 such that 𝑥
0

⪯ 𝑇𝑥
0
, then 𝑇 has a fixed

point.

Proof. Let 𝑥
𝑛
= 𝑇𝑛𝑥

0
for all 𝑛 ∈ N. If there exists some 𝑛 ∈ N

such that 𝑇𝑥
𝑛−1

= 𝑥
𝑛

= 𝑥
𝑛−1

, then 𝑥
𝑛−1

is a fixed point and
hence the proof is complete. Therefore, we may assume that
𝑥
𝑛

̸= 𝑥
𝑛−1

for all 𝑛 ∈ N. By Lemma 4, {𝑥
𝑛
} is 0-Cauchy. So

by the 0-completeness of 𝑋, there exists 𝑥
∗

∈ 𝑋 such that
𝑥
𝑛

𝑝

󳨀→ 𝑥
∗
, and consider

lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑥
∗
) = 𝑝 (𝑥

∗
, 𝑥
∗
) = lim
𝑚,𝑛→∞

𝑝 (𝑥
𝑚
, 𝑥
𝑛
) = 0. (27)
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That is,𝑥
𝑛

𝑝
𝑠

󳨀→ 𝑥
∗
. By (A2), sup{𝑥

𝑛
} = 𝑥∗, and so, for all 𝑛 ∈ N,

𝑥
𝑛
⪯ 𝑥
∗
. (28)

Now, we claim that, for all 𝑛 ∈ N,

𝑥
𝑛

̸= 𝑥
∗
. (29)

If otherwise, there exists some 𝑛
∗
such that 𝑥

𝑛
∗

= 𝑥
∗
; then

𝑥
𝑛

= 𝑥
∗
for all 𝑛 ≥ 𝑛

∗
since {𝑥

𝑛
} is nondecreasing. This

contradicts with the assumption 𝑥
𝑛

̸= 𝑥
𝑛−1

for all 𝑛 ∈ N, and
hence (29) is true. Since 𝑇 is nondecreasing, then 𝑥

𝑛+1
=

𝑇𝑥
𝑛
⪯ 𝑇𝑥
∗
, for all 𝑛 ∈ N, and hence by (A2)

𝑥
∗
= sup {𝑥

𝑛
} ⪯ 𝑇𝑥

∗
. (30)

Let 𝑦
𝑛

= 𝑇𝑛𝑥
∗
for all 𝑛 ∈ N. Then {𝑦

𝑛
} is a nondecreasing

sequence since 𝑇 is nondecreasing. We may assume that, for
all 𝑛 ∈ N,

𝑦
𝑛

̸= 𝑦
𝑛−1

. (31)

If otherwise, there exists some 𝑛 ∈ N such that 𝑇𝑦
𝑛−1

=

𝑦
𝑛

= 𝑦
𝑛−1

; then 𝑦
𝑛−1

is a fixed point and hence the proof is
complete. By Lemma 4 and the 0-completeness of 𝑋, there
exists 𝑦

∗
∈ 𝑋 such that 𝑦

𝑛

𝑝

󳨀→ 𝑦
∗
, and consider

lim
𝑛→∞

𝑝 (𝑦
𝑛
, 𝑦
∗
) = 𝑝 (𝑦

∗
, 𝑦
∗
) = lim
𝑚,𝑛→∞

𝑝 (𝑦
𝑚
, 𝑦
𝑛
) = 0. (32)

That is, 𝑦
𝑛

𝑝
𝑠

󳨀→ 𝑦
∗
. By (A2), we have, for all 𝑛 ∈ N,

𝑦
𝑛
⪯ 𝑦
∗
. (33)

It follows from 𝑥
𝑛

𝑝
𝑠

󳨀→ 𝑥
∗
, 𝑦
𝑛

𝑝
𝑠

󳨀→ 𝑦
∗
, and the continuity of the

metric 𝑝𝑠 that

lim
𝑛→∞

𝑝
𝑠

(𝑥
𝑛
, 𝑦
𝑛
) = 𝑝
𝑠

(𝑥
∗
, 𝑦
∗
) . (34)

That is,

lim
𝑛→∞

[2𝑝 (𝑥
𝑛
, 𝑦
𝑛
) − 𝑝 (𝑥

𝑛
, 𝑥
𝑛
) − 𝑝 (𝑦

𝑛
, 𝑦
𝑛
)] = 2𝑝 (𝑥

∗
, 𝑦
∗
) ,

(35)

which together with (27) and (32) implies that

lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑦
𝑛
) = 𝑝 (𝑥

∗
, 𝑦
∗
) . (36)

By (p4), we have, 𝑛 ∈ N,

𝑝 (𝑥
𝑛
, 𝑦
𝑛
) − 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

)

≤ 𝑝 (𝑥
𝑛+1

, 𝑦
𝑛
) ≤ 𝑝 (𝑥

𝑛
, 𝑦
𝑛
) + 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

𝑝 (𝑥
𝑛
, 𝑦
𝑛
) − 𝑝 (𝑦

𝑛
, 𝑦
𝑛+1

)

≤ 𝑝 (𝑥
𝑛
, 𝑦
𝑛+1

) ≤ 𝑝 (𝑥
𝑛
, 𝑦
𝑛
) + 𝑝 (𝑦

𝑛
, 𝑦
𝑛+1

) .

(37)

Letting 𝑛 → ∞ in the above two inequalities, by (27), (32),
and (36), we get

lim
𝑛→∞

𝑝 (𝑥
𝑛+1

, 𝑦
𝑛
) = lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑦
𝑛+1

) = 𝑝 (𝑥
∗
, 𝑦
∗
) . (38)

In what follows, we will show 𝑥
∗

= 𝑦
∗
. Suppose, on the

contrary, that 𝑥
∗

̸= 𝑦
∗
; then 𝑝(𝑥

∗
, 𝑦
∗
) > 0. Clearly, 𝑥

𝑛
⪯ 𝑦
𝑛

and 𝑥
𝑛

̸= 𝑦
𝑛
for all 𝑛 ∈ N by (29), (30), and (31). Consequently,

𝑝 (𝑥
𝑛
, 𝑦
𝑛
) > 0, (39)

for all 𝑛 ∈ N. Thus by (5), we have, for all 𝑛 ∈ N,

𝑝 (𝑥
𝑛+1

, 𝑦
𝑛+1

) = 𝑝 (𝑇𝑥
𝑛
, 𝑇𝑦
𝑛
) ≤ 𝜑 (𝑀

1

𝑝.𝑟
(𝑥
𝑛
, 𝑦
𝑛
)) , (40)

where 𝑀1
𝑝⋅𝑟

(𝑥
𝑛
, 𝑦
𝑛
) = max{𝑝(𝑥

𝑛
, 𝑦
𝑛
), 𝑝(𝑥
𝑛
, 𝑥
𝑛+1

), 𝑝(𝑦
𝑛
, 𝑦
𝑛+1

),
(𝑝(𝑥
𝑛
, 𝑥
𝑛+1

) ⋅ 𝑝(𝑦
𝑛
, 𝑦
𝑛+1

))/𝑝(𝑥
𝑛
, 𝑦
𝑛
), (𝑝(𝑥

𝑛
, 𝑦
𝑛+1

) + 𝑝(𝑦
𝑛
,

𝑥
𝑛+1

))/2}. By (27), (32), and (36), we have

lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ⋅ 𝑝 (𝑦
𝑛
, 𝑦
𝑛+1

)

𝑝 (𝑥
𝑛
, 𝑦
𝑛
)

= 0, (41)

which together with (27), (32), (36), and (38) implies that
there exists 𝑛

1
∈ N such that, for all 𝑛 ≥ 𝑛

1
,

𝑀
1

𝑝.𝑟
(𝑥
𝑛
, 𝑦
𝑛
) = 𝑀

2
(𝑥
𝑛
, 𝑦
𝑛
) , (42)

where 𝑀
2
(𝑥
𝑛
, 𝑦
𝑛
) = max{𝑝(𝑥

𝑛
, 𝑦
𝑛
), (𝑝(𝑥

𝑛
, 𝑦
𝑛+1

) + 𝑝(𝑦
𝑛
,

𝑥
𝑛+1

))/2}. It follows from (36) and (38) that

𝑀
2
(𝑥
𝑛
, 𝑦
𝑛
) 󳨀→ 𝑝 (𝑥

∗
, 𝑦
∗
) . (43)

By (39), (40), and (42), we have, for all 𝑛 ≥ 𝑛
1
,

𝑝 (𝑥
𝑛+1

, 𝑦
𝑛+1

)

𝑀
2
(𝑥
𝑛
, 𝑦
𝑛
)

≤
𝜑 (𝑀
2
(𝑥
𝑛
, 𝑦
𝑛
))

𝑀
2
(𝑥
𝑛
, 𝑦
𝑛
)

. (44)

Letting 𝑛 → ∞ in (44), by (36), (43), (H6), and 𝑝(𝑥
∗
, 𝑦
∗
) >

0, we get a contradiction 1 ≤ lim sup
𝑡→𝑝(𝑥

∗
,𝑦
∗
)
(𝜑(𝑡)/𝑡) < 1.

Hence 𝑝(𝑥
∗
, 𝑦
∗
) = 0, and consequently 𝑥

∗
= 𝑦
∗
. From (30)

and (33), it follows that 𝑥
∗

⪯ 𝑇𝑥
∗

= 𝑦
1

⪯ 𝑦
∗
. This together

with𝑥
∗
= 𝑦
∗
yields that𝑥

∗
= 𝑇𝑥
∗
.The proof is complete.

In particular when 𝑇 is a 𝑀2
𝑝⋅𝑟
-GCRT, condition (H6)

could be weakened, and we have the following result.

Theorem 7. Let (𝑋, 𝑝, ⪯) be a 0-complete ordered partial
metric space and 𝑇 : 𝑋 → 𝑋 a nondecreasing 𝑀2

𝑝⋅𝑟
-GCRT.

Assume that (H5) is satisfied and𝑋 has property (A2). If there
exists 𝑥

0
∈ 𝑋 such that 𝑥

0
⪯ 𝑇𝑥
0
, then 𝑇 has a fixed point.

Proof. Following the proof of Theorem 6, we find that (27)–
(36) and (39) still hold by Remark 5. Instead of (40), by (5),
(6), (39), and 𝑥

𝑛
⪯ 𝑦
𝑛
, we have, for all 𝑛 ∈ N,

𝑝 (𝑥
𝑛+1

, 𝑦
𝑛+1

) = 𝑝 (𝑇𝑥
𝑛
, 𝑇𝑦
𝑛
)

≤ 𝜑 (𝑀
2

𝑝.𝑟
(𝑥
𝑛
, 𝑦
𝑛
)) < 𝑀

2

𝑝.𝑟
(𝑥
𝑛
, 𝑦
𝑛
) ,

(45)

where 𝑀2
𝑝⋅𝑟

(𝑥
𝑛
, 𝑦
𝑛
) = max{𝑝(𝑥

𝑛
, 𝑦
𝑛
), 𝑝(𝑥
𝑛
, 𝑥
𝑛+1

), 𝑝(𝑦
𝑛
, 𝑦
𝑛+1

),
(𝑝(𝑥
𝑛
, 𝑥
𝑛+1

) ⋅ 𝑝(𝑦
𝑛
, 𝑦
𝑛+1

))/𝑝(𝑥
𝑛
, 𝑦
𝑛
)}. By (28), (32), (36), and

𝑝(𝑥
∗
, 𝑦
∗
) > 0, there exists 𝑛

2
∈ N such that, for all 𝑛 ≥ 𝑛

2
,

𝑀
2

𝑝.𝑟
(𝑥
𝑛
, y
𝑛
) = 𝑝 (𝑥

𝑛
, 𝑦
𝑛
) , (46)
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which together with (45) implies that, for all 𝑛 ≥ 𝑛
2
,

𝑝 (𝑥
𝑛+1

, 𝑦
𝑛+1

) < 𝑝 (𝑥
𝑛
, 𝑦
𝑛
) . (47)

That is, {𝑝(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=𝑛
2

is decreasing. Moreover by (36), we
have

𝑝 (𝑥
𝑛
, 𝑦
𝑛
) 󳨀→ 𝑝(𝑥

∗
, 𝑦
∗
)
+

. (48)

Instead of (44), by (39), (45), and (46), for all 𝑛 ≥ 𝑛
2
,

𝑝 (𝑥
𝑛+1

, 𝑦
𝑛+1

)

𝑝 (𝑥
𝑛
, 𝑦
𝑛
)

≤
𝜑 (𝑝 (𝑥

𝑛
, 𝑦
𝑛
))

𝑝 (𝑥
𝑛
, 𝑦
𝑛
)

. (49)

Letting 𝑛 → ∞ in (49), by (48), (H5), and 𝑝(𝑥
∗
, 𝑦
∗
) > 0,

we get a contradiction 1 ≤ lim
𝑡→𝑝(𝑥

∗
,𝑦
∗
)
+(𝜑(𝑡)/𝑡) < 1. Hence

𝑝(𝑥
∗
, 𝑦
∗
) = 0, and consequently 𝑥

∗
= 𝑦
∗
. From (30) and

(33), it follows that 𝑥
∗

⪯ 𝑇𝑥
∗

= 𝑦
1
⪯ 𝑦
∗
. This together with

𝑥
∗
= 𝑦
∗
yields that 𝑥

∗
= 𝑇𝑥
∗
. The proof is complete.

Corollary 8. Let (𝑋, 𝑝, ⪯) be a 0-complete ordered partial
metric space and 𝑇 : 𝑋 → 𝑋 a nondecreasing mapping such
that there exists a function 𝜂 : R

+
→ R
+
with 𝜂−1({0}) = {0}

such that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝑀
2

𝑝⋅𝑟
(𝑥, 𝑦) − 𝜂 (𝑀

2

𝑝⋅𝑟
(𝑥, 𝑦)) , (50)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦 and 𝑝(𝑥, 𝑦) > 0. Assume that, for
all 𝑠 > 0,

lim inf
𝑡→ 𝑠
+

𝜂 (𝑡)

𝑡
> 0, (51)

and 𝑋 has property (A2). If there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
⪯

𝑇𝑥
0
, then 𝑇 has a fixed point.

Proof. Let 𝜑(𝑡) = 𝑡 − 𝜂(𝑡). Clearly, 𝜑(𝑡) < 𝑡 for all 𝑡 > 0 by
𝜂−1({0}) = {0}. For all 𝑠 > 0, it follows from (51) that

lim sup
𝑡→ 𝑠
+

𝜑 (𝑡)

𝑡
= lim sup
𝑡→ 𝑠
+

𝑡 − 𝜂 (𝑡)

𝑡
≤ 1 − lim inf

𝑡→ 𝑠
+

𝜂 (𝑡)

𝑡
< 1.

(52)

Then the conclusion follows immediately from Theorem 7.
The proof is complete.

Remark 9. If 𝜂 is lower semicontinuous from the right and
𝜂−1({0}) = {0}, then, for all 𝑠 > 0,

lim inf
𝑡→ 𝑠
+

𝜂 (𝑡)

𝑡
≥

𝜂 (𝑠)

𝑠
> 0. (53)

Therefore Theorem 1 follows immediately from Corollary 8.

Now we illustrate Theorems 6 and 7 by the following
example.

Example 10. Let 𝑋 = R
+
with the partial metric 𝑝(𝑥, 𝑦) =

max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋. Clearly, 𝑝𝑠(𝑥, 𝑦) = 2𝑝(𝑥, 𝑦) −

𝑝(𝑥, 𝑥) − 𝑝(𝑦, 𝑦) = |𝑥 − 𝑦| and hence, by Remark 3, (𝑋, 𝑝)

is a complete partial metric space since (𝑋, 𝑝
𝑠) is a complete

metric space. Define a partial order ⪯ on 𝑋 by

𝑥 ⪯ 𝑦 ⇐⇒ {
𝑥 = 𝑦, 𝑥, 𝑦 ∈ 𝑋 \ ({0} ∪ 𝐵) ,

𝑥 ≤ 𝑦, 𝑥, 𝑦 ∈ {0} ∪ 𝐵,
(54)

where 𝐵 = {(1/𝑛) : 𝑛 = 2, 3, . . .} and ≤ is the usual order of
reals. Let

𝑇𝑥 =
{

{

{

0, 𝑥 = 𝑋 \ 𝐵,
𝑥

1 + 𝑥
, 𝑥 =

1

𝑛
, 𝑛 = 2, 4, . . . ,

(55)

𝜑 (𝑡) =

{{{{{{

{{{{{{

{

𝑡 − 𝑡
3
, 𝑡 ∈ [0, 1) \ 𝐵,

𝑡

1 + 𝑡
, 𝑡 =

1

𝑛
, 𝑛 = 2, 3, . . . ,

𝑡 −
1

2
, 𝑡 ≥ 1.

(56)

It is easy to see that 𝑇 is nondecreasing,𝑋 has property (A2),
and 𝜑(𝑡) < 𝑡 for all 𝑡 > 0. Direct calculations give that

lim sup
𝑡→ 𝑠

𝜑 (𝑡)

𝑡
=

{

{

{

1 − 𝑠
2 < 1, 𝑠 ∈ (0, 1) ,

1 −
1

2𝑠
< 1, 𝑠 ≥ 1.

(57)

That is, (H6) is satisfied. In particular, (H5) is satisfied. For
each 𝑥, 𝑦 ∈ 𝑋 \ 𝐵 with 𝑥 ⪯ 𝑦 and 𝑝(𝑥, 𝑦) > 0, we must have
𝑝(𝑇𝑥, 𝑇𝑦) = 0 and hence 𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝜑(𝑀𝑖

𝑝.𝑟
(𝑥, 𝑦)), 𝑖 = 1, 2.

For each 𝑥, 𝑦 ∈ {0} ∪ 𝐵 with 𝑥 ⪯ 𝑦 and 𝑝(𝑥, 𝑦) > 0, we have
two cases:

(i) if 𝑥 = 0 and 𝑦 = (1/𝑛), 𝑛 ≥ 2, then 𝑝(𝑇𝑥, 𝑇𝑦) =

1/(𝑛 + 1) ≤ 1/𝑛 = 𝑝(𝑥, 𝑦) = 𝑀𝑖
𝑝.𝑟

(𝑥, 𝑦), 𝑖 = 1, 2;

(ii) if 𝑦 = 1/𝑛 and 𝑥 = 1/𝑚, 𝑚 ≥ 𝑛 ≥ 3, then 𝑝(𝑇𝑥, 𝑇𝑦) =

1/(𝑛 + 1) ≤ 1/𝑛 = 𝑝(𝑥, 𝑦) = 𝑀𝑖
𝑝.𝑟

(𝑥, 𝑦), 𝑖 = 1, 2.

Thus by (56), 𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝑀𝑖
𝑝.𝑟

(𝑥, 𝑦) =

𝜑(𝑀
𝑖

𝑝⋅𝑟
(𝑥, 𝑦)), 𝑖 = 1, 2. This shows that 𝑇 is a 𝑀

𝑖

𝑝⋅𝑟
-

GCRT(𝑖 = 1, 2), and consequently the existence of fixed
point follows immediately fromTheorem 6 orTheorem 7. In
fact, 0 is a fixed point of 𝑇.

In what follows, we will extend Theorem 2 to the case of
ordered partial metric space under weaker conditions.

Theorem 11. Let (𝑋, 𝑝, ⪯) be a 0-complete ordered partial
metric space and 𝑇 : 𝑋 → 𝑋 a nondecreasing mapping
such that, for each 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, (2) is satisfied for
𝑀
1

𝑝
. Assume that either (H4) or (H5) is satisfied and𝑋 has the

following property:

(A3) if {𝑥
𝑛
} is a nondecreasing sequence in 𝑋 such that

𝑥
𝑛

𝑝
𝑠

󳨀→ 𝑥, then 𝑥
𝑛
⪯ 𝑥 for all 𝑛 ∈ N.

If there exists 𝑥
0

∈ 𝑋 such that 𝑥
0

⪯ 𝑇𝑥
0
, then 𝑇 has a

fixed point.
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Proof.
Case 1 ((H5) is satisfied). Following the proof of Theorem 6,
we get (27) and (28) by Remark 5 and (A3). By (p4), for all
𝑛 ∈ N,

𝑝 (𝑥
∗
, 𝑇𝑥
∗
) − 𝑝 (𝑥

𝑛+1
, 𝑥
∗
) ≤ 𝑝 (𝑥

𝑛+1
, 𝑇𝑥
∗
)

≤ 𝑝 (𝑥
∗
, 𝑇𝑥
∗
) + 𝑝 (𝑥

𝑛+1
, 𝑥
∗
) .

(58)

Letting 𝑛 → ∞ in (58), by (27), we get

lim
𝑛→∞

𝑝 (𝑥
𝑛+1

, 𝑇𝑥
∗
) = 𝑝 (𝑥

∗
, 𝑇𝑥
∗
) . (59)

Now, we show that 𝑥
∗
is a fixed point of 𝑇. If otherwise, then

𝑝(𝑥
∗
, 𝑇𝑥
∗
) > 0. By (p4), (2), and (28), we have, for all 𝑛 ∈ N,

𝑝 (𝑥
∗
, 𝑇𝑥
∗
) ≤ 𝑝 (𝑥

𝑛+1
, 𝑥
∗
) + 𝑝 (𝑇𝑥

𝑛
, 𝑇𝑥
∗
)

≤ 𝑝 (𝑥
𝑛+1

, 𝑥
∗
) + 𝜑 (𝑀

1

𝑝
(𝑥
𝑛
, 𝑥
∗
)) ,

(60)

where 𝑀1
𝑝
(𝑥
𝑛
, 𝑥
∗
) = max{𝑝(𝑥

𝑛
, 𝑥
∗
), 𝑝(𝑥
𝑛
, 𝑥
𝑛+1

), 𝑝(𝑥
∗
, 𝑇𝑥
∗
),

(𝑝(𝑥
𝑛
, 𝑇𝑥
∗
) + 𝑝(𝑥

∗
, 𝑥
𝑛+1

))/2}. It follows from (27) and (59)
that

lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑇𝑥
∗
) + 𝑝 (𝑥

∗
, 𝑥
𝑛+1

)

2
=

𝑝 (𝑥
∗
, 𝑇𝑥
∗
)

2
, (61)

which together with (27) implies that there exist 𝛿
0

∈

(0, 𝑝(𝑥
∗
, 𝑇𝑥
∗
)/2] and 𝑛

0
∈ N such that, for all 𝑛 ≥ 𝑛

0
,

𝑝 (𝑥
𝑛
, 𝑇𝑥
∗
) + 𝑝 (𝑥

∗
, 𝑥
𝑛+1

)

2
≤

𝑝 (𝑥
∗
, 𝑇𝑥
∗
)

2
+ 𝛿
0
≤ 𝑝 (𝑥

∗
, 𝑇𝑥
∗
) ,

𝑝 (𝑥
𝑛
, 𝑥
∗
) ≤ 𝛿
0
, 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

) ≤ 𝛿
0
.

(62)

Thus, for all 𝑛 ≥ 𝑛
0
,

𝑀
1

𝑝
(𝑥
𝑛
, 𝑥
∗
) = 𝑝 (𝑥

∗
, 𝑇𝑥
∗
) , (63)

and hence, by (60),

𝑝 (𝑥
∗
, 𝑇𝑥
∗
) ≤ 𝑝 (𝑥

𝑛+1
, 𝑥
∗
) + 𝜑 (𝑝 (𝑥

∗
, 𝑇𝑥
∗
)) . (64)

Letting 𝑛 → ∞ in (64), by (27), we get a contradiction

𝑝 (𝑥
∗
, 𝑇𝑥
∗
) ≤ 𝜑 (𝑝 (𝑥

∗
, 𝑇𝑥
∗
)) < 𝑝 (𝑥

∗
, 𝑇𝑥
∗
) , (65)

since 𝜑(𝑠) < 𝑠 for all 𝑠 > 0. Hence 𝑥
∗
is a fixed point of 𝑇.

Case 2 ((H4) is satisfied). By the same method used in
Lemma 4 and [8,Theorem 4], we can show that (27) and (59)
still hold. Then by analogy to Case 1, 𝑥

∗
is a fixed point of 𝑇.

The proof is complete.

Remark 12. If 𝑇 is a generalized contraction of rational type,
then the method used inTheorem 11 fails to work since there
exists 𝑛

0
∈ N such that 𝑀𝑖

𝑝.𝑟
(𝑥
𝑛
, 𝑥
∗
) = 𝑝(𝑥

∗
, 𝑇𝑥
∗
) for all 𝑛 ≥

𝑛
0
unless lim

𝑛→∞
𝑝(𝑥
𝑛
, 𝑥
𝑛+1

)/𝑝(𝑥
𝑛
, 𝑥
∗
) ≤ 1, which could not

be done. Therefore the existence of fixed point of generalized
contractions of rational type could not be obtained under the
weaker condition (A3).

By the methods used in Theorem 11 and [8, Theorem 4],
we have the following fixed point result.

Theorem 13. Let (𝑋, 𝑝) be a 0-complete partial metric space
and 𝑇 : 𝑋 → 𝑋 a 𝑀

1

𝑝
-GC. If either (H4) or (H5) is satisfied,

then 𝑇 has a unique fixed point.

Remark 14. (i) In the case that (H5) is satisfied, the continuity
and nondecreasing property of 𝜑 necessarily assumed in
Theorem 2 is removed inTheorem 13. Note that (H3) implies
(H5); then Theorem 13 improves Theorem 1 of [6], Theorem
3 of [8], andTheorem 2.3 of [23].

(ii) In the case that (H4) is satisfied, Theorem 13 is
generalization ofTheorem 4 of [8] to the case of𝑀1

𝑝
-GC and

hence improves Theorem 1 of [7] since (H2) implies (H4).

Example 15. Let𝑋 = {0}∪ {1/𝑛 : 𝑛 = 2, 3, . . .}with the partial
metric 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋. By analogy to
Example 10, we find from Remark 3 that (𝑋, 𝑝) is a complete
partial metric space. Let

𝑇𝑥 =
{

{

{

0, 𝑥 = 0,
𝑥

1 + 𝑥
, 𝑥 =

1

𝑛
, 𝑛 = 2, 3, . . . ,

(66)

and 𝜑 is given by (56). It is easy to check that 𝑇 is a 𝑀
1

𝑝
-GC

and (H5) is satisfied. Therefore the unique existence of fixed
point follows immediately from Theorem 13. In fact, 0 is the
unique fixed point of 𝑇.

For each 𝑠 = 1/𝑛, 𝑛 ≥ 2, we have lim sup
𝑡→ 𝑠
+𝜑(𝑡) = (𝑛2 −

1)/𝑛3 > 1/(𝑛 + 1) = 𝜑(𝑠). This implies that 𝜑 is not upper
semicontinuous from the right at 𝑠 = 1/𝑛, 𝑛 ≥ 2. Meanwhile,
it is clear that𝜑 is decreasing on (1/3, 1).Therefore, we cannot
invokeTheorem 2 to show the unique existence of fixed point.

Remark 16. It is worth mentioning that, even in the setting of
metric spaces, themain results in this paper are still new since
the continuity and nondecreasing property of the comparison
function 𝜑 necessarily assumed in [24] and other relating
references is removed.
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fixed points for self-mappings on partial metric spaces,” Fixed
Point Theory and Applications, vol. 2012, article 140, 2012.

[18] M. A. Alghamdi, N. Shahzad, and O. Valero, “On fixed point
theory in partial metric spaces,” Fixed Point Theory and Appli-
cations, vol. 2012, article 175, 2012.

[19] A. Erduran, “Common fixed point of 𝑔-approximative multi-
valued mapping in ordered partial metric space,” Fixed Point
Theory and Applications, vol. 2013, article 36, 2013.
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