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A new integer-order chaotic financial system is extended by introducing a simple investment incentive into a three-dimensional
chaotic financial system. A four-dimensional fractional-order chaotic financial system is presented by bringing fractional calculus
into the new integer-order financial system. By usingweighted integral thought, the fractional order derivative’s economicsmeaning
is given. The 0-1 test algorithm and the improved Adams-Bashforth-Moulton predictor-corrector scheme are employed to detect
numerically the chaos in the proposed fractional order financial system.

1. Introduction

In recent years there has been a high level of interest in the
study of chaotic economic systems [1, 2]. Chaotic systems
refer to nonlinear dynamical systems which are very sensitive
to initial conditions, in a such way that a small perturbation
of these could have unpredictable consequences on the evo-
lution equations. As a complex system, the financial system
shows a lot of nonlinear dynamical phenomena, such as
chaos, fractals, and bifurcation. Reference [3] firstly presented
a nonlinear financial model as follows:

𝑥̇ = 𝑧 + (𝑦 − 𝑎) 𝑥,

̇𝑦 = 1 − 𝑏𝑦 − 𝑥

2
,

𝑧̇ = −𝑥 − 𝑐𝑧,

(1)

where 𝑥 denotes the interest rate, 𝑦 denotes the investment
demand, 𝑧 denotes the price index, 𝑎 is the saving amount,
𝑏 is the cost per investment, 𝑐 is the demand elasticity of
commercial markets, and all three constants 𝑎, 𝑏, 𝑐 ≥ 0.

References [4–7] analyzed some complex behavior of sys-
tem (1), such as bifurcation and chaos. Reference [8] intro-
duced fractional calculus into system (1) and studied its

complex dynamics [9]. References [10, 11] studied chaos con-
trol of the fractional-order form of system (1). Reference
[12] proposed an uncertain fractal-order form of system (1)
and studied its chaos control via adaptive sliding mode.
Reference [13] proposed an uncertain and stochastic form of
system (1) with multiple delays. Reference [14] proposed a
discrete form of system (1) and studied its Neimark-Sacker
bifurcation. References [15, 16] presented a form of system
(1) with time-delayed feedback and studied its dynamics and
control. Reference [17] studied Hopf-pitchfork bifurcation
and periodic phenomena in the system (1) with time delays.
Reference [18] extended system (1) with the average profit
margin.

Investment is an important economic activity [19]. In
order to cope with high unemployment or backwardness, in
many cases a government would use their policies to stim-
ulate investment which will raise employment, exports, tax
revenue, and so on. These incentives may take the form of
investment grants or investment credit that reduces capital
costs for investors. But these various forms of investment
incentives also will arouse the investment demand of the
financial system (1). In other words, there may be a pos-
itive feedback mechanism between investment command
and investment incentive. Thus we can describe the above
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mechanismbyusing the following four-dimensional financial
system with a simple investment incentive:

𝑥̇ = 𝑧 + (𝑦 − 𝑎) 𝑥,

̇𝑦 = 1 − 𝑏𝑦 − 𝑥

2
+ 𝑢,

𝑧̇ = −𝑥 − 𝑐𝑧,

𝑢̇ = 𝑑𝑦,

(2)

where 𝑥, 𝑦, 𝑧, 𝑎, 𝑏, and 𝑐 have the same meanings as those
defined in the system (1), 𝑢 denotes the investment incentive,
and 𝑑 ≥ 0 is the coefficient of investment incentive intensity.

Researchers’ ever-growing interests in fractional calculus
have led the ever-broadening applications in a lot of fields
[20–25]. When fractional calculus is introduced into the
system (2), its fractional-order form can be described with
fractional derivative as follows:

𝑑

𝑞
1
𝑥

𝑑𝑡

𝑞
1

= 𝑧 + (𝑦 − 𝑎) 𝑥,

𝑑

𝑞
2
𝑦

𝑑𝑡

𝑞
2

= 1 − 𝑏𝑦 − 𝑥

2
+ 𝑢,

𝑑

𝑞
3
𝑧

𝑑𝑡

𝑞
3

= −𝑥 − 𝑐𝑧,

𝑑

𝑞
4
𝑢

𝑑𝑡

𝑞
4

= 𝑑𝑦,

(3)

in which 𝑞 = (𝑞

1
, 𝑞

2
, 𝑞

3
, 𝑞

4
) is subject to 0 < 𝑞

1
, 𝑞

2
, 𝑞

3
, 𝑞

4
< 1.

Remark 1. When 𝑞 = (1, 1, 1, 1), the system (3) degenerates
into the system (2).

The remainder of this paper is organized as follows. In
Section 2, we give some preliminaries, such as Caputo frac-
tional derivative’s economicsmeaning, numerical solutions of
the system (3), and the 0-1 test algorithm. In Section 3, we
numerically illustrate the chaos existence of the proposed
financial system by using the improved Adams-Bashforth-
Moulton predictor-corrector scheme and 0-1 test algorithm.
Finally conclusions in Section 4 close the paper.

2. Preliminaries

2.1. Caputo Fractional Derivative and Its Economics Meaning

2.1.1. Weighted Integral. The integer integral and derivative
are very helpful to understand fractional integral and deriva-
tive. An integral can be thought of as an area or a generaliza-
tion of area.

Definition 2. Given a weighted factor 𝑓(𝑥) and a function
𝑔(𝑥) for 𝑎 ≤ 𝑥 ≤ 𝑏, the definite weighted integral
∫

𝑏

𝑎
𝑓(𝑥)𝑔(𝑥)𝑑𝑥 is a real number whose geometrical interpre-

tation is the signed area under the graph of weighted function
𝑦 = 𝑓(𝑥)𝑔(𝑥) for 𝑎 ≤ 𝑥 ≤ 𝑏.

The Riemann integral is a simple and well-understood
integral definition. If the continuous function 𝑔(𝑥) is defined

on interval [𝑎, 𝑏] and a partition𝑃 of [𝑎, 𝑏] can be divided into
a collection of subintervals [𝑥

0
, 𝑥

1
], [𝑥

1
, 𝑥

2
], . . . , [𝑥

𝑛−1
, 𝑥

𝑛
],

for each 𝑖 = 1, 2, . . . , 𝑛, a point 𝑥

∗

𝑖
in [𝑥

𝑛−1
, 𝑥

𝑛
], and

its weighted factor 𝑓(𝑥

∗

𝑖
), weighted Riemann integral

∫

𝑏

𝑎
𝑓(𝑥)𝑔(𝑥)𝑑𝑥 can be rewritten as

∫

𝑏

𝑎

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥 = lim
𝑛→∞

𝑛

∑

𝑖=1

𝑓 (𝑥

∗

𝑖
) 𝑔 (𝑥

∗

𝑖
) Δ𝑥

𝑖 (4)

for any choice of the 𝑥∗
𝑖
in [𝑥

𝑛−1
, 𝑥

𝑛
] with Δ𝑥 = (𝑏 − 𝑎)/𝑛 and

𝑥

𝑖
= 𝑎 + 𝑖Δ𝑥.
When 𝑓(𝑥) = 1, the weighted integral ∫𝑏

𝑎
𝑓(𝑥)𝑔(𝑥)𝑑𝑥 =

∫

𝑏

𝑎
𝑔(𝑥)𝑑𝑥 completely degenerates into a common integral.

2.1.2. Caputo Fractional Derivative. Loosely speaking, a
derivative can be interpreted as a kind of change ratio. More
specifically it is the measure of infinitesimal change ratio of
the output over the infinitesimal change of the input. For
example, consider the following.

Definition 3. The first order derivative of function 𝑓(𝑡) with
respect to 𝑡 is given by

𝑓

󸀠
(𝑡) = lim
ℎ→0

𝑓 (𝑡 + ℎ) − 𝑓 (𝑡)

ℎ

.
(5)

Definition 4. The 2nd order derivative of function 𝑓(𝑡) with
respect to 𝑡 is given by

𝑓

󸀠󸀠
(𝑡) = lim
ℎ→0

𝑓

󸀠
(𝑡 + ℎ) − 𝑓

󸀠
(𝑡)

ℎ

.

(6)

Definition 5. The 𝑚th order derivative of function 𝑓(𝑡) with
respect to 𝑡 is given by

𝑓

(𝑚)
(𝑡) = lim
ℎ→0

𝑓

(𝑚−1)
(𝑡 + ℎ) − 𝑓

(𝑚−1)
(𝑡)

ℎ

= lim
ℎ→0

1

ℎ

𝑚

𝑚

∑

𝑛=0

(−1)

𝑛
(

𝑚

𝑛

)𝑓 (𝑡 − 𝑛ℎ) .

(7)

And there are several definitions of fractional derivatives,
roughly speaking, which can be thought of as generalized
above derivatives. The Caputo definition is a common nota-
tion of fractional derivative. Briefly the Caputo fractional
derivative is a kind of weighted change ratio in a time interval.
More specifically, the Caputo fractional derivative can be
considered as a kind of weighted integral of the integer order
derivative of a function on an interval. In this paper, we will
adopt the following Caputo definition.

Definition 6. The 𝑞th order fractional derivative of function
𝑓(𝑡) with respect to 𝑡 is given by

𝐷

𝑞

𝑎
𝑓 (𝑡) = ∫

𝑡

𝑎

𝐾

𝑞
(𝑡 − 𝜏) 𝑓

(𝑚)
(𝜏) 𝑑𝜏,

(8)

where 𝐾

𝑞
(𝑡 − 𝜏) = (𝑡 − 𝜏)

𝑚−𝑞−1
/Γ(𝑚 − 𝑞), Γ(𝑚 − 𝑞) =

∫

∞

0
𝜏

𝑚−𝑞−1
𝑒

−𝜏
𝑑𝜏, 𝑡 ∈ [𝑎, 𝑏],𝑚 is an integer and𝑚−1 < 𝑞 ≤ 𝑚.



Abstract and Applied Analysis 3

The functions 𝑓(𝑚)(𝑡) in Definitions 5 and 6 are the same.
When 𝐾

𝑞
(𝑡 − 𝜏) is regarded as a kind of weight, then 𝐷

𝑞

𝑎
𝑓(𝑡)

can be regarded as a kind of weighted integral with respect to
𝑓

(𝑚)
(𝑡). What is more, 𝑓(𝑚)(𝑡) can be regarded as 𝑚th order

change ratio of the function 𝑓(𝑡) at 𝑡; that is, there is no
memory effect in𝑓(𝑚)(𝑡). However,𝐷𝑞

𝑎
𝑓(𝑡) can be regarded as

a weighted integral of the𝑚th order derivative of the function
𝑓(𝑡) on the whole interval [𝑎, 𝑏], and the weight 𝐾

𝑞
(𝑡 − 𝜏)

depends on the specific time; that is, there arememory effects
in𝐷

𝑞

𝑎
𝑓(𝑡).

2.1.3. Caputo Fractional Derivative’s Economics Meaning. In
economics, let me illustrate a concrete example like the sys-
tem (3), for the investment demand function 𝑦(𝑡), its integer
order derivative 𝑦

(𝑚)
(𝑡), and its fractional order derivative

𝐷

𝑞

0
𝑦(𝑡), 𝑦(𝑚)(𝑡) can be regarded as 𝑚th order change ratio

of the investment demand 𝑦(𝑡) at the time 𝑡; that is, it is
unrelated to any time before the time 𝑡; that is, there is no
memory effect in𝑦(𝑚)(𝑡). However,𝐷𝑞

0
𝑦(𝑡) can be regarded as

a weighted integral of all 𝑚th order derivative of the invest-
ment demand 𝑦(𝑡) on the whole time interval [0, 𝑡]; that is,
𝐷

𝑞

0
𝑦(𝑡) does not only depend on the time 𝑡, but also depends

on any time before the time 𝑡; that is, there arememory effects
in 𝐷

𝑞

0
𝑦(𝑡). In the system (3), 𝑚 = 1 and its memory effects

are easier to be understood, so we will not repeat them here.
In fact, a lot of economics variables have memory effects; for
example, our past economic behavior may affect our present
and future ones. In other research fields, there are also a lot of
memory effects, such as psychological shadow, escalation of
commitment, sunk cost effect, lazy battery effect, and shape
memory effect. As mentioned above, there are somememory
effects in financial systems, so the fractional derivative may
be more suitable to study them.

2.2. Numerical Solutions of Fractional Order System. Based
on the improved Adams-Bashforth-Moulton predictor-
corrector scheme [26–29], one can solve fractional-order
ordinary differential equations. The numerical calculation
formula of fractional-order system (3) can be described as
follows.

With the initial value (𝑥

(𝑘)

0
, 𝑦

(𝑘)

0
, 𝑧

(𝑘)

0
, 𝑢

(𝑘)

0
), 𝑘 = 0, 1, . . . ,

[𝑚] − 1, and the fractional-order system (3) is equivalent to
the Volterra integral equations as follows:

𝑥 (𝑡) =

[𝑚]−1

∑

𝑘=0

𝑥

(𝑘)

0

𝑡

𝑘

𝑘!

+

1

Γ (𝑞

1
)

× ∫

𝑡

0

(𝑡 − 𝜏)

𝑞
1
−1

(𝑧 (𝜏) + (𝑦 (𝜏) − 𝑎) 𝑥 (𝜏)) 𝑑𝜏,

𝑦 (𝑡) =

[𝑚]−1

∑

𝑘=0

𝑦

(𝑘)

0

𝑡

𝑘

𝑘!

+

1

Γ (𝑞

2
)

× ∫

𝑡

0

(𝑡 − 𝜏)

𝑞
2
−1

(1 − 𝑏𝑦 (𝜏) − 𝑥

2
(𝜏) + 𝑢 (𝜏)) 𝑑𝜏,

𝑧 (𝑡) =

[𝑚]−1

∑

𝑘=0

𝑧

(𝑘)

0

𝑡

𝑘

𝑘!

+

1

Γ (𝑞

3
)

× ∫

𝑡

0

(𝑡 − 𝜏)

𝑞
3
−1

(−𝑥 (𝜏) − 𝑐𝑧 (𝜏)) 𝑑𝜏,

𝑢 (𝑡) =

[𝑚]−1

∑

𝑘=0

𝑢

(𝑘)

0

𝑡

𝑘

𝑘!

+

1

Γ (𝑞

4
)

× ∫

𝑡

0

(𝑡 − 𝜏)

𝑞
4
−1
𝑑𝑦 (𝜏) 𝑑𝜏.

(9)

Let ℎ = 𝑇/𝑁, 𝑡
𝑛

= 𝑛ℎ, 𝑛 = 0, 1, . . . , 𝑁 ∈ 𝑍

+, and
the fractional-order system (3) can be approximated to the
following difference equations:

𝑥

𝑛+1
= 𝑥

0
+

ℎ

𝑞
1

Γ (𝑞

1
+ 2)

× (𝑧

𝑝

𝑛+1
+ (𝑦

𝑝

𝑛+1
− 𝑎) 𝑥

𝑝

𝑛+1
) +

ℎ

𝑞
1

Γ (𝑞

1
+ 2)

×

𝑛

∑

𝑗=0

𝛼

1,𝑗,𝑛+1
(𝑧

𝑗
+ (𝑦

𝑗
− 𝑎) 𝑥

𝑗
) ,

𝑦

𝑛+1
= 𝑦

0
+

ℎ

𝑞
2

Γ (𝑞

2
+ 2)

× (1 − 𝑏𝑦

𝑝

𝑛+1
− (𝑥

𝑝

𝑛+1
)

2

+ 𝑢

𝑝

𝑛+1
) +

ℎ

𝑞
2

Γ (𝑞

2
+ 2)

×

𝑛

∑

𝑗=0

𝛼

2,𝑗,𝑛+1
(1 − 𝑏𝑦

𝑗
− (𝑥

𝑗
)

2

+ 𝑢

𝑗
) ,

𝑧

𝑛+1
= 𝑧

0
+

ℎ

𝑞
3

Γ (𝑞

3
+ 2)

× (−𝑥

𝑝

𝑛+1
− 𝑐𝑧

𝑝

𝑛+1
) +

ℎ

𝑞
3

Γ (𝑞

3
+ 2)

×

𝑛

∑

𝑗=0

𝛼

3,𝑗,𝑛+1
(−𝑥

𝑗
− 𝑐𝑧

𝑗
) ,

𝑢

𝑛+1
= 𝑢

0
+

ℎ

𝑞
4

Γ (𝑞

4
+ 2)

(𝑑𝑦

𝑝

𝑛+1
) +

ℎ

𝑞
4

Γ (𝑞

4
+ 2)

×

𝑛

∑

𝑗=0

𝛼

4,𝑗,𝑛+1
(𝑑𝑦

𝑗
) ,

(10)

where

𝑥

𝑝

𝑛+1
= 𝑥

0
+

1

Γ (𝑞

1
)

×

𝑛

∑

𝑗=0

𝛽

1,𝑗,𝑛+1
(𝑧

𝑗
+ (𝑦

𝑗
− 𝑎) 𝑥

𝑗
) ,
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𝑦

𝑝

𝑛+1
= 𝑦

0
+

1

Γ (𝑞

2
)

×

𝑛

∑

𝑗=0

𝛽

2,𝑗,𝑛+1
(1 − 𝑏𝑦

𝑗
− (𝑥

𝑗
)

2

+ 𝑢

𝑗
) ,

𝑧

𝑝

𝑛+1
= 𝑧

0
+

1

Γ (𝑞

3
)

𝑛

∑

𝑗=0

𝛽

3,𝑗,𝑛+1
(−𝑥

𝑗
− 𝑐𝑧

𝑗
) ,

𝑢

𝑝

𝑛+1
= 𝑢

0
+

1

Γ (𝑞

4
)

𝑛

∑

𝑗=0

𝛽

4,𝑗,𝑛+1
(𝑑𝑦

𝑗
) ,

𝛼

𝑖,𝑗,𝑛+1
=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝑛

𝑞
𝑖
+1

− (𝑛 − 𝑞

𝑖
) (𝑛 + 1)

𝑞
𝑖
, 𝑗 = 0,

(𝑛 − 𝑗 + 2)

𝑞
𝑖
+1

+ (𝑛 − 𝑗)

𝑞
𝑖
+1

−2(𝑛 − 𝑗 + 1)

𝑞
𝑖
+1

, 1 ≤ 𝑗 ≤ 𝑛,

𝑖 = 1, 2, 3, 4,

1, 𝑗 = 𝑛 + 1,

𝛽

𝑖,𝑗,𝑛+1
=

ℎ

𝑞
𝑖

𝑞

𝑖

((𝑛 − 𝑗 + 1)

𝑞
𝑖

− (𝑛 − 𝑗)

𝑞
𝑖

) ,

0 ≤ 𝑗 ≤ 𝑛, 𝑖 = 1, 2, 3, 4.

(11)

Errors of the above method are

Δ𝑥 = max
𝑗=0,1,...,𝑁

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥 (𝑡

𝑗
) − 𝑥

ℎ
(𝑡

𝑗
)

󵄨

󵄨

󵄨

󵄨

󵄨

= O (ℎ

𝑝
1
) ,

Δ𝑦 = max
𝑗=0,1,...,𝑁

󵄨

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑡

𝑗
) − 𝑦

ℎ
(𝑡

𝑗
)

󵄨

󵄨

󵄨

󵄨

󵄨

= O (ℎ

𝑝
2
) ,

Δ𝑧 = max
𝑗=0,1,...,𝑁

󵄨

󵄨

󵄨

󵄨

󵄨

𝑧 (𝑡

𝑗
) − 𝑧

ℎ
(𝑡

𝑗
)

󵄨

󵄨

󵄨

󵄨

󵄨

= O (ℎ

𝑝
3
) ,

Δ𝑢 = max
𝑗=0,1,...,𝑁

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 (𝑡

𝑗
) − 𝑢

ℎ
(𝑡

𝑗
)

󵄨

󵄨

󵄨

󵄨

󵄨

= O (ℎ

𝑝
4
) ,

(12)

where 𝑝
𝑖
= min(2, 1 + 𝑞

𝑖
).

2.3. The 0-1 Test Algorithm. There are many approaches
to detect chaos, but 0-1 test is one of the simplest and
most effective ones, which was proposed by Gottwald and
Melbourne [30] and also has already been successfully tested
for various discrete or continuous systems, such as [31–45].

In this section, we introduce the detailed steps of the 0-
1 test algorithm to robustly distinguish regular from chaotic
dynamics in deterministic continuous dynamical systems. In
fact, one can directly implement the 0-1 test algorithm if the
given time series is generated from a discrete time system.
But if the given time series is generated from a continuous
time system, there may be a well-known oversampling issue
that must overcome it. So the oversampling issue should
be considered when we distinguish regular from chaotic
dynamic system (3).

Consider a set of measurement data 𝜙
0
(𝑖) obtained from

a continuous time system, where 𝑖 = 1, 2, . . .,𝑇, and 𝑇 is the
amount of the data, the 0-1 test algorithm can be described as
follows.

Step 1. Rearrange the initial measurement data with an opti-
mal sampling time.

The average mutual information [46] between 𝜙

0
(𝑖) and

𝜙

0
(𝑖 + 𝜏) is defined as

𝐼 (𝜏) = ∑

𝜙
0
(𝑖),𝜙
0
(𝑖+𝜏)

𝑃 (𝜙

0
(𝑖) , 𝜙

0
(𝑖 + 𝜏))

× log
2
[

𝑃 (𝜙

0
(𝑖) , 𝜙

0
(𝑖 + 𝜏))

𝑃 (𝜙

0
(𝑖)) 𝑃 (𝜙

0
(𝑖 + 𝜏))

] ,

(13)

where 𝜏 is the time delay, that is, sampling time.
The value 𝜏 corresponding to the first local minimum of

the mutual information 𝐼(𝜏) is the optimal sampling time.
Thuswe can rearrange the initial measurement data 𝜙

0
(𝑖) into

the finely sampled measurement data 𝜙(𝑗) in the following
way:

𝜙 (𝑗) = 𝜙

0
(𝑖 + 𝑗𝜏) ,

(14)

where 𝑖 = 1, 2, . . . , 𝑇, and 𝑗 = 1, 2, 3, . . . , 𝑁.

Step 2. Choose a random number 𝑐 ∈ (𝜋/5, 4𝜋/5) and define
the following new coordinates (𝑝

𝑐
(𝑛), 𝑠

𝑐
(𝑛)):

𝑝

𝑐
(𝑛) =

𝑛

∑

𝑗=1

𝜙 (𝑗) cos (𝜃 (𝑗)) ,

𝑠

𝑐
(𝑛) =

𝑛

∑

𝑗=1

𝜙 (𝑗) sin (𝜃 (𝑗)) ,

(15)

where

𝜃 (𝑗) = 𝑗𝑐 +

𝑗

∑

𝑖=1

𝜙 (𝑗) , 𝑗 = 1, 2, 3, . . . , 𝑛.
(16)

Step 3. Define the mean square displacement 𝑀

𝑐
(𝑛) as

follows:

𝑀

𝑐
(𝑛) = lim

𝑁→∞

1

𝑁

×

𝑁

∑

𝑗=1

(𝑝

𝑐
(𝑗 + 𝑛) − 𝑝

𝑐
(𝑗))

2

+ (𝑠

𝑐
(𝑗 + 𝑛) − 𝑠

𝑐
(𝑗))

2

, 𝑛 ∈ [1,

𝑁

10

] .

(17)

Step 4. Define themodifiedmean square displacement𝐷
𝑐
(𝑛)

as follows:

𝐷

𝑐
(𝑛) = 𝑀

𝑐
(𝑛) − ( lim

𝑁→∞

1

𝑁

𝑁

∑

𝑗=1

𝜙 (𝑗))

2

1 − cos 𝑛𝑐
1 − cos 𝑐

.
(18)

Step 5. Define the median value of correlation coefficient 𝐾
as follows:

𝐾 = median (𝐾
𝑐
) , (19)
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where

𝐾

𝑐
=

cov (𝜉, Δ)
√var (𝜉) var (Δ)

∈ [−1, 1] , (20)

in which 𝜉 = (1, 2, 3, . . . , 𝑛cut), Δ = (𝐷

𝑐
(1), 𝐷

𝑐
(2), . . . ,

𝐷

𝑐
(𝑛cut)), 𝑛cut = round(𝑁/10), and the covariance and

variance are defined with vectors 𝑥, 𝑦 of length 𝑞 as follows:

cov (𝑥, 𝑦) = 1

𝑞

𝑞

∑

𝑗=1

(𝑥 (𝑗) − 𝑥) (𝑦 (𝑗) − 𝑦) ,

𝑥 =

1

𝑞

𝑞

∑

𝑗=1

𝑥 (𝑗) , var (𝑥) = cov (𝑥, 𝑥) .

(21)

Step 6. Interpret outputs as follows.

(1) 𝐾 ≈ 0 indicates the underlying dynamics is regular
(i.e., periodic or quasiperiodic), whereas 𝐾 ≈ 1

indicates the underlying dynamics is chaotic.
(2) Bounded trajectories in the (𝑝, 𝑠) plane imply the

underlying dynamics is regular (i.e., periodic or qua-
siperiodic), whereas Brownian-like (unbounded) tra-
jectories imply the underlying dynamics is chaotic.

3. Some Basic Properties of the System (3)
3.1. Symmetry and Invariance. Obviously, the four-dimen-
sional system (3) has a natural symmetry about the coordi-
nate plane 𝑦-𝑢 since the coordinate transformation (𝑥, 𝑦, 𝑧,

𝑢) → (−𝑥, 𝑦, −𝑧, 𝑢) satisfies the system is invariant for all
values of the system parameters.

3.2. Dissipativity and the Existence of Attractor. From system
(3), we obtain

∇𝑉 =

𝜕 (𝑑

𝑞
1
𝑥/𝑑𝑡

𝑞
1
)

𝜕𝑥

+

𝜕 (𝑑

𝑞
2
𝑦/𝑑𝑡

𝑞
2
)

𝜕𝑦

+

𝜕 (𝑑

𝑞
3
𝑧/𝑑𝑡

𝑞
3
)

𝜕𝑧

+

𝜕 (𝑑

𝑞
4
𝑢/𝑑𝑡

𝑞
4
)

𝜕𝑢

= − (𝑎 + 𝑏 + 𝑐) ,

(22)

that is, the system (3) is dissipative with an exponential con-
traction rate 𝑑𝑉/𝑑𝑡 = 𝑒

−(𝑎+𝑏+𝑐) when 𝑎 + 𝑏 + 𝑐 > 0. In other
words, the volume element 𝑉(𝑡) = 𝑉

0
𝑒

−(𝑎+𝑏+𝑐)𝑡 for the initial
volume𝑉

0
means the trajectories of chaotic system (3) would

converge ultimately onto an attractor as 𝑡 → ∞ with an
exponential rate (𝑎 + 𝑏 + 𝑐).

3.3. Equilibrium and Stability

Theorem7 (see [47]). Consider a nonlinear autonomous frac-
tional order system as follows:

𝐷

𝑞
𝑥 = 𝐹 (𝑋 (𝑡)) ,

𝑋 (0) = (𝑥

1
(0) , 𝑥

2
(0) , . . . , 𝑥

𝑛
(0))

𝑇

,

(23)

where 𝑋(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇, 𝐹(𝑋(𝑡)) = (𝑓

1
(𝑋(𝑡)),

𝑓

2
(𝑋(𝑡)), . . . , 𝑓

𝑛
(𝑋(𝑡)))

𝑇, 𝑞 = (𝑞

1
, 𝑞

2
, . . . , 𝑞

𝑛
)

𝑇, and 0 < 𝑞

𝑖
< 1

(𝑖 = 1, 2, . . . , 𝑛). If 𝐴 = DF
(𝑋̂)

is the jacobian matrix at
its equilibrium ̂

𝑋 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
)

𝑇, then the point ̂

𝑋 is
asymptotically stable when | arg(eig (A))| > qm𝜋/2, where
𝑞

𝑚
= max

1≤𝑖≤𝑛
{𝑞

𝑖
}.

The equilibrium of the system (3) satisfies the following
equations:

𝑧 + (𝑦 − 𝑎) 𝑥 = 0,

1 − 𝑏𝑦 − 𝑥

2
+ 𝑢 = 0,

−𝑥 − 𝑐𝑧 = 0,

𝑑𝑦 = 0.

(24)

By simple computation, one can obtain that system (3) has
only one equilibrium point 𝐸

0
(0, 0, 0, −1).

Proposition 8. The equilibrium point 𝐸
0
is unstable.

Proof. For the equilibrium point 𝐸
0
, the Jacobian matrix is

𝐽 (𝐸

0
) = (

−𝑎 0 1 0

0 −𝑏 0 1

−1 0 −𝑐 0

0 𝑑 0 0

) . (25)

It is easy to get its eigenvalues corresponding to the
equilibrium 𝐽(𝐸

0
) as follows: 𝜆

1
= −(1/2)𝑏 + (1/2)

√

𝑏

2
+ 4𝑑,

𝜆

2
= −(1/2)𝑏 − (1/2)

√

𝑏

2
+ 4𝑑, 𝜆

3
= −(1/2)(𝑐 + 𝑎) + (1/2)

√

(𝑐 − 𝑎)

2
− 4, and 𝜆

4
= −(1/2)(𝑐 + 𝑎) − (1/2)

√

(𝑐 − 𝑎)

2
− 4.

Obviously 𝜆
1
> 0, that is, | arg(𝜆

1
)| = 0, thus the equilib-

rium point 𝐸
0
is unstable based onTheorem 7.

This proposition is proved.

4. 0-1 Test for Chaos in the System (3)
In the next two subsections, some properties of the system (3)
will be, respectively, discussed by varying investment incen-
tive intensity 𝑑 and investment demand derivative 𝑞

2
.

The abovementioned Adams-Bashforth-Moulton predictor-
corrector scheme and 0-1 test algorithm can be employed to
get the desired numerical solutions of system (3).

4.1. Varying 𝑑 and Fixing 𝑞
1
=0.96, 𝑞

2
=0.94, 𝑞

3
=0.92, 𝑞

4
=0.78,

𝑎=3, 𝑏=0.4, and 𝑐=0.4. To simplify representation, one can fix
𝑞

1
= 0.96, 𝑞

2
= 0.94, 𝑞

3
= 0.92, 𝑞

4
= 0.78, 𝑎 = 3, 𝑏 = 0.4, and

𝑐 = 0.4 in this subsection. When the investment incentive
intensity 𝑑 varies, the corresponding 𝐾 values are shown in
Figure 1(a). The bifurcation diagram of interest rate 𝑥 with
increasing the investment incentive intensity𝑑 is presented in
Figure 1(b). Obviously the bifurcation diagramwell coincides
with the 𝐾 diagram. The two abovementioned figures both
show that system (3) changes gradually from chaos to stability
as the investment incentive intensity 𝑑 grows larger.
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Figure 1: The evolvement of 𝐾 and 𝑥 versus 𝑑 with 𝑞

1
= 0.96, 𝑞

2
= 0.94, 𝑞

3
= 0.92, 𝑞

4
= 0.78, 𝑎 = 3, 𝑏 = 0.4, and 𝑐 = 0.4.
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Figure 2: Phase portraits of system (3) with 𝑞

1
= 0.96, 𝑞

2
= 0.94, 𝑞

3
= 0.92, 𝑞

4
= 0.78, 𝑎 = 3, 𝑏 = 0.4, 𝑐 = 0.4, and 𝑑 = 0.1.

From Figure 1, the complex dynamical behavior of the
system (3) can be clearly understood. When the investment
incentive intensity 𝑑 is determined by its corresponding 𝐾 ≈

1, the system (3) is chaotic.Whereas the investment incentive
intensity 𝑑 is determined by its corresponding 𝐾 ≈ 0, the
system (3) is regular.

Let me take two specific examples as illustrations in the
system (3). When the investment incentive intensity 𝑑 = 0.1,
its corresponding phase portraits are strange attractors as
shown in Figure 2 and its trajectories in the new (𝑝, 𝑠)-plane
are Brownian-like as shown in Figure 3(a); that is, the system
(3) is chaotic. Whereas the investment incentive intensity
𝑑 = 2.8, its corresponding phase portraits are quasiperiodic
as shown in Figure 4 and its trajectories in the new (𝑝, 𝑠)plane
are bounded as shown in Figure 3(b); that is, the system (3) is
regular (quasiperiodic).

4.2. Varying 𝑞

2
and Fixing 𝑞

1
=0.98, 𝑞

3
=0.97, 𝑞

4
=0.78, 𝑎=3,

𝑏=0.4, 𝑐=0.4, 𝑑=0.1. In the following subsection, 𝑞
1
= 0.98,

𝑞

3
= 0.97, 𝑞

4
= 0.78, 𝑎 = 3, 𝑏 = 0.4, 𝑐 = 0.4, 𝑑 = 0.1 are

fixed. When 𝑑 varies, the corresponding 𝐾 values are shown
in Figure 5(a).The bifurcation diagram of interest rate 𝑥with
increasing the investment demand derivative 𝑞

2
is given in

Figure 5(b). Obviously the bifurcation diagramwell coincides
with the 𝐾 diagram, too. Figure 5 shows that the system (3)
changes gradually from stability to chaos as the investment
demand derivative 𝑞

2
grows larger.

From Figure 5 of the system (3), when the investment
demand derivative 𝑞

2
is determined by its corresponding𝐾 ≈

1, the system (3) is chaotic. Whereas the investment demand
derivative 𝑞

2
is determined by its corresponding 𝐾 ≈ 0, the

system (3) is regular.
For example, in the system (3), when the investment

demand derivative 𝑞
2
= 0.4, its corresponding phase portraits

are quasiperiodic as shown in Figure 7 and its trajectories in
the (𝑝, 𝑠) plane are bounded as shown in Figure 6(a); that is,
the system (3) is regular (quasiperiodic).Whereas the invest-
ment demand derivative 𝑞

2
= 0.89, its corresponding phase
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Figure 3: Plots in new coordinates (𝑝, 𝑠) space with 𝑞

1
= 0.96, 𝑞

2
= 0.94, 𝑞

3
= 0.92, 𝑞

4
= 0.78, 𝑎 = 3, 𝑏 = 0.4, and 𝑐 = 0.4.
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Figure 4: Phase portraits of system (3) for 𝑞
1
= 0.96, 𝑞

2
= 0.94, 𝑞

3
= 0.92, 𝑞

4
= 0.78, 𝑎 = 3, 𝑏 = 0.4, 𝑐 = 0.4, and 𝑑 = 2.8.
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Figure 5: The evolvement of 𝐾 and 𝑥 versus 𝑞
2
with 𝑞

1
= 0.98, 𝑞

3
= 0.97, 𝑞

4
= 0.78, 𝑎 = 3, 𝑏 = 0.4, 𝑐 = 0.4, and 𝑑 = 0.1.
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Figure 6: Plots in new coordinates (𝑝, 𝑠) space with 𝑞

1
= 0.98, 𝑞

3
= 0.97, 𝑞

4
= 0.78, 𝑎 = 3, 𝑏 = 0.4, 𝑐 = 0.4, and 𝑑 = 0.1.
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Figure 7: Phase portraits of system (3) for 𝑞
1
= 0.98, 𝑞

2
= 0.4, 𝑞

3
= 0.97, 𝑞

4
= 0.78, 𝑎 = 3, 𝑏 = 0.3, 𝑐 = 0.8, and 𝑑 = 0.1.
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Figure 8: Phase portraits of system (3) for 𝑞
1
= 0.98, 𝑞

2
= 0.89, 𝑞

3
= 0.97, 𝑞

4
= 0.78, 𝑎 = 3, 𝑏 = 0.3, 𝑐 = 0.8, and 𝑑 = 0.1.
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portraits are strange attractors as shown in Figure 8 and its
trajectories in the (𝑝, 𝑠) plane are Brownian-like as shown in
Figure 6(b); that is, the system (3) is chaotic.

5. Conclusion

A government is used to employing investment incentive to
regulate financial systems. In this paper, a simple investment
incentive is introduced into the classical chaotic financial
system, and a 4-D chaotic financial system is obtained.
What is more, there are some memory effects in the finan-
cial systems, so the 4-D fractional-order chaotic financial
system is proposed by introducing the fractional calcu-
lus into the mentioned 4-D integer-order financial system.
With the improved Adams-Bashforth-Moulton predictor-
corrector scheme, phase portraits and bifurcation diagrams
are illustrated, and then 𝐾 value diagram and Plots in new
coordinates (𝑝, 𝑠) space are given by using the 0-1 test algo-
rithm. Thus chaotic dynamics is distinguished from regular
dynamics in the 4-D fractional-order chaotic financial system
by the abovementioned methods.
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