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We investigate a class of generalized weighted scale-free networks, where the new vertex connects to m pairs of vertices selected
preferentially. The key contribution of this paper is that, from the standpoint of random processes, we provide rigorous analytic
solutions for the steady state distributions, including the vertex degree distribution, the vertex strength distribution and the edge
weight distribution. Numerical simulations indicate that this network model yields three power law distributions for the vertex
degrees, vertex strengths and edge weights, respectively.

1. Introduction

Recently, complex networks have become a hot topic due to
the two most important discoveries of real networks, that is,
the small world phenomenon raised byWatts and Strogatz [1],
and the scale-free property presented by Barabási and Albert
[2]. For most real-world complex systems, the proportion of
vertices with degree 𝑘 obeys a power-law form, that is,𝑃(𝑘) ∝
𝑘
−𝛾, where 𝛾 is a constant (see Albert et al. [3] for detail).

To describe such a property, Barabási et al. [4] proposed a
model (BA model for short) with growth and preferential
attachment. The mean field method was used in [4] to get
approximate expressions of the degree distribution.

Since then, Krapivsky et al. [5] expanded the preferential
attachment of the BA model to be nonlinear. With the
rate equation method, it is found that power-law degree
distribution can only be obtained in the case of linear
preferential attachment. Meanwhile, Dorogovtsev et al. [6]
generalized the BA model to include initial attractiveness.
Except for preferential selection of vertices, Dorogovtsev et
al. [7] introduced a simple model based on selection of edges.
Thismodel starts with three vertices connected to each other;
at each time step, an edge is randomly selected, and both
its ends are connected to the new vertex. With the master
equation method, the degree distribution of this model was
shown to behave as a power-law form [7].

All the models of [4–7] share a common property that
all links are equivalent. However, it is widely known that
interaction strengths can vary widely, and such variations are
essential to the network’s ability to carry on its basic functions
[8]. Barrat et al. [9] proposed a model for the growth of
weighted networks that couples the establishment of new
edges and vertices, and the weights’ dynamical evolution.
Tanaka and Aoyagi [10] generalized the model of [9] through
the weight-driven preferential attachment of new vertices to
existing vertices and the growth of the weights of existing
links, generating scale-free networks with variable power-law
exponents.

As one of the most important characteristics of networks,
the degree distribution is always a big consideration. How-
ever, there is no systematic and rigorous method for solving
degree distribution, the methods in [4–7] have to assume the
existence of 𝑃(𝑘) or assume the vertex number 𝑁

𝑘

(𝑡) with
degree 𝑘 be continuous. But Bollobás et al. [11] gave a rigorous
method, but this only applies to networks withmultiple edges
and loops. Stem from this consideration, in this paper, we
try to provide a systematic and rigorous method to solve the
steady state distribution from a new perspective.

Firstly, we shall give a new weighted network model.
The model starts with a complete graph, at each step, the
new vertex is connected to 𝑚 (𝑚 ≥ 1) pairs of vertices
which are selected preferentially; and meantime, the weights
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between the selected pairs of vertices are strengthened. Based
on the Stolz theorem, rigorous analytic derivations to the
steady state degree distribution of the model is provided.
What’s more, the method of solving the degree distribution
can be applied to study the steady state of both the vertex
strength distribution and the edge weight distribution. Both
theoretical derivations and numerical simulations show that
the model displays power-law behavior for the degree, the
strength and the weight distribution. Lastly, we show that the
clustering coefficient is larger than that of the BA model.

The rest of the paper is organized as follows. Section 2
is the description of the model, and Section 3 is devoted
to discuss some properties of the network. The analytical
results are demonstrated by numerical simulations in the last
section.

2. The Model

The detailed model construction algorithm is described as
follows:

(i) Initialization. The initial network, denoted as 𝐺
0

, is
a complete graph with 𝑛 vertices, which are denoted
by 𝑣
01

, 𝑣
02

, . . . , 𝑣
0𝑛

. The weight of each link is assigned
𝑤
0

(𝑤
0

≥ 𝑣
01

).
(ii) Growth. To construct 𝐺

𝑡+1

from 𝐺
𝑡

, we add a new
vertex 𝑣

𝑡+1

and then add 2𝑚 (2𝑚 ≤ 𝑛 − 1) edges bet-
ween 𝑣

𝑡+1

and vertices of𝐺
𝑡

.We choose𝑚 pairs of ver-
tices 𝑊1

𝑡

,𝑊
1



𝑡

,𝑊
2

𝑡

,𝑊
2



𝑡

, . . . ,𝑊
𝑚

𝑡

,𝑊
𝑚



𝑡

according to a
preferential attachment rule. If 𝑤

𝑖𝑖

(𝑡) is the weight
between vertices 𝑣

𝑖

and 𝑣
𝑖

 in 𝐺
𝑡

, then the vertices 𝑣
𝑖

and 𝑣
𝑖

 are selected with probability

𝑤
𝑖𝑖

 (𝑡)

∑
𝑞, 𝑙∈𝑉(𝐺𝑡)

𝑤
𝑞𝑙

(𝑡)
(1)

independently for each vertex pair 𝑖, 𝑖 ∈ 1, 2, . . . , 𝑚.
Note that this allows the possibility that we choose the

same vertex more than once, and hence the graphs may have
multiple edges.

Theweight of each new edge is𝑤
0

. Meanwhile, the weight
between each selected pair of vertices is strengthened by
adding𝑤

0

to it. If there aremultiple edges added between two
vertices, then the weight between them will increase multiple
times. For example, if there are 𝑎 new edges added between
vertices 𝑣

𝑡

and 𝑣
𝑖

, then the weight between themwill increase
𝑎𝑤
0

.
In this case, the strength of vertex 𝑣

𝑖

can be expressed as
𝑠
𝑖

(𝑡) = ∑
𝑗∈𝑉(𝑖)

𝑤
𝑖𝑗

(𝑡), where 𝑉(𝑖) is the neighbor set of vertex
𝑣
𝑖

.
The number of vertices in 𝐺

𝑡

is obviously 𝑁
𝑡

= 𝑛 + 𝑡.
Because 2𝑚 edges are added at each stage, the total number
of edges in 𝐺

𝑡

is 𝐿
𝑡

= 𝑛(𝑛 − 1)/2 + 2𝑚𝑡. Moreover, the total
strength of vertices in 𝐺

𝑡

is 𝑆
𝑡

= 𝑛(𝑛 − 1)𝑤
0

+ 6𝑚𝑡𝑤
0

.
Before analyzing the steady state distribution of the

network, let us firstly introduce some concepts and symbols.
Let the random variable 𝑁

𝑘

(𝑡) be the number of vertices
with degree 𝑘 in 𝐺

𝑡

, and moreover let the network degree

distribution be the average over all its vertices at time 𝑡,
namely 𝐸(𝑁

𝑘

(𝑡))/𝑁
𝑡

. If lim
𝑡→∞

(𝐸(𝑁
𝑘

(𝑡))/𝑁
𝑡

) exists, we say
that the steady state degree distribution of the network exists
and it can be quantified by 𝑃

𝐷

(𝑘) = lim
𝑡→∞

(𝐸(𝑁
𝑘

(𝑡))/𝑁
𝑡

).
Let𝑀

𝑠

(𝑡) represent the number of vertices with strength 𝑠
in𝐺
𝑡

Similarly, the steady state distribution of vertex strength
is denoted as 𝑃

𝑆

(𝑠) = lim
𝑡→∞

(𝐸(𝑀
𝑠

(𝑡))/𝑁
𝑡

).

2.1. Network Analysis. To analytically obtain the statistical
properties of the network generated by the above algorithm,
we give strict proofs from the perspective of random process.

Lemma 1. Let 𝑝
𝑡

> 0, 𝑞
𝑡

≥ 0, 𝑡 ≥ 1, then the difference equa-
tion 𝑥

𝑡+1

= 𝑝
𝑡

𝑥
𝑡

+ 𝑞
𝑡

has the solution

𝑥
𝑡

=

𝑡−1

∏

𝑖−1

𝑝
𝑖

(𝑥
1

+

𝑡−1

∑

𝑖=1

𝑞
𝑙

∏
𝑙

𝑗=1

𝑝
𝑗

) . (2)

Lemma 2 (Stolz Theorem, [12]). In sequence {𝑥
𝑡

/𝑦
𝑡

}, assume
that {𝑦

𝑡

} is a monotone increasing sequence with 𝑦
𝑡

→ ∞, if
lim
𝑡→∞

((𝑥
𝑡+1

−𝑥
𝑡

)/(𝑦
𝑡+1

−𝑦
𝑡

)) = 𝑙 exists, where−∞ ≤ 𝑙 ≤ ∞,
then lim

𝑡→∞

(𝑥
𝑡

/𝑦
𝑡

) = 𝑙.

Theorem 3 (Degree Distribution). For any positive integer
𝑘 ≥ 2𝑚, the steady state degree distribution of the model exists
and is given by

𝑃
𝐷

(𝑘) = lim
𝑡→∞

𝐸 (𝑁
𝑘

(𝑡))

𝑁
𝑡

=
Γ (𝑘 − 𝑚 − 1)

Γ (𝑘 − 𝑚 + (3/2))

Γ (𝑚 + (3/2))

Γ (𝑚 − 1)

3

2𝑚 + 3
,

(3)

where Γ(𝑥) = (𝑥 − 1)!.

Proof. For use in this proof, as well as later proofs, we define
the 𝜎-algebraF

𝑡

= 𝜎(𝐺
𝑖

; 0 ≤ 𝑖 ≤ 𝑡).
For 0 ≤ 𝑑 ≤ 𝑚, the probability that an old vertex 𝑣

𝑖

, with
degree 𝑘 and strength 𝑠, to get 𝑑 edges from the new vertex
𝑣
𝑡+1

is

(
𝑚

𝑑
)(

∑
𝑗

𝑤
𝑖𝑗

(𝑡)

∑
𝑞, 𝑙

𝑤
𝑞𝑙

(𝑡)
)

𝑑

(1 −
∑
𝑗

𝑤
𝑖𝑗

(𝑡)

∑
𝑞, 𝑙

𝑤
𝑞, 𝑙

(𝑡)
)

𝑚−𝑑

. (4)

Clearly, the above equation can also be rewritten as

(
𝑚

𝑑
)(
2𝑠
𝑖

(𝑡)

𝑆
𝑡

)

𝑑

(1 −
2𝑠
𝑖

(𝑡)

𝑆
𝑡

)

𝑚−𝑑

. (5)

Note that for vertices 𝑣
01

, 𝑣
02

, . . . , 𝑣
0𝑛,

the initial strength
is (𝑛 − 1)𝑤

0

. If the degree of 𝑣
0𝑟

(𝑟 = 1, 2, . . . , 𝑛) at time 𝑡 is
𝑘
0𝑟

(𝑡), then it means that there are 𝑘
0𝑟

(𝑡) − (𝑛 − 1) new edges
linked to vertex 𝑣

0𝑟

in the process of network growth, thus the
strength of 𝑣

0𝑟

at time 𝑡 is

𝑠
0𝑟

(𝑡) = (𝑛 − 1)𝑤
0

+ 2𝑤
0

(𝑘
0𝑟

(𝑡) − (𝑛 − 1))

= (2𝑘
0𝑟

(𝑡) − (𝑛 − 1))𝑤
0

, 𝑟 = 1, 2, . . . , 𝑛.

(6)
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Similarly, for vertices 𝑣
1

to 𝑣
𝑡

, we have

𝑠
𝑖

(𝑡) = 2𝑚𝑤
0

+ 2𝑤
0

(𝑘
𝑖

(𝑡) − 2𝑚)

= (2𝑘
𝑖

(𝑡) − 2𝑚)𝑤
0

,

(7)

where 𝑘
𝑖

(𝑡) is the degree of vertex 𝑣
𝑖

in 𝐺
𝑡

.
The above two cases can be rewritten together as

𝑠
𝑖

(𝑡) = 𝐾
0

𝑤
0

+ 2𝑤
0

(𝑘
𝑖

(𝑡) − 𝐾
0

)

= (2𝑘
𝑖

(𝑡) − 𝐾
0

) 𝑤
0

, 𝑖 = 01, . . . , 0𝑛, 1, . . . , 𝑛,

(8)

where

𝐾
0

= {
𝑛 − 1, 𝑖 = 01, . . . , 0𝑛,

2𝑚, 𝑖 = 1, . . . , 𝑛.
(9)

For variable 𝑡, 𝑁
𝑘

(𝑡) is a randomprocess.Thus, givenF
𝑡

,
the expected number of vertices with degree 𝑘 in 𝐺

𝑡+1

is

𝐸 (𝑁
𝑘

(𝑡 + 1) | F
𝑡

)

=

𝑚

∑

𝑑=0

𝑁
𝑘−𝑑

(𝑡) (
𝑚

𝑑
)[
[4 (𝑘 − 𝑑) − 2𝐾

0

] 𝑤
0

𝑆
𝑡

]

𝑑

× [1 −
[4 (𝑘 − 𝑑) − 2𝐾

0

] 𝑤
0

𝑆
𝑡

]

𝑚−𝑑

+ 𝐼
{𝑘=2𝑚}

.

(10)

In particular, for 𝑘 = 2𝑚, we have

𝐸 (𝑁
2𝑚

(𝑡 + 1) | F
𝑡

) = (1 −
4𝑚𝑤
0

𝑆
𝑡

)

𝑚

𝑁
2𝑚

(𝑡) + 1. (11)

Taking expectations on both sides and combing the
property of conditional probability,

𝐸 (𝑁
2𝑚

(𝑡 + 1)) = (1 −
4𝑚𝑤
0

𝑆
𝑡

)

𝑚

𝐸 (𝑁
2𝑚

(𝑡)) + 1. (12)

Computing by Lemma 1 iteratively, we get

𝐸 (𝑁
2𝑚

(𝑡)) =

𝑡−1

∏

𝑖=1

(1 −
4𝑚𝑤
0

𝑆
𝑖

)

𝑚

×[

[

𝐸 (𝑁
2𝑚

(1))+

𝑡−1

∑

𝑙=1

1

∏
𝑙

𝑗=1

(1−(4𝑚𝑤
0

/𝑆
𝑗

))
𝑚

]

]

.

(13)

Divide by𝑁
𝑡

on both sides, let

𝑥
𝑡

= 𝐸 (𝑁
2𝑚

(1)) +

𝑡−1

∑

𝑙=1

1

∏
𝑙

𝑗=1

(1 − (4𝑚𝑤
0

/𝑆
𝑗

))
𝑚

,

𝑦
𝑡

= 𝑁
𝑡

𝑡−1

∏

𝑖=1

(1 −
4𝑚𝑤
0

𝑆
𝑖

)

−𝑚

,

(14)

then 𝑥
𝑡

, 𝑦
𝑡

> 0, 𝑦
𝑡+1

− 𝑦
𝑡

> 0 and {𝑦
𝑡

} is a monotone
increasing sequence with 𝑦

𝑡

→ ∞, lim
𝑡→∞

((𝑥
𝑡+1

− 𝑥
𝑡

)/

(𝑦
𝑡+1

− 𝑦
𝑡

)) = 3/(2𝑚 + 3), by Lemma 2, we have lim
𝑡→∞

(𝑥
𝑡

/

𝑦
𝑡

) = 3/(2𝑚 + 3).
Thus, lim

𝑡→∞

(𝐸(𝑁
2𝑚

(𝑡))/𝑁
𝑡

) exists and

𝑃
𝐷

(2𝑚) = lim
𝑡→∞

𝐸 (𝑁
2𝑚

(𝑡))

𝑁
𝑡

=
3

2𝑚 + 3
. (15)

For 𝑘 > 2𝑚,

𝐸 (𝑁
𝑘

(𝑡 + 1) | F
𝑡

)

=

𝑚

∑

𝑑=0

𝑁
𝑘−𝑑

(𝑡) (
𝑚

𝑑
)[
[4 (𝑘 − 𝑑) − 2𝐾

0

] 𝑤
0

𝑆
𝑡

]

𝑑

× [1 −
[4 (𝑘 − 𝑑) − 2𝐾

0

] 𝑤
0

𝑆
𝑡

]

𝑚−𝑑

.

(16)

Taking expectation on both sides and using the properties
of conditional expectations,

𝐸 (𝑁
𝑘

(𝑡 + 1))

= [1 −
(4𝑘 − 2𝐾

0

) 𝑤
0

𝑆
𝑡

]

𝑚

𝐸 (𝑁
𝑘

(𝑡))

+

𝑚

∑

𝑑=1

(
𝑚

𝑑
)[
[4 (𝑘 − 𝑑) − 2𝐾

0

] 𝑤
0

𝑆
𝑡

]

𝑑

⋅ [1 −
[4 (𝑘 − 𝑑) − 2𝐾

0

] 𝑤
0

𝑆
𝑡

]

𝑚−𝑑

𝐸 (𝑁
𝑘−𝑑

(𝑡)) .

(17)

Suppose lim
𝑡→∞

(𝐸(𝑁
𝑘−1

(𝑡))/𝑁
𝑡

) exists and equals
𝑃
𝐷

(𝑘 − 1), use the same procedure of the case for 𝑘 = 2𝑚, by
Lemmas 1 and 2, then lim

𝑡→∞

(𝐸(𝑁
𝑘

(𝑡))/𝑁
𝑡

) also exists and

𝑃
𝐷

(𝑘) = lim
𝑡→∞

𝐸 (𝑁
𝑘

(𝑡))

𝑁
𝑡

=
2𝑘 − 2𝑚 − 2

2𝑘 − 2𝑚 + 3
𝑃
𝐷

(𝑘 − 1) . (18)

Combine (15) and (18), resulting in

𝑃
𝐷

(𝑘) =
Γ (𝑘 − 𝑚 − 1)

Γ (𝑘 − 𝑚 + (3/2))

Γ (𝑚 + (3/2))

Γ (𝑚 − 1)

3

2𝑚 + 3
. (19)

This completes the proof.

Remark 4. For large 𝑘, the degree distribution is proportional
to 𝑘−5/2, that is, 𝑃

𝐷

(𝑘) ∝ 𝑘
−5/2. This implies that the degree

distribution of ourmodel obeys a power-law form like the BA
model but the degree exponent is no longer 3.

In order to obtain the vertex strength distribution analyt-
ically, we derive it in the same way as the degree distribution

Theorem 5 (Strength Distribution). For vertex strength 𝑠 ≥
2𝑚𝑤
0

, the steady state of vertex strength distribution exists and
satisfies that

𝑃
𝑆

(𝑠) = lim
𝑡→∞

𝐸 (𝑀
𝑠

(𝑡))

𝑁
𝑡

∝ 𝑠
−5/2

. (20)
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Proof. Following the arguments of Theorem 3, givenF
𝑡

, the
expected number of vertices with strength 𝑠 in 𝐺

𝑡+1

is

𝐸 (𝑀
𝑠

(𝑡 + 1) | F
𝑡

)

=

𝑚

∑

𝑑=0

𝑀
𝑠−2𝑑𝑤

0

(𝑡) (
𝑚

𝑑
)

×[
2 (𝑠−2𝑑𝑤

0

)

𝑆
𝑡

]

𝑑

[1−
2 (𝑠−2𝑑𝑤

0

)

𝑆
𝑡

]

𝑚−𝑑

+𝐼
{𝑠=2𝑚𝑤

0
}.

(21)

Use the same procedure of Theorem 3, we know that
lim
𝑡→∞

(𝐸(𝑀
2𝑚𝑤

0

(𝑡))/𝑁
𝑡

) exists and

𝑃
𝑆

(2𝑚𝑤
0

) = lim
𝑡→∞

𝐸 (𝑀
2𝑚𝑤

0

(𝑡))

𝑁
𝑡

=
3

2𝑚 + 3
. (22)

For 𝑠 > 2𝑚𝑤
0

, suppose lim
𝑡→∞

(𝐸(𝑀
𝑠

− 2𝑤
0

(𝑡))/𝑁
𝑡

)

exists and equals𝑃
𝑆

(𝑠−2𝑤
0

), then lim
𝑡→∞

(𝐸(𝑀
𝑠

(𝑡))/𝑁
𝑡

) also
exists and

𝑃
𝑆

(𝑠) = lim
𝑡→∞

𝐸 (𝑀
𝑠

(𝑡))

𝑁
𝑡

=
𝑠 − 2𝑤

0

𝑠 + 3𝑤
0

𝑃
𝑆

(𝑠 − 2𝑤
0

) . (23)

This, together with (22), leads to

𝑃
𝑆

(𝑠) = lim
𝑡→∞

𝐸 (𝑀
𝑠

(𝑡))

𝑁
𝑡

∝ 𝑠
−5/2

. (24)

Set 𝑤
0

= 1, the exact expression of vertex strength
distribution has the form of

𝑃
𝑆

(𝑠) = lim
𝑡→∞

𝐸 (𝑀
𝑠

(𝑡))

𝑁
𝑡

=
(𝑠 − 2)!! (2𝑚 + 3)!!

(𝑠 + 3)!! (2𝑚 − 2)!!
𝑃
𝑆

(2𝑚) ∝ 𝑠
−5/2

,

(25)

as required. This completes the proof.

In what follows, we shall discuss the edge weight distribu-
tion.

Theorem 6 (Weight Distribution). The steady state edge
weight distribution of the model exists and is given by

𝑃
𝑊

(𝑤) ∝ 𝑤
−(3𝑚+1)

. (26)

Proof. Since the proof is similar to that of Theorems 3 and 5,
here we omit it.

Remark 7. By Theorem 6, we can conclude that the edge
weight distribution follows power-law behavior with degree
exponent 𝛾 = 3𝑚 + 1, which is related to𝑚.

3. Numerical Simulations

In this section, we perform several numerical simulations in
regard to the vertex degree distribution, the vertex strength
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distribution and the edge weight distribution. The initial
network is a complete graph with 10 vertices. All the simu-
lations are conducted 200,000 steps. It is obvious that all the
results shown in Figures 1–3 are consistently conformed to
the analytical analysis obtained in the previous sections.

Figure 1 is the simulation of degree distribution 𝑃
𝐷

(𝑘) in
log-log scale. The circles ( ⃝), the upper triangles (△) and
the lower triangles () represent the simulation values of
𝑚 = 1, 2, 3, respectively. The dotted lines are theoretical
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results predicted by (3). Moreover, the legends here are the
same as those in Figures 2 and 3.

Figure 2 shows the results of the simulations and the
analysis of the vertex strength distribution 𝑃

𝑆

(𝑠) in log-log
scale. Because of the linear relation between the degree and
the strength of the vertex, their distributions are in the
same form, that is, both obey a power-law form with degree
exponent 𝛾 = 5/2.

Figure 3 clearly verifies the theoretical results obtained
by (26) with 𝑚 = 1. However, when it comes to 𝑚 = 2

and 𝑚 = 3, there are too few simulation data to explain the
theoretical formula. All of these are resulted from the
attribute of the negative exponential form of (26). With this
form, the percentage of the edges dramatically decreases with

the increase of𝑤 and/or𝑚, and the number of steps required
for more accurate simulation results increases exponentially.
In fact, the number is at least𝑤(3𝑚+1)/2𝑚without considering
the random error. For example, the minimum number of
required step for simulation is 174,763, when 𝑤 = 4 and
𝑚 = 3; however, we can obtain 𝑤 = 24 by the same number
of simulation step if 𝑚 = 1. Despite the fact that the data of
𝑚 = 2 and 𝑚 = 3 are so few, the simulations can explain
the edge weight distribution in some degree; they can at least
illustrate the trend of the distribution. It is also easy to see that
𝑚 has great influence on the weight distribution.

In Figure 4, we make a comparison of the simulation
time under different values of 𝑚. It is obvious that the
time required increases dramatically with the increase of the
network size.

4. Conclusions

A weighted network model based on preferential selection of
weights between vertices is studied in this paper. Based on
the Stolz theorem, rigorous and analytic proofs for the steady
state distributions of the model are provided. The approach
developed here is quite general, applicable tomany other scale
free types of complex networks. Moreover, the theoretical
derivations are verified by computer simulations (see Figures
1–3 for details). Both theoretical derivations and numerical
simulations show that themodel displays power-law behavior
for the degree, the strength and the edge weight distribution.
In addition, to illustrate the complexity of generating complex
networks, we compare the number of steps and the simulation
time under different values of𝑚.
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