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Taking inspiration from an organizational evolutionary algorithm for numerical optimization, this paper designs a kind of dynamic
population and combining evolutionary operators to form a novel algorithm, a cooperative coevolutionary cuckoo search algorithm
(CCCS), for solving both unconstrained, constrained optimization and engineering problems. A population of this algorithm
consists of organizations, and an organization consists of dynamic individuals. In experiments, fifteen unconstrained functions,
eleven constrained functions, and two engineering design problems are used to validate the performance of CCCS, and thorough
comparisons are made between the CCCS and the existing approaches. The results show that the CCCS obtains good performance
in the solution quality. Moreover, for the constrained problems, the good performance is obtained by only incorporating a simple
constraint handling technique into the CCCS. The results show that the CCCS is quite robust and easy to use.

1. Introduction

High dimension numerical optimization problems tend to be
complex, and general basic intelligent algorithms are difficult
to obtain the global optimal solution. In order to solve this
problem, many improved methods are put forward, such
as evolutionary programming made faster [1], orthogonal
genetic algorithm [2], and good point set based genetic
algorithm [3], and these methods have achieved good effect.

Recently, a novel heuristic search algorithm, called
Cuckoo Search (CS) in [4], has been proposed by Yang and
Deb in 2009. The CS is a search algorithm based on the
interesting breeding behavior such as brood parasitism of
certain species of cuckoos. Each nest within the swarm is
represented by a vector in multidimensional search space;
the CS algorithm also determines how to update the position
of cuckoo laid egg. Each cuckoo updates it position of lay
egg based on current step size via Lévy flights. It has been
shown that this simple model has been applied successfully
to continuous nonlinear function, engineering optimization
problem in [5], and so forth. Intelligent algorithm is based
on the selection of the fittest in biological systems which

have evolved by natural selection over millions of years,
between organisms in nature not only competition but also
cooperation. Potter et al. earlier proposed a cooperative
coevolutionary genetic algorithm to function optimization
(CCGA) [6], and Bergh et al. apply this idea to the standard
particle group Algorithm to construct a new collaborative
model (CPSO-SK) [7]. Liu et al. proposed an organiza-
tional evolutionary algorithm for numerical optimization
[8], Mu et al. put forward M-elite coevolutionary algorithm
for numerical optimization [9], and Fister et al. proposed
memetic artificial bee colony algorithm for large-scale global
optimization [10]. They have obtained the good effect in
the numerical optimization problem. Based on this idea and
combining evolutionary operators, this paper proposes a new
algorithm of solving high-dimensional unconstrained, con-
strained, and engineering optimization problem, namely, a
cooperative coevolutionary cuckoo search algorithm (CCCS)
algorithm. Population of the algorithm is divided into M
groups, each group has a leader, by annexation and collab-
orative operation between different organizations, and uses
the cuboids crossover operator, discrete crossover operator,
flip crossover operator, and mutation operator to achieve the
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exchange of information between individuals, to promote the
evolution of the population. Simulation experiments show
that CCCS optimization ability is very strong, can well solve
the unconstrained optimization, constrained optimization,
and engineering optimization problems and so on.

The remainder of this paper is organized as follows:
Section 2 briefly introduces the original cuckoo search algo-
rithm. This is followed in Section 3 by new cooperative
coevolutionary implements of the CS algorithm. Section 4
describes the definition of a constrained optimization and
a unconstrained optimization problem in the penalty func-
tion approach. The results can be found and discussed in
Section 5. Finally, some directions for future research are
discussed in Section 6.

2. Original CS

CS is a heuristic search algorithm which has been proposed
recently by Yang and Deb. The algorithm is inspired by the
reproduction strategy of cuckoos. At the most basic level,
cuckoos lay their eggs in the nests of other host birds, which
may be of different species. The host bird may discover that
the eggs are not it’s own and either destroy the egg or abandon
the nest all together. This has resulted in the evolution of
cuckoo eggs which mimic the eggs of local host birds. To
apply this as an optimization tool, Yang and Deb [4] used
three ideal rules.

(1) Each cuckoo lays one egg, which represents a set of
solution coordinates, at a time, and dumps it in a
random nest.

(2) A fraction of the nests containing the best eggs, or
solutions, will carry over to the next generation.

(3) The number of nests is fixed, and there is a probability
that a host can discover an alien egg. If this happens,
the host can either discard the egg or the nest, and this
results in building a new nest in a new location.

This algorithm uses a balanced combination of a local
random walk and the global explorative random walk, con-
trolled by a switching parameter 𝑝

𝑎
. The local random walk

can be written as

𝑥
𝑡+1

𝑖
= 𝑥
𝑡

𝑖
+ 𝜕𝑠 ⊗ 𝐻 (𝑝

𝑎
− 𝜀) ⊗ (𝑥

𝑡

𝑗
− 𝑥
𝑡

𝑘
) , (1)

where 𝑥𝑡
𝑗
and 𝑥𝑡
𝑘
are two different solutions selected randomly

by random permutation,𝐻(𝑢) is a Heaviside function, 𝜀 is a
random number drawn from a uniform distribution, and 𝑠 is
the step size. On the other hand, the global random walk is
carried out by using Lévy flights

𝑥
𝑡+1

𝑖
= 𝑥
𝑡

𝑖
+ 𝜕𝐿 (𝑠, 𝜆) , (2)

where

𝐿 (𝑠, 𝜆) =
𝜆Γ (𝜆) sin (𝜋𝜆/2)

𝜋

1

𝑠1+𝜆
, (𝑠 ≫ 𝑠

0
> 0) . (3)

Here 𝜕 > 0 is the step-size-scaling factor, which should be
related to the scales of the problem of interests. In most cases,

we can use 𝜕 = 𝑂(𝐿/10), and 𝜕 = 𝑂(𝐿/100) can be more
effective and can avoid flying too far.

3. A Cooperative Coevolutionary Cuckoo
Search Algorithm

In section, taking inspiration from an organizational evolu-
tionary algorithm, we present a cooperative coevolutionary
cuckoo search algorithm (CCCS) which integers annexing
operator and cooperating operator, in the core the cuckoo
search algorithm.This proposedmodel will focus on enhanc-
ing diversity and the performance of the cuckoo search
algorithm.

3.1. Splitting Operator. When a size is too large usually it
is split into several small organizations; let Maxor be the
parameter controlling the maximum size of organization.

3.2. Annexing Operator. Two organizations, org
𝑝1

= {𝑥
1
, 𝑥
2
,

. . . , 𝑥
𝑀
} and org

𝑝2
= {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑁
}, are randomly selected

from the current generation. Choose their leaders using
CS algorithm. If the org

𝑝1
is the winner; thus org

𝑝1
will

annex org
𝑝2

to generate a new organization, org
𝑐

=

{𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑀
, 𝑧
𝑀+1

, 𝑧
𝑀+2

, . . . 𝑧
𝑀+𝑁

}, where 𝑧
𝑖

= 𝑥
𝑖
, 𝑖 =

1, 2, . . . ,𝑀. Let AS be a predefined parameter.Then, if rand <

AS, 𝑧
𝑗
, 𝑗 = 𝑀 + 1,𝑀 + 2, . . . ,𝑀 + 𝑁 are generated by (4).

Otherwise they are generated by (5). 𝑥
𝑘
is the leader of an

organization and 𝑟
𝑗𝑘
are new member

𝑟
𝑗𝑘
=

{{{{

{{{{

{

𝑥
𝑘

𝛽
𝑘
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𝑘
,
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𝑘

𝛽
𝑘
> 𝑥
𝑘
, 𝛽
𝑘
= 𝑥
𝑘
+ 𝜕
𝑘
× (𝑥
𝑘
− 𝑦
𝑗𝑘
) ,

𝑘 = 1, 2, . . . , 𝑛,

𝛽
𝑘

otherwise,

(4)

𝑟
𝑗𝑘
=
{

{

{

𝑥
𝑘
+ 𝜕 × (𝑥

𝑘
− 𝑥
𝑘
) 𝛽
𝑘
(0, 1) <

1

𝑛
,

𝑥
𝑘

otherwise.
(5)

After 𝑟
𝑗
, 𝑗 = 1, 2, . . . 𝑁 are generated, 𝑧

𝑗+𝑀
, 𝑗 = 1, 2, . . . ,𝑀

are determined in (6):

𝑧
𝑗+𝑀

=

{{{{{{

{{{{{{

{

𝑟
𝑗

𝑟
𝑗
< 𝑦
𝑗
,

𝑟
𝑗
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𝑗
> 𝑟
𝑗
) ,

{𝑈
𝑗
(0, 1)} < exp (𝑓 (𝑟

𝑗
) − 𝑓 (𝑦)) ,

𝑦
𝑗

otherwise.

(6)

3.3. Cooperating Operator. Two organizations, org
𝑝1

= {𝑥
1
,

𝑥
2
, . . . , 𝑥

𝑀
} and org

𝑝2
= {𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑁
}, are randomly

selected from the current generation. Let CS ∈ (0, 1) be a
predefined parameter; if rand < CS, the child organization
is generated in (7). 𝑥

𝑘
, 𝑦
𝑘
are the leader of organization

respectively. Otherwise use (8); 𝑖 is random integer and uses
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Begin
Initializing population 𝑝

0
with 𝑛

0
organizations, and each organization has one member;

𝑡 ← 0;
While (the termination criteria are not reached) do
Begin

For each organization in 𝑝
𝑡
, if the number of it more than 20, performing the splitting

operator on it, deleting it from 𝑝
𝑡
, and adding the child organizations into 𝑝

𝑡+1
;

While (the number of organizations in is 𝑝
𝑡
greater than 1) do

Begin
Randomly selecting two parent organizations 𝑜𝑟𝑔

𝑝1
and 𝑜𝑟𝑔

𝑝2
from 𝑝

𝑡
;

Performing the CS and selecting their leaders;
If rand < 0.5

Annexing operator;
Else

Cooperating operator;
If𝑓(𝑤) < 𝑓(𝑥) and 𝑓(𝑧) < 𝑓(𝑦)

𝑥 = 𝑤;
𝑦 = 𝑧;

End
adding the child organizations into 𝑝

𝑡+1
;

End
Deleting 𝑜𝑟𝑔

𝑝1
and 𝑜𝑟𝑔

𝑝2
form 𝑝

𝑡
;

End
Deleting the 𝑢 organizations form 𝑝

𝑡+1
;

% 𝑢 is the child number of join organizations
𝑝
𝑡
← 𝑝
(𝑡+1)

;
𝑡 ← 𝑡 + 1;

End
output the best solution in 𝑝

𝑡

End

Algorithm 1: A cooperative coevolutionary cuckoo search algorithm (minimum).

flip operator;
𝑞
𝑘
= 𝜕
𝑘
× 𝑥
𝑘
+ (1 − 𝜕

𝑘
) × 𝑦
𝑘
,

𝑟
𝑘
= (1 − 𝜕

𝑘
) × 𝑥
𝑘
+ 𝜕
𝑘
× 𝑦
𝑘
,

𝑘 = 1, 2, . . . , 𝑛,

(7)

𝑥 = 𝑥1, 𝑥2, . . . , 𝑥i , . . . , 𝑥n , 𝑦 = 𝑦1, 𝑦2, . . . , 𝑦i , . . . , 𝑦n

𝑤 = , 𝑥2, . . . , 𝑦n, . . . , 𝑦i 𝑧 = , 𝑦2, . . . , 𝑥n, . . . , 𝑥i

(

𝑦1(

(

𝑥1(

)

,) .)

.)

(8)

3.4. The Pseudo Code of the Proposed Algorithm is Shown
in Algorithm 1. In the initialization, each organization has
only one member, and the population has total 𝑛

0
orga-

nizations. During the evolutionary process, the number
of the organizations changes; this is just to maintain the
diversity of the population. The main difference between the
CCCS and the OEA is that populations changes during the
optimization process, in OEA, the number of populations
in the optimization process is the same. In contrast, the
number of the population in CCCS is changing. In addition,
cooperating operators of CCCS and OEA are also different.

4. Problem Definition

Aunconstrained optimization problems (UCOPs) are formu-
lated as solving the objective function

minimize 𝑓 (𝑥) , 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑠, (9)

where 𝑠 ⊆ R𝑛 defines the search space which is an 𝑛-
dimensional space bounded by the parametric constraints
𝑥
𝑖
≤ 𝑥
𝑖
≤ 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. Thus, 𝑠 = [𝑥, 𝑥], where

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) and 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
).

A constrained optimization problems (COPs) can be
formulated as solving objective function

minimize 𝑓 (𝑥) , 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑠 ∩ 𝜒, (10)

where 𝑠 is the same with that of (9), and the feasible region 𝜒

is

𝜒 = {𝑥 ∈ R
𝑛

| 𝑔
𝑗
(𝑥) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚} , (11)

where 𝑔
𝑗
(𝑥), 𝑗 = 1, 2, . . . , 𝑚 are constraints.

4.1. Constraint Handling. In the penalty function approach,
nonlinear constraints can be collapsed with the cost function
into a response functional. By doing this, the constrained
optimization problem is transformed into an unconstrained
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Table 1: Experimental result of CCCS on 15 unconstrained benchmark functions over 50 trails.

𝑓 𝑓min Best function value Mean function value Standard deviation Worst function value
𝐹
01

0 8.804𝑒 − 242 2.011𝑒 − 217 0 2.011𝑒 − 216

𝐹
02

0 4.271𝑒 − 143 1.628𝑒 − 130 4.142𝑒 − 130 1.323𝑒 − 129

𝐹
03

0 6.280𝑒 − 192 5.464𝑒 − 154 1.729𝑒 − 153 5.464𝑒 − 153

𝐹
04

0 1.085𝑒 − 121 1.333𝑒 − 098 4.080𝑒 − 098 1.294𝑒 − 097

𝐹
05

0 25.0366 25.4182 0.3013 25.8868
𝐹
06

0 0 0 0 0
𝐹
07

0 5.309𝑒 − 005 3.080𝑒 − 004 2.391𝑒 − 004 8.047𝑒 − 004

𝐹
08

−12569.5 −1.25694870𝑒 + 004 −1.25694867𝑒 + 004 4.830𝑒 − 004 −1.25694860𝑒 + 004

𝐹
09

0 0 0 0 0
𝐹
10

0 1.655𝑒 − 7 3.663𝑒 − 5 2.654𝑒 − 9 3.188𝑒 − 4

𝐹
11

0 0 0 0 0
𝐹
12

0 6.845𝑒 − 011 9.518𝑒 − 007 2.780𝑒 − 006 8.635𝑒 − 006

𝐹
13

0 2.073𝑒 − 013 1.723𝑒 − 007 2.657𝑒 − 007 6.775𝑒 − 007

𝐹
14

−99.60 −96.6008 −83.7328 6.1910 −75.6993

𝐹
15

−78.33236 −78.33233 −78.33232 8.654𝑒 − 006 −78.33230

Table 2: Comparison between MECA, OEA, and CCCS over 50 trials.

𝑓 𝑓min
Mean function value Standard deviation

CCCS MECA OEA CCCS MECA OEA
𝐹
01

0 2.011e – 217 4.228𝑒 − 183 2.481𝑒 − 30 0 0 1.128𝑒 − 29

𝐹
02

0 1.628e – 130 1.845𝑒 − 110 2.068𝑒 − 13 4.142e − 130 3.113𝑒 − 110 1.440𝑒 − 12

𝐹
03

0 5.464e – 154 3.274𝑒 − 95 1.883𝑒 − 9 1.729e − 153 2.313𝑒 − 94 3.726𝑒 − 9

𝐹
04

0 1.333e – 098 5.124𝑒 − 2 8.821𝑒 − 2 4.080e − 098 9.732𝑒 − 2 2.356𝑒 − 2

𝐹
05

0 25.4182 7.973𝑒 − 2 0.227 0.3013 5.638𝑒 − 1 0.941
𝐹
06

0 0 0 0 0 0 0
𝐹
07

0 3.080e – 004 4.084𝑒 − 4 3.297𝑒 − 3 2.391e − 004 3.800𝑒 − 4 1.096𝑒 − 3

𝐹
08

−12569.5 −12569.4867 −12569.4866 −12569.4866 4.830e − 004 7.350𝑒 − 12 5.555𝑒 − 12

𝐹
09

0 0 0 5.430𝑒 − 17 0 0 1.683𝑒 − 16

𝐹
10

0 3.663e− 5 0 5.336𝑒 − 14 2.654e − 9 0 2.945𝑒 − 13

𝐹
11

0 0 3.844𝑒 − 3 1.317𝑒 − 2 0 7.130𝑒 − 3 1.561𝑒 − 2

𝐹
12

0 9.518e – 007 1.571𝑒 − 32 9.207𝑒 − 30 2.780e − 006 5.529𝑒 − 48 6.436𝑒 − 31

𝐹
13

0 1.723e – 007 1.350𝑒 − 32 4.323𝑒 − 19 2.657e − 007 1.106𝑒 − 47 2.219𝑒 − 18

𝐹
14

−99.60 −83.7328 −98.7094891 −99.5024042 6.1910 1.450𝑒 − 1 2.526𝑒 − 2

𝐹
15

−78.33236 −78.33232 −78.3323314 −78.3323314 8.654e − 6 1.005𝑒 − 13 2.804𝑒 − 11

optimization problem simpler to solve [35]. For example, if
there are some nonlinear equality constraints 𝜙

𝑖
and some

inequality constraints 𝜑
𝑗
, the response functional PI can be

defined as follows:

∏(𝑥, 𝜇
𝑖
, V
𝑗
) = 𝑓 (𝑥) +

𝑀

∑

𝑖=1

𝜇
𝑖
𝜙
2

𝑖
(𝑥) +

𝑁

∑

𝑗=1

V
𝑗
𝜑
2

𝑗
(𝑥) , (12)

where 1 ≤ 𝜇
𝑖
and 0 ≤ V

𝑖
. The coefficients of penalty

terms should be large enough; their values may depend on
the specific optimization problem. The contribution of any
equality constraints function to the response functional ∏
is null but increases significantly as soon as the constraint is

violated.The same applies to inequality constraints when they
become critical.

5. Implementation in Optimization Problems

All computational experiments are conducted with Mat-
lab R2010a and run on Celeron(R) Dual-core CPU T3100,
1.90GHZ with 2GB memory capacity under windows7.

5.1. Experimental Studies on Unconstrained Optimization
Problems. In this section, 15 benchmark functions (𝐹

01
–𝐹
15
)

are used to test the performance of CCCS in solving UCOPS.
𝐹
01
–𝐹
13

are 𝑓
1
–𝑓
13

in [1] and 𝐹
14
, 𝐹
15

are 𝑓
7
, 𝑓
9
in [36]. The

problem dimension is set to 30 for F
01
–F
13

and 100 for 𝐹
14

and 𝐹
15
. In this manner, these functions have so many local
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Table 3: Comparison between MECA, CCGA, CPSO, and CCCS over 50 trials.

𝑓 CCCS MECA CCGA CPSO
𝐹
05
(𝑓
0
) 25.0366 6.43𝑒 − 1 3.80 1.94𝑒 − 1

𝐹
03
(𝑓
1
) 5.464e − 154 1.23𝑒 − 64 1.38𝑒 + 2 2.55𝑒 − 128

𝐹
10
(𝑓
2
) 1.655e − 7 0 9.51𝑒 − 2 2.78𝑒 − 14

𝐹
09
(𝑓
3
) 0 0 1.22 0

𝐹
11
(𝑓
4
) 0 3.94𝑒 − 3 2.20𝑒 − 1 1.86𝑒 − 2
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Figure 1: Convergence curve of 𝐹
08
.

minima that they are challenging enough for performance
evaluation. The parameters of CCCS are set as follows: the
number of organization is 10, others refer to [8], and the
number of iterations is 2500.

5.1.1. Experimental Results of CCCS. Table 1 summarizes the
experimental results of CCCS, which include the best, the
mean, the standard deviation, and the worst function values
found. As can be seen, besides 𝐹

05
, 𝐹
14
, other function

values reached the theoretical value or are very close to the
theoretical value. What should be noted is that the global
optimum for 𝐹

11
is 0 every time, but both MECA (M-elite

co-evolutionary algorithm for numerical optimization) and
OEA (An organizational evolutionary algorithm for numer-
ical optimization) cannot find the global optimal solution.
Convergence curve of 𝐹

08
and 𝐹

15
as shown in Figures 1

and 2 respectively, other convergence curve figure has been
omitted.

5.1.2. Comparison between CCCS, MECA, and OEA. Table 2
shows statistical results of the CCCS optimization. As can be
seen, as for functions 𝐹

01
, 𝐹
02
, 𝐹
03
, 𝐹
04
, 𝐹
07
, 𝐹
08
, and 𝐹

11
, the

mean function values of CCCS is better than MECA; as for
functions 𝐹

06
and 𝐹

09
, both CCCS and MECA can find the

global optimal solution. It is a pity that the results of these
functions (𝐹

05
, 𝐹
10
, 𝐹
12
, 𝐹
13
, and 𝐹

14
) is worse than MECA.

5.1.3. Comparison between MECA, CCGA, CPSO, and CCCS.
Table 3 summarizes the experimental results of comparison
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Figure 3: Schematic of the welded beam design problem.

between MECA, CCGA, CPSO, and CCCS. Data of CCGA
and CPSO algorithm results from the literature [9], MECA,
CCGA, and CPSO requite 200000 function evaluations. But
CCCS requires 2500 function evaluations to complete the
optimization process. As a whole, the results of CCCS are
better than those of MECA, OEA.

5.2. Experimental Studies on Constrained Optimization Prob-
lems. In this section, 11 benchmark functions (𝐺

01
–𝐺
11
) and

2 engineering design problems (welded beam design, pres-
sure vessel design) are used to validate the performance of
CCCS in solving constrained optimization problems. These
functions are described in [37]. The equality constraints have
been converted into inequality constraints, |𝑔(𝑥) − 𝛿| ≤ 0,
using the degree of violation 𝛿 = 0.00001, the same with that
of [37] (see Figures 3 and 5).
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Table 4: The comparison between OEA, SMES, and CCCS.

𝑓 𝑓min Method Best FV Mean FV St. dev Worst FV

𝐺
01

−15

CCCS −15 −15 0 −15
OEA CHp −15 −15 0 −15

OEA CHc −15 −14.78 7.637𝑒 − 1 −12

SMES −15.000 −15.000 0 −15.000

𝐺
02

−0.803619

CCCS −0.7947 −0.7826 0.0093 −0.7694
OEA CHp −0.803605 −0.782518 1.483𝑒 − 2 −0.746283

OEA CHc −0.803589 −0.782676 1.512𝑒 − 2 −0.743149

SMES −0.803601 −0.795238 1.67𝑒 − 2 −0.751322

𝐺
03

−1

CCCS −1.000 −1.000 0 −1.000
OEA CHp −1.000 −1.000 8.470𝑒 − 6 −1.000

OEA CHc −1.000 −1.000 1.131𝑒 − 5 −1.000

SMES −1.000 −1.000 2.09𝑒 − 4 −1.000

𝐺
04

−30665.539

CCCS −3.0665539e+ 004 −3.0665539e+ 004 3.8348e− 012 −3.0665539e+ 004
OEA CHp −30665.539 −30665.539 1.735𝑒 − 11 −30665.539

OEA CHc −30665.539 −30665.539 1.837𝑒 − 11 −30665.539

SMES −30665.539 −30665.539 0 −30665.539

𝐺
05

5126.498

CCCS 5.1264981e+ 003 5.1264981e+ 003 9.5869e− 013 5.1264981e+ 003
OEA CHp 5126.497 5127.048 7.071𝑒 − 1 5130.051
OEA CHc 5126.532 5315.975 145.473 5900.26
SMES 5126.599 5174.492 50.06 5304.167

𝐺
06

−6961.814

CCCS −6.9618139e+ 003 −6.9618139e+ 003 9.5869e− 013 −6.9618139e+ 003
OEA CHp −6961.814 −6961.814 5.512𝑒 − 12 −6961.814

OEA CHc −6961.814 −6961.814 5.512𝑒 − 12 −6961.814

SMES −6961.814 −6861.284 1.85 −6952.482

𝐺
07

24.306

CCCS 2.4306209e+ 001 2.4306209e+ 001 4.2164e− 007 2.4306209e+ 001
OEA CHp 24.308 24.373 7.615𝑒 − 2 24.655
OEA CHc 24.307 24.392 1.178𝑒 − 1 24.973
SMES 24.327 24.475 1.32𝑒 − 1 24.843

𝐺
08

−0.095825

CCCS −9.5825041e− 002 −9.5825041e− 002 0 −9.5825041e− 002
OEA CHp −0.095825 −0.095825 0 −0.095825

OEA CHc −0.095825 −0.095825 0 −0.095825

SMES −0.095825 −0.095825 0 −0.095825

𝐺
09

680.630

CCCS 6.8063006e+ 002 6.8063006e+ 002 1.1984e− 013 6.8063006e+ 002
OEA CHp 680.630 680.632 1.718𝑒 − 3 680.638
OEA CHc 680.630 680.632 2.163𝑒 − 3 680.641
SMES 680.632 680.643 1.55𝑒 − 2 680.719

𝐺
10

7049.331

CCCS 7.0492e+ 003 7.0492e+ 003 4.7796e− 004 7.0492e+ 003
OEA CHp 7052.236 7219.011 60.737 7326.032
OEA CHc 7100.030 7231.357 86.409 7469.047
SMES 7051.903 7253.603 136.02 7638.366

𝐺
11

0.750

CCCS 0.7500 0.7500 0 0.7500
OEA CHp 0.750 0.750 5.993𝑒 − 5 0.750
OEA CHc 0.750 0.750 1.881𝑒 − 7 0.750
SMES 0.75 0.75 1.52𝑒 − 4 0.75

The parameters of CCCS are set as follows: the num-
ber of iterations is 2500. However, the others of OEA
are 24000. The experimental results of OEA are obtained
over 50 independent trials. The running environment is
the same as the previously. Table 4 shows the comparison

results between OEA, SMES, and CCCS. As can be seen,
besides 𝐺

02
, other function values reached the theoretical

value or are very close to the theoretical value. On the
whole, the result of CCCS is better than those of SMES and
CCCS.
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Table 5: Welded beam problem: comparison of CS results with the literature.

Researcher(s) Method h l t b Cost No. of evaluation
Coello [11] GA 0.2088 3.4205 8.9975 0.2100 1.7483 N.A.
Leite and Topping [12] GA 0.2489 6.1097 8.2484 0.2485 2.4000 6273
Deb [13] GA 0.2489 6.1730 8.1789 0.2533 2.4331 320,080
Lemonge and Barbosa [14] GA 0.2443 6.2117 8.3015 0.2443 2.3816 320,000
Bernardino et al. [15] AISa-GA 0.2444 6.2183 8.2912 0.2444 2.3812 320,000
Atiqullah and Rao [16] SAb 0.2471 6.1451 8.2721 0.2495 2.4148 N.A.
Hedar and Fukushima [17] SA 0.2444 6.2175 8.2915 0.2444 2.3810 N.A.
Liu [18] SA-GA 0.2231 1.5815 12.8468 0.2245 2.2500 26,466
Hwang and He [19] SA-DSc 0.2444 6.2158 8.2939 0.2444 2.3811 56,243
Parsopoulos and Vrahatis [20] PSO N.A. N.A. N.A. N.A. 1.9220 100,000
He et al. [21] PSO 0.2444 6.2175 8.2915 0.2444 2.3810 30,000
Zhang et al. [22] EAd 0.2443 6.2201 8.2940 0.2444 2.3816 28,897
Coello [23] EA N.A. N.A. N.A. N.A. 1.8245 N.A.
Lee and Geem [24] HSe 0.2442 6.2231 8.2915 0.2443 2.381 110,000
Mahdavi et al. [25] HS 0.2057 3.4705 9.0366 0.2057 1.7248 200,000
Fesanghary et al. [26] HS-SQP 0.2057 3.4706 9.0368 0.2057 1.7248 90,000
Siddall [27] RAg 0.2444 6.2819 8.2915 0.2444 2.3815 N.A.
Akhtar et al. [28] SBMh 0.2407 6.4851 8.2399 0.2497 2.4426 19,259
Ray and Liew [29] SCAi 0.2444 6.2380 8.2886 0.2446 2.3854 33,095
Montes and Oca [30] BFOj 0.2536 7.1410 7.1044 0.2536 2.3398 N.A.
Zhang et al. [31] DEk 0.2444 6.2175 8.2915 0.2444 2.3810 24,000
Gandomi et al. [32] FA 0.2015 3.562 9.0414 0.2057 1.7312 50,000
Present study CCCS 0.3312 10.0000 2.4095 0.3456 2.1730 25,000
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Figure 4: Convergence curve of Case I.

5.3. Implementation in Structural Optimization Problems

Case I (welded beam design). The objective function and
parameters of Case I are refers to in [32]. With 25 nests,
CCCS found the global optimum requiring 1000 iterations
per optimization run. Table 5 compares the optimization
results found by CCCS with similar data reported in the
literature. CCCS obtained the best design overall of 2.1730.
Mahdavi et al. [25] and Fesanghary et al. [26] found a better
desgin. “But for the continuous optimization problem equal
to 1.7248” is deleted. In addition, CCCS requires only 25,000
function evaluations to complete the optimization process,
hence much less than the literature. Convergence curve of
Case I as shown in Figure 4.

RR

L Ts
Th

Figure 5: Schematic of the pressure vessel design problem.

Case II (pressure vessel design). The objective function and
parameters of the Case II are refers to in [33]. With 25 nests,
CCCS found the global optimum requiring 1000 iterations
per optimization run. Table 6 compares the optimization
results found by CCCS with similar data reported in the
literature. CCCS obtained the best design overall of 5885.3. In
addition, CCCS requires only 25,000 function evaluations to
complete the optimization process, hence much less than the
literature. Here, 𝑁/𝐴 represents no records in the literature.
Convergence curve of Case II is shown in Figure 6.

6. Conclusions

Taking inspiration from the OEA, a new numerical opti-
mization algorithm, CCCS, has been proposed in this paper.
The experimental results in Tables 1–6 indicate that CCCS
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Table 6: Pressure vessel design: comparison of CCCS results with the literature.

Reference method 𝑅 𝐿 𝑇
𝑠

𝑇
ℎ

𝑓min itermax

CCCS 40.3196 200.0000 0.7782 0.3846 5885.3 1000
ALPSO [33] 41.35 200 0.798 0.395 6234 7590
PSOA [34] N/A N/A N/A N/A 6292 6506
PSOSTR [34] N/A N/A N/A N/A 6272 3723
He et al. [21] N/A N/A N/A N/A 6290 30000
Akhtar et al. [28] N/A N/A N/A N/A 6335 12630
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Figure 6: Convergence curve of Case II.

outperforms the MECA and OEA. On the whole, CCCS
obtains a good performance for the unconstrained functions,
constrained functions, and 2 engineering design problems.
These benefitsmainly from the following three aspects. One is
the dynamics population, and the other is three evolutionary
operators.The third aspect is a combination of CS algorithm.
28 experiments illustrate that CCCShas an effective searching
mechanism.However, the number of dynamic populations, is
difficult to control, which spends lots of computational cost.
How to control the number of dynamic population is the
future research work.

Acknowledgments

This work is supported by the National Science Foundation
of China under Grant no. 61165015, Key Project of Guangxi
Science Foundation under Grant no. 2012GXNSFDA053028,
Key Project of Guangxi High School Science Foundation
under Grant no. 20121ZD008, Open Research Fund Program
of Key Lab of Intelligent Perception and Image Under-
standing of Ministry of Education of China under Grant
no. IPIU01201100 and the Innovation Project of Guangxi
Graduate Education under Grant no. YCSZ2012063.

References

[1] X. Yao, Y. Liu, andG.M. Lin, “Evolutionary programmingmade
faster,” IEEE Transactions on Evolutionary Computation, vol. 3,
no. 2, pp. 82–102, 1999.

[2] Y. W. Leung and Y. P. Wang, “An orthogonal genetic algorithm
with quantization for global numerical optimization,” IEEE

Transactions on Evolutionary Computation, vol. 5, no. 1, pp. 41–
53, 2001.

[3] L. Zhang and B. Zhang, “Good point set based genetic algo-
rithm,”Chinese Journal of Computers, vol. 24, no. 9, pp. 917–922,
2001.

[4] X. S. Yang and S. Deb, “Cuckoo search via Lévy flights,” in
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