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We give a necessary and sufficient condition on an 𝑓-algebra 𝐴 for which orthomorphisms, 𝑓-linear operators, and 𝑓-
orthomorphisms on the order dual 𝐴∼ are the same class of operators.

1. Introduction and Preliminaries

First of all, we point out that the standard book [1] is adopted
in this paper as a unique source of unexplained terminology
and notation.

Let 𝐿 and 𝑀 be Riesz spaces. The operator 𝑇 : 𝐿 → 𝑀
is called order bounded if the image under 𝑇 of an order
bounded set in𝐿 is again an order bounded set in𝑀. An order
bounded operator𝜋 : 𝐿 → 𝐿 is said to be an orthomorphism
if |𝜋𝑥| ∧ |𝑦| = 0 whenever |𝑥| ∧ |𝑦| = 0 for all 𝑥, 𝑦 ∈ 𝐿. The
set of all orthomorphisms on 𝐿 is denoted by Orth(𝐿).

If 𝐿 is a Riesz space 𝐿∼, the first order dual of 𝐿 will be
the Riesz space of all order bounded linear functionals on 𝐿.
The second order dual (or order bidual) is denoted by 𝐿∼∼.
It is well known that 𝐿∼ is a Dedekind complete Riesz space.
Define for each 𝑥 ∈ 𝐿 the element 𝑥∼∼ ∈ 𝐿∼∼ by 𝑥∼∼(𝑓) =
𝑓(𝑥) for all𝑓 ∈ 𝐿∼ and then define themapping 𝜅 : 𝐿 → 𝐿∼∼

by 𝜅(𝑥) = 𝑥∼∼ for all 𝑥 ∈ 𝐿. If 𝐿∼ separates the points of 𝐿 then
𝜅 is injective and we can identify 𝐿 with the Riesz subspace
𝜅(𝐿). Throughout the paper, we only consider Archimedean
Riesz spaces 𝐿 with point separating order dual 𝐿∼.

From now on, 𝐴 denotes an 𝑓-algebra, that is, a lattice
ordered algebra in which 𝑎 ∧ 𝑏 = 0 implies that 𝑎 ⋅ 𝑐 ∧ 𝑏 =
0 for all 0 ≤ 𝑐 ∈ 𝐴. Following constructions in [2], a
multiplication can be introduced in the order bidual 𝐴∼∼ of
𝐴. This is accomplished in three steps as explained next. For
every𝑓 ∈ 𝐴∼ and𝑥 ∈ 𝐴, we define𝑓⋅𝑥 ∈ 𝐴∼ by the following:

(𝑓 ⋅ 𝑥) (𝑦) = 𝑓 (𝑥𝑦) (𝑦 ∈ 𝐴) . (1)

Then, for 𝐺 ∈ 𝐴∼∼ and 𝑓 ∈ 𝐴∼, we introduce 𝐺 ⋅ 𝑓 ∈ 𝐴∼ by
putting the following:

(𝐺 ⋅ 𝑓) (𝑥) = 𝐺 (𝑓 ⋅ 𝑥) (𝑥 ∈ 𝐴) . (2)

Finally, let 𝐹, 𝐺 ∈ 𝐴∼∼ and define 𝐹𝐺 ∈ 𝐴∼∼ by the following

(𝐹𝐺) (𝑓) = 𝐹 (𝐺 ⋅ 𝑓) (𝑓 ∈ 𝐴∼) . (3)

The latter equality defines the Arens multiplication in 𝐴∼∼.
Bernau and Huijsmans in [3] that 𝐴∼∼ is an 𝑓-algebra with
respect to the Arens multiplication. The band of all order
continuous linear functionals on 𝐴∼ is denoted by (𝐴∼)∼

𝑛

and
its disjoint complement in 𝐴∼∼ by (𝐴∼)∼

𝑠

. Observe that

𝐴∼∼ = (𝐴∼)
∼

𝑛

⊕ (𝐴∼)
∼

𝑠

, (4)

as 𝐴∼∼ is Dedekind complete.
For each 𝐹 ∈ (𝐴∼)

∼

𝑛

, we define the mapping 𝑉
𝐹

: 𝐴∼ →
𝐴∼ by the following:

𝑉
𝐹

(𝑓) = 𝐹 ⋅ 𝑓 ∀𝑓 ∈ 𝐴∼. (5)

It is shown in [4, Theorem 5.2] that 𝑉
𝐹

∈ Orth(𝐴∼) and the
mapping 𝑉 : 𝐹 → 𝑉(𝐹) = 𝑉

𝐹

are an algebra and lattice
homomorphism between (𝐴∼)∼

𝑛

and Orth(𝐴∼).
The final paragraph of this introduction is devoted to the

definition of the so-called 𝑓-orthomorphism and 𝑓-linear
operator on the order dual.

Let 𝐴 be an 𝑓-algebra. For all 𝑓 ∈ 𝐴∼ define the set 𝑅(𝑓)
by the following:

𝑅 (𝑓) = {𝐹 ⋅ 𝑓 : 𝐹 ∈ (𝐴∼)
∼

𝑛

} . (6)
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An order bounded operator 𝑇 : 𝐴∼ → 𝐴∼ is said to be as
follows:

(1) an 𝑓-orthomorphism if 𝑅(𝑇𝑓) ⊆ 𝑅(𝑓) for each 𝑓 ∈
𝐴∼, the collection of all𝑓-orthomorphisms on𝐴∼will
be denoted by Orth(𝐴∼, 𝐴∼, (𝐴∼)∼

𝑛

);
(2) an 𝑓-linear with respect to (𝐴∼)

∼

𝑛

if 𝑇(𝐹 ⋅ 𝑓) =
𝐹 ⋅ 𝑇𝑓 for all 𝑓 ∈ 𝐴∼ and 𝐹 ∈ (𝐴∼)

∼

𝑛

, the set
of all 𝑓-linear operators on 𝐴∼ will be denoted by
L
𝑏

(𝐴∼, 𝐴∼, (𝐴∼)
∼

𝑛

).

Turan showed [5, Proposition 2.6] that Orth(𝐴∼, 𝐴∼,
(𝐴∼)
∼

𝑛

) = L
𝑏

(𝐴∼, 𝐴∼, (𝐴∼)
∼

𝑛

) whenever 𝐴 is unital 𝑓-algebra
(since 𝐴 is topologically full with respect to itself). Recently,
Feng et al. [6, Theorem 3.4] proved that for any 𝑓-algebra 𝐴
we have the following:

Orth(𝐴∼) ⊆ L
𝑏

(𝐴∼, 𝐴∼, (𝐴∼)
∼

𝑛

) ⊆ Orth(𝐴∼, 𝐴∼, (𝐴∼)∼
𝑛

) .

(7)

This leads to a very natural question, namely, when
does any 𝑓-orthomorphisms is an orthomorphism. A partial
answer was already obtained by Feng et al. in [6, Theorem
3.4]. In this regards they proved that if 𝐴 has the factor-
ization property, then Orth(𝐴∼) = L

𝑏

(𝐴∼, 𝐴∼, (𝐴∼)
∼

𝑛

) =
Orth(𝐴∼, 𝐴∼, (𝐴∼)∼

𝑛

). In this paper, we give a complete answer
to this question. In fact, we give a necessary and sufficient
condition on an 𝑓-algebra 𝐴 for which orthomorphisms, 𝑓-
orthomorphisms, and 𝑓-linear operators on the order dual
are precisely the same class of operators.

2. When 𝑓-Orthomorphisms
Are Orthomorphisms

Let𝐴 be an 𝑓-algebra with separating order dual. Let 𝐽 be the
order ideal generated by all products of 𝐴; that is,

𝐽 = {𝑥 ∈ 𝐴 : |𝑥| ≤ 𝑦 ⋅ 𝑧 for some 𝑦, 𝑧 ∈ 𝐴} . (8)

It is easy to see that 𝐽 is an ℓ-ideal (ring and order ideal)
in 𝐴. The annihilator

𝐽0 = {𝑓 ∈ 𝐴∼ : 𝑓 (𝑥) = 0 ∀𝑥 ∈ 𝐽} (9)

is always a band in 𝐴∼. Since 𝐴∼ is Dedekind complete Riesz
space, then 𝐴∼ = 𝐽0 ⊕ (𝐽0)𝑑. We denote by 𝑃

0

: 𝐴∼ → 𝐽0 the
band projection.

As we will see later, the set 𝐽0 plays a key role in the proof
of the main result of this paper. We start our discussion by
a study of the connection between 𝑓-orthomorphism and
orthomorphism in a special case.

Example 1. Suppose that the set 𝐽 = {0}; hence 𝐽0 = 𝐴∼. This
implies that the product in 𝐴 is given by 𝑥 ⋅ 𝑦 = 0 for all
𝑥, 𝑦 ∈ 𝐴. It is easy to see that

L
𝑏

(𝐴∼, 𝐴∼, (𝐴∼)
∼

𝑛

) = Orth(𝐴∼, 𝐴∼, (𝐴∼)∼
𝑛

) = L
𝑏

(𝐴∼) .

(10)

Thus, Orth(𝐴∼) = Orth(𝐴∼, 𝐴∼, (𝐴∼)∼
𝑛

) if and only if
every order bounded operator is an orthomorphism. Hence,
dim𝐴∼ = dim𝐴 = 1.

From now on, we may assume that the ideal 𝐽 ̸= {0}.
It is obvious that if 𝐴 has the factorization property, then

𝐽0 = {0}. In the next example we show that the condition
“𝐽0 = {0}” is strictly weaker than the condition “has the
factorization property.” Recall that the condition “𝐽0 = {0}” is
equivalent to the condition “(𝐴∼)∼

𝑛

is a semi-prime𝑓-algebra”
(see [4, Corollary 6.3]).

Example 2. Let 𝐶([0, 1)) be the Archimedean unital 𝑓-
algebra of all real-valued continuous functions on [0, 1). A
function 𝑓 ∈ 𝐶([0, 1)) is an eventual-polynomial if there is
𝑟
𝑓

∈ [0, 1) and a (unique) polynomial 𝑃
𝑓

such that 𝑓(𝑟) =
𝑃
𝑓

(𝑟) for all 𝑟 ∈ [𝑟
𝑓

, 1). Let 𝑌 be the set of all eventual-
polynomials in 𝐶([0, 1)). Now, put the following:

𝐴 = {𝑓 ∈ 𝑌 : 𝑃
𝑓

(0) = 0} , (11)

and observe that𝐴 is a semiprime𝑓-subalgebra of 𝑌. Clearly,
𝐴 does not satisfy the factorization property. It is shown in [7,
Example 7] that (𝐴∼)∼

𝑛

is a unital𝑓-algebra, hence semiprime,
𝑓-algebra. So 𝐽0 = {0}.

We list some simple properties of the band 𝐽0. The proof
of the next lemma is straightforward and therefore omitted.

Lemma 3. Let 𝐴 be an f-algebra and 𝐹 ∈ 𝐴∼∼. Then

(1) 𝑓 ∈ 𝐽0 if and only if 𝑓 ⋅ 𝑥 for all 𝑓 ∈ 𝐴∼and 𝑥 ∈ 𝐴.
(2) 𝐹 ⋅ 𝑓 = 0 for all 𝑓 ∈ 𝐽0.

(3) 𝐹 ⋅ 𝑓 ∈ (𝐽0)𝑑 for all 𝑓 ∈ 𝐴∼.

The next result is important in the context of this work; it
is already proved in [6] but for the sake of completeness we
partially reproduce the proof.

Proposition 4. Let 𝐴 be an 𝑓-algebra. Then Orth(𝐴∼) ⊆
L
𝑏

(𝐴∼, 𝐴∼, (𝐴∼)
∼

𝑛

) ⊆ Orth(𝐴∼, 𝐴∼, (𝐴∼)∼
𝑛

).

Proof. Let 𝜋 ∈ Orth(𝐴∼); we have to show that 𝜋(𝐹 ⋅ 𝑓) =
𝐹 ⋅ 𝜋(𝑓) for all 𝐹 ∈ (𝐴∼)

∼

𝑛

and 𝑓 ∈ 𝐴∼. Since 𝑉
𝐹

∈ Orth(𝐴∼)
which is a commutative algebra we get the following:

𝜋 (𝐹 ⋅ 𝑓) = 𝜋 ∘ 𝑉
𝐹

(𝑓) = 𝑉
𝐹

∘ 𝜋 (𝑓) = 𝐹 ⋅ 𝜋 (𝑓) . (12)

Thus, 𝜋 ∈ L
𝑏

(𝐴∼, 𝐴∼, (𝐴∼)
∼

𝑛

).
Let 𝑇 ∈ L

𝑏

(𝐴∼, 𝐴∼, (𝐴∼)
∼

𝑛

) and 𝑓 ∈ 𝐴∼. Pick 𝑥 ∈ 𝐴 and
observe that

𝑇 (𝑓 ⋅ 𝑥) = 𝑇 (𝑥∼∼ ⋅ 𝑓) = 𝑥∼∼ ⋅ 𝑇𝑓 = 𝑇𝑓 ⋅ 𝑥. (13)

Then for all 𝐹 ∈ (𝐴∼)
∼

𝑛

we get the following:

𝐹 ⋅ 𝑇𝑓 (𝑥) = 𝐹 (𝑇𝑓 ⋅ 𝑥) = 𝐹 (𝑇 (𝑓 ⋅ 𝑥))

= 𝐹 ∘ 𝑇 (𝑓 ⋅ 𝑥) = 𝐹 ∘ 𝑇 ⋅ 𝑓 (𝑥) ∀𝑥 ∈ 𝐴.
(14)

Hence, 𝐹 ⋅ 𝑇𝑓 = 𝑇∼(𝐹) ⋅ 𝑓 where 𝑇∼ is the order adjoint
mapping of 𝑇 defined by 𝑇∼(𝐹) = 𝐹 ∘ 𝑇. Consequently, 𝑇 ∈
Orth(𝐴∼, 𝐴∼, (𝐴∼)∼

𝑛

).
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Another lemma turns out to be useful for later purposes.

Lemma 5. Let 𝐴 be an 𝑓-algebra and 𝑇 ∈ Orth(𝐴∼, 𝐴∼,
(𝐴∼)
∼

𝑛

). Then |𝑇𝑓| ∧ 𝑔 ∈ 𝐽0 whenever 𝑓 ∧ 𝑔 = 0 in 𝐴∼.

Proof. It suffices to show that (|𝑇𝑓| ∧ 𝑔) ⋅ 𝑥 = 0 for all 0 ≤ 𝑥 ∈
𝐴. Let 0 ≤ 𝑥 ∈ 𝐴. Since𝑉

𝑥

∼∼ ∈ Orth(𝐴∼)we get the following:

(
󵄨󵄨󵄨󵄨𝑇𝑓

󵄨󵄨󵄨󵄨 ∧ 𝑔) ⋅ 𝑥 = 𝑥∼∼ ⋅ (
󵄨󵄨󵄨󵄨𝑇𝑓

󵄨󵄨󵄨󵄨 ∧ 𝑔)

= 𝑥∼∼ ⋅
󵄨󵄨󵄨󵄨𝑇𝑓

󵄨󵄨󵄨󵄨 ∧ 𝑥∼∼ ⋅ 𝑔

=
󵄨󵄨󵄨󵄨𝑥
∼∼ ⋅ 𝑇𝑓

󵄨󵄨󵄨󵄨 ∧ 𝑥∼∼ ⋅ 𝑔.

(15)

There exists 𝐺 ∈ (𝐴∼)
∼

𝑛

such that 𝑥∼∼ ⋅ 𝑇𝑓 = 𝐺 ⋅ 𝑓. Conse-
quently,

(
󵄨󵄨󵄨󵄨𝑇𝑓

󵄨󵄨󵄨󵄨 ∧ 𝑔) ⋅ 𝑥 =
󵄨󵄨󵄨󵄨𝐺 ⋅ 𝑓

󵄨󵄨󵄨󵄨 ∧ 𝑥∼∼ ⋅ 𝑔

≤ 𝐺 ⋅
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 ∧ 𝑥∼∼ ⋅ 𝑔

≤ (𝐺 + 𝑥∼∼) ⋅ (
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 ∧ 𝑔) = 0.

(16)

We have now gathered all of the ingredients for the proof
of the principal theorem of this paper.

Theorem 6. Let 𝐴 be an 𝑓-algebra. Then the following are
equivalents:

(i) Orth(𝐴∼) = L
𝑏

(𝐴∼, 𝐴∼, (𝐴∼)
∼

𝑛

) = Orth(𝐴∼, 𝐴∼,
(𝐴∼)
∼

𝑛

);
(ii) 𝐽0 = {0}.

Proof. (i)⇒(ii) Arguing by contradiction, suppose that
𝐽0 ̸= {0}. There exists a nonzero positive element ℎ ∈ 𝐴∼ such
that ℎ(𝑎) = 0 for all 𝑎 ∈ 𝐽. Let 0 ≤ 𝑔 ∈ (𝐽0)𝑑 and 0 ≤ 𝑥 ∈ 𝐴
such that 𝑔(𝑥) ̸= 0. Define the mapping 𝑇 : 𝐴∼ → 𝐴∼ by
𝑇(𝑓) = 𝑓(𝑥)ℎ. It is not hard to see that 𝑇 is positive and for
all 𝐹 ∈ (𝐴∼)

∼

𝑛

, 𝑓 ∈ 𝐴∼ we have the following:

𝐹 ⋅ 𝑇𝑓 = 𝑓 (𝑥) 𝐹 ⋅ ℎ = 0 ∈ 𝑅 (𝑓) . (17)

Thus, 𝑇 ∈ Orth(𝐴∼, 𝐴∼, 𝐴∼). But 𝑇 is not an orthomor-
phism since 𝑔 ∧ ℎ = 0 and 𝑇𝑔 ∧ ℎ = 𝑔(𝑥)ℎ ∧ ℎ ̸= 0.

(ii)⇒(i) In view of Proposition 4, it suffices to show that
Orth(𝐴∼, 𝐴∼, (𝐴∼)∼

𝑛

) ⊆ Orth(𝐴∼). To do this, pick 𝑇 ∈
Orth(𝐴∼, 𝐴∼, (𝐴∼)∼

𝑛

) and 𝑓, 𝑔 ∈ 𝐴∼ such that 𝑓 ∧ 𝑔 = 0.
According to Lemma 5,we obtain |𝑇𝑓| ∧ 𝑔 ∈ 𝐽0 = {0}; that
is, |𝑇𝑓| ∧ 𝑔 = 0, as required.

It follows from Theorem 6 that if Orth(𝐴∼) =
Orth(𝐴∼, 𝐴∼, (𝐴∼)∼

𝑛

) then (𝐴∼)
∼

𝑛

; hence 𝐴, is a semiprime
𝑓-algebra.

We end this section with a consequence of Theorem 6.
The notion of weak approximate unit plays a key role in the
context of this study. Recall that an upward directed net {𝑎

𝜏

:
𝜏 ∈ 𝑇} of positive elements in an 𝑓-algebra 𝐴 is said to be
an approximate unit if sup

𝜏

𝑎
𝜏

⋅ 𝑥 = 𝑥 for all 0 ≤ 𝑥 ∈ 𝐴.
An approximate unit {𝑎

𝜏

} is called weak approximate unit if

sup
𝜏

𝑓(𝑎
𝜏

𝑥) = 𝑓(𝑥) for all 0 ≤ 𝑓 ∈ 𝐴∼ and 0 ≤ 𝑥 ∈ 𝐴
(see [4, Definitions 2.2 and 7.1]). It is well known that if 𝐴 is a
semi-prime 𝑓-algebra then 𝐴 can be embedded as a ring and
𝑓-subalgebra in the unital 𝑓-algebra Orth(𝐴).

In Theorem 6, we gave two necessary and sufficient con-
ditions for which 𝑓-orthomorphisms are orthomorphisms.
In the following proposition, we shall present a second one
in terms of approximate unit. We have to impose, however,
on 𝐴 an extra condition, namely, the Stone condition (i.e.,
𝑥 ∧ 𝐼 ∈ 𝐴 whenever 𝑥 is positive in 𝐴, where 𝐼 is the
identity of Orth(𝐴)). It should be pointed out here that
every uniformly complete semi-prime 𝑓-algebra 𝐴 satisfies
the Stone condition.

Proposition 7. Consider in a semi-prime 𝑓-algebra 𝐴 the
following conditions.

Theorem 8. (i) 𝐴 has a weak approximate unit.
(ii) Orth(A∼) = Lb(A

∼,A∼, (A∼)∼n ) = Orth(A∼,A∼,
(𝐴∼)
∼

𝑛

).
(i)⇒(ii) Moreover, if 𝐴 satisfies the Stone condition then

(i)⇔(ii).

Proof. (i)⇒(ii) Assume that (𝑎
𝜏

)
𝜏

is a weak approximate unit.
Let 0 ≤ 𝑓 ∈ 𝐽0, it follows from 𝑓(𝑎

𝜏

𝑥) = 0 for all 0 ≤ 𝑥 ∈ 𝐴
that 𝑓(𝑥) = 0.

(ii)⇒(i) It follows from Theorem 6, that (𝐴∼)∼
𝑛

is semi-
prime. The result follows from [4, Theorem 7.2].

3. When 𝑓-Linear Operators
Are Orthomorphisms

In this section, we study the connection between 𝑓-linear
operators and orthomorphisms. From Proposition 4 and
Theorem 6 if 𝑓-linear operators on the dual 𝐴∼ of an 𝑓-
algebra 𝐴 are orthomorphisms and if 𝐽0 = {0} then the
two classes coincide. Next, we give an example of an 𝑓-
algebra such that 𝐽0 ̸= {0} in which f -linear operators are
orthomorphisms.

Example 9. Let 𝐴 = R2 equipped with the coordinatewise
operations and ordering. Consider themultiplication defined
by (𝑎, 𝑏) ⋅ (𝑐, 𝑑) = (𝑎𝑐, 0). It is easy to see that for all 𝑓 =
(𝑓
1

, 𝑓
2

) ∈ 𝐴∼ and 𝐹 = (𝐹
1

, 𝐹
2

) we have 𝑓 ⋅ (𝑎, 𝑏) = (𝑓
1

𝑎
1

, 0)

and 𝐹 ⋅ 𝑓 = (𝐹
1

⋅ 𝑓
1

, 0). Note that 𝐽0 = {𝑓 = (0, 𝑓
2

) : 𝑓
2

= 0}.
Let 𝑇 := ( 𝛼 𝛽

𝛾 𝜎

) an 𝑓-linear operator. An easy computation
shows that 𝛽 = 𝛾 = 0. Thus, 𝑇 is an orthomorphism.

It seems natural therefore to ask under what condition we
have Orth(𝐴∼) = L

𝑏

(𝐴∼, 𝐴∼, (𝐴∼)
∼

𝑛

). The answer is given in
the next theorem. First, let us discuss the ideal of nilpotents
elements in the bidual of an 𝑓-algebra 𝐴. Let 𝐹 ∈ 𝐴∼∼

the absolute kernel or null ideal 𝑁
𝐹

of 𝐹 is defined by the
following:

𝑁
𝐹

= {𝑓 ∈ 𝐴∼ : |𝐹| (
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨) = 0} . (18)
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It is evident that 𝑁
𝐹

is an order ideal. The disjoint comple-
ment of 𝐶

𝐹

= 𝑁𝑑
𝐹

is called the carrier of 𝐹 and is always a
band in 𝐴∼. Given 0 ≤ 𝐹 ∈ 𝐴∼∼ such that 𝐹 ⋅ 𝑓 = 0 for all
𝑓 ∈ 𝐴∼ (𝐹 is nilpotent in 𝐴∼∼), then (𝐽0)𝑑 ⊆ 𝑁

𝐹

. Indeed, let
𝑓 ∈ 𝐶

𝐹

, since 𝐶
𝐹

is a band and 𝑉
𝑥

∼∼ is an orthomorphism in
𝐴∼, then𝑓⋅𝑥 ∈ 𝐶

𝐹

for all𝑥 ∈ 𝐴. But, by hypothesis𝑓⋅𝑥 ∈ 𝑁
𝐹

,
𝑓 ⋅ 𝑥 ∈ 𝑁

𝐹

, so 𝑓 ⋅ 𝑥 = 0 for all 𝑥 ∈ 𝐴. This implies that
𝑓 ∈ 𝐽0. Consequently, 𝐶

𝐹

⊆ 𝐽0 and (𝐽0)𝑑 ⊆ 𝑁
𝐹

. For more
information about the nilpotent elements in the bidual of 𝑓-
algebra, the reader is referred to [4].

We are now in position to prove the main theorem in this
section.

Theorem 10. Let 𝐴 be an 𝑓-algebra. The followings are equiv-
alents.

(i) Orth(A∼) = Lb(A
∼,A∼, (A∼)∼n ).

(ii) dim 𝐽0 = 1.

Proof. (i)⇒(ii) Suppose that dim 𝐽0 ≥ 2. We can find
therefore positive elements ℎ, 𝑘 ∈ 𝐽0 such that ℎ ∧ 𝑘 = 0.
Let 0 ≤ 𝑎 ∈ 𝐴 such that 𝑘(𝑎) ̸= 0. Define the mapping
𝑇 : 𝐴∼ → 𝐴∼ by the following:

𝑇 (𝑓) = (𝑃
0

∘ 𝑓) (𝑎) ⋅ ℎ. (19)

Since 𝐹 ⋅ 𝑓 ∈ (𝐽0)𝑑 for all 𝐹 ∈ (𝐴∼)
∼

𝑛

and 𝑓 ∈ 𝐴∼, we get
𝑇(𝐹 ⋅ 𝑓) = 𝐹 ⋅ 𝑇𝑓 = 0. Thus 𝑇 is an 𝑓-linear operator. Clearly,
𝑇 is not an orthomorphism since ℎ ∧ 𝑘 = 0 and 𝑇(𝑘) ∧ ℎ =
𝑘(𝑎)ℎ ∧ ℎ ̸= 0.

(ii)⇒(i) Let 𝑇 be an 𝑓-linear mapping on 𝐴∼ and 0 ≤ ℎ ∈

𝐽0. First, we show that 𝑇((𝐽0)𝑑) ⊂ (𝐽0)𝑑 and 𝑇(𝐽0) ⊂ 𝐽0. There
exists 𝜑 ∈ 𝐴∼∼ such that 𝑃

0

∘𝑇(𝑓) = 𝜑(𝑓) ⋅ℎ. Since 𝑃
0

∘𝑇 is an
𝑓-linear operator, we derive that 𝜑(𝐹⋅𝑓) = 0 for all𝐹 ∈ (𝐴∼)

∼

𝑛

and 𝑓 ∈ 𝐴∼. That is 𝜑 ⋅ 𝑓 = 0 for all 𝑓 ∈ 𝐴∼. By the remark
above, we get 𝜑(𝑓) = 0 for all 𝑓 ∈ (𝐽0)𝑑. This implies that
𝑇(𝑓) ∈ (𝐽0)𝑑 whenever 𝑓 ∈ (𝐽0)𝑑. Now, If 𝑓 ∈ 𝐽0 then

𝑇𝑓 ⋅ 𝑥 = 𝑥∼∼ ⋅ 𝑇𝑓 = 𝑇 (𝑥∼∼ ⋅ 𝑓) = 𝑇 (𝑓 ⋅ 𝑥) = 0 ∀𝑥 ∈ 𝐴.
(20)

This shows that 𝑇(𝑓) ∈ 𝐽0, in particular 𝑇(ℎ) = 𝑡 ⋅ ℎwhere 𝑡 ∈
R. Now, let𝑓∧𝑔 = 0 in𝐴∼.We have to show that |𝑇𝑓| ∧ 𝑔 = 0.
Decompose 𝑓 and 𝑔 as 𝑓 = 𝛼ℎ + 𝑓

1

and 𝑔 = 𝛽ℎ + 𝑔
1

with
𝛼, 𝛽 ∈ R and𝑓

1

, 𝑔
1

∈ (𝐽0)𝑑.The decomposition of𝑇𝑓 is given
by the following:

𝑇𝑓 = 𝛼𝑡 ⋅ ℎ + 𝑇 (𝑓
2

) . (21)

Since 𝑓 ∧ 𝑔 = 0, then 𝛼 ⋅ 𝛽 = 0 and 𝑓
1

∧ 𝑔
1

= 0. On the other
hand, according to Lemma 5, we have |𝑇𝑓| ∧ 𝑔 ∈ 𝐽0. So

󵄨󵄨󵄨󵄨𝑇𝑓
󵄨󵄨󵄨󵄨 ∧ 𝑔 = (𝛼𝑡 ∧ 𝛽) ⋅ ℎ = 0 (22)

as 𝛼 ⋅ 𝛽 = 0. This completes the proof of the theorem.
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