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Firstly, we present a more general and realistic double-exponential jump model with stochastic volatility, interest rate, and jump
intensity. Using Feynman-Kac formula, we obtain a partial integrodifferential equation (PIDE), with respect to the moment
generating function of log underlying asset price, which exists an affine solution. Then, we employ the fast Fourier Transform
(FFT) method to obtain the approximate numerical solution of a power option which is conveniently designed with different risks
or prices. Finally, we find the FFT method to compute that our option price has better stability, higher accuracy, and faster speed,
compared to Monte Carlo approach.

1. Introduction
In financial markets, option pricing problem becomes impor-
tant for market practitioners ranging from individuals to
financial institutes. The classic methodology for option pric-
ing is developed by Black and Scholes [1]. In their model,
the stock price follows a geometric Brownian motion and the
option pricing formula in no arbitrage.However, a large num-
ber of empirical examples show that the initial assumption of
theirmodel generates high pricing deviations between theory
and practice, for example the volatility clustering in [2] and
the incompleteness ofmarkets in [3].Due to those drawbacks,
some market practitioners begin to propose new underlying
asset processes to fit empirical facts and develop new option
types to control and reduce risks.

Double-exponential jump model with stochastic volatil-
ity, interest rate, and jump intensity could overcome these
drawbacks of the Black-Scholes model in [2–8]. For example,
Santa-Clara and Yan [4, 5] find that innovations to two risks,
respectively, denoted by diffusion volatility process and jump
intensity process in their model, have affected the expected
return in the stock market. The empirical results show that
those two processes are largely uncorrelated and do not
support models that make jump intensity vary with the level
of diffusive volatility. Based on the results of their theory, we
believe that two components of risk are more conducive to

the optimization of our model. An excellent contribution of
our model is developing the model of Santa-Clara and Yan in
[4, 5], combing stochastic volatility, interest rate, and mean-
reverting jump intensity processes. Thus, our model better
corresponds with the real market than other constant jump
intensity models.

As for new option types, compared with other exotic
options, power option with considerable operability is sim-
pler and more convenient in practical financial market [9].
Unfortunately, research onpower option pricing is literally nil
according to our best knowledge.Therefore, in this paper, we
define a power option and creatively study and explain how
the power coefficient affects the valuation of option.

However, it is difficult to get an exact solution expres-
sion of option price. Several numerical methods have been
proposed to solve it, including finite difference methods by
Zhang andWang in [10, 11],Monte Carlo simulation byGreen
in [12] and Glasserman in [13] and the FFT method by Carr
andMadan in [14]. However, the finite differencemethod and
Monte Carlo simulation are difficult to be applied in option
pricing because they require substantially more computing
time [14–17]. Compared to those approaches, the FFT ismore
effective and simpler to compute in [14–17].Therefore, in this
paper, we employ the FFT to compute the valuation of power
potion.
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In conclusion, the prominent contribution in our paper is
modeling a more general and realistic model with stochastic
interest rate, volatility, and jump intensity.Defining the power
option, discussing the effects of power coefficient, and using
the FFT to obtain its numerical results are another three
contributions.

This paper proceeds as follows. In Section 2, we build
our model which links double-exponential jump, stochastic
interest rate, volatility, and jump intensity. The characteristic
function is derived in Section 3. In Section 4, we discuss the
approximate solutions for power option pricing by the FFT.
Numerical examples and discussions of the power coefficient
are shown in Section 5. Conclusions are in Section 6.

2. Our Model

Let (Ω,F
𝑡
,Q) be a probability spacewhereF

𝑡
is the filtration

generated by the Brownian motion and jump process at time
𝑡, 0 ≤ 𝑡 ≤ 𝑇 and Q is a risk-neutral probability. The
underlying asset price 𝑆(𝑡) at time 𝑡 is given by

𝑑𝑆 (𝑡) /𝑆 (𝑡) = (𝑟 (𝑡) − 𝜆 (𝑡)𝑚) 𝑑𝑡 + √𝑉 (𝑡)𝑑𝑊
𝑠
(𝑡)

+ (𝑒
𝑦
− 1) 𝑑𝑁

𝑠
(𝑡) , 𝑆 (0) = 𝑆

0
> 0,

𝑑𝑟 (𝑡) = 𝜅
𝑟
(𝜃

𝑟
− 𝑟 (𝑡)) 𝑑𝑡

+ 𝜀
𝑟
√𝑟 (𝑡)𝑑𝑊

𝑟
(𝑡) , 𝑟 (0) = 𝑟

0
> 0,

𝑑𝑉 (𝑡) = 𝜅V (𝜃V − 𝑉 (𝑡)) 𝑑𝑡

+ 𝜀V√𝑉 (𝑡)𝑑𝑊
V
(𝑡) , 𝑉 (0) = 𝑉

0
> 0,

𝑑𝜆 (𝑡) = 𝜅
𝜆
(𝜃

𝜆
− 𝜆 (𝑡)) 𝑑𝑡

+ 𝜀
𝜆
√𝜆 (𝑡)𝑑𝑊

𝜆
(𝑡) , 𝜆 (0) = 𝜆

0
> 0,

(1)

where𝑊𝑠(𝑡),𝑊𝑟(𝑡),𝑊V(𝑡), and𝑊𝜆(𝑡) are Brownianmotions;
the correlation coefficient of 𝑊𝑠(𝑡) and 𝑊𝑉(𝑡) is 𝜌 > 0,
and other motions are independent on each other; 𝑁𝑠(𝑡) is
a Poisson process with stochastic intensity 𝜆(𝑡), and jump
size 𝑦 is a random variable; 𝑚 = 𝐸Q[𝑒𝑦 − 1] is average
jump amplitude; 𝑟(𝑡) is the stochastic interest rate and 𝑉(𝑡)

is stochastic volatility of the underlying asset return; the
parameters 𝜀

𝑟
, 𝜀V, and 𝜀

𝜆
and the mean-reverting rates 𝜅

𝑟
,

𝜅V, and 𝜅
𝜆
are positive constants; the constants 𝜃

𝑟
, 𝜃V, and 𝜃

𝜆

are the long-term interest rate, volatility, and jump intensity,
respectively.

We suppose that jump size 𝑦 has an asymmetric double
exponential distribution 𝑓(𝑦),

𝑓 (𝑦) = 𝑝
1

𝜂
𝑢

𝑒
(−1/𝜂

𝑢
)𝑦
1
𝑦≥0

+ 𝑞
1

𝜂
𝑢

𝑒
(1/𝜂
𝑑
)𝑦
1
𝑦<0

, 0 < 𝜂
𝑢
< 1, 𝜂

𝑑
> 0,

(2)

where 𝑝, 𝑞 ≥ 0, 𝑝 + 𝑞 = 1 are probability of up-move jump
and down-move jump, respectively. 1/𝜂

𝑢
and 1/𝜂

𝑑
are mean

of positive jumps and negative jumps, respectively.Therefore,
𝑚 = 𝑝/(1 − 𝜂

𝑢
) + 𝑞/(𝜂

𝑑
+ 1) − 1.

3. The Characteristic Function

Given the log asset price process in (1), it is possible to
obtain the characteristic function 𝜙(⋅) of 𝑋(𝜏) at time 𝜏 =

𝑇 − 𝑡. Under the risk-neutral measure Q, firstly, we define
an explicit expression of the moment generating function
(MGF)𝑀(Φ,𝑋, 𝑟, 𝑉, 𝜆, 𝜏) of𝑋(𝜏) at time 𝜏,

𝑀(Φ, 𝑥, 𝑟, 𝑉, 𝜆, 𝜏) = Ε
Q
[𝑒

Φ𝑋(𝜏)
] = 𝑒

−𝑟𝜏
Ε
Q
[𝑒

𝑟𝜏
𝑒
Φ𝑋(𝜏)

] ,

(3)

and the complex-valued characteristic function is given by
𝜙(𝑢) = 𝑀(𝑖𝑢).

From (3), we find that 𝑀(Φ,𝑋, 𝑟, 𝑉, 𝜆, 𝜏) can be inter-
preted as a contingent claim that pays off 𝑒𝑟𝜏+Φ𝑋(𝑡) at time
𝜏. Therefore, it is possible to get the MGF 𝑀(Φ,𝑋, 𝑟, 𝑉, 𝜆, 𝜏)

and then obtain the characteristic function 𝜙(𝑢) in following
theorem.

Theorem 1. The characteristic function 𝜙(𝑢) of𝑋(𝜏) under the
measure Q is given by

𝜙 (𝑢) = 𝑒
𝑖𝑢𝑋+𝑖𝑢(𝑟−𝑑)𝜏+𝐴(𝑢,𝜏)+𝐵(𝑢,𝜏)𝑉+𝐶(𝑢,𝜏)+𝐷(𝑢,𝜏)𝜆

, (4)

where

𝐴 (𝑢, 𝜏) = −
𝜅V𝜃V

𝜀2V
(𝜑

+
𝜏 + 2 ln [

𝜑
−
+ 𝜑

+
𝑒−𝜍𝜏

2𝜍
]) ,

𝐵 (𝑢, 𝜏) = − (𝑖𝑢 + 𝑢
2
)

1 − 𝑒−𝜍𝜏

𝜑
−
+ 𝜑

+
𝑒−𝜍𝜏

,

𝐶 (𝑢, 𝜏) = −
𝜅
𝜆
𝜃
𝜆

𝜀2
𝜆

(𝜓
+
𝜏 + 2 ln[

𝜓
−
+ 𝜓

+
𝑒−𝜉𝜏

2𝜉
]) ,

𝐷 (𝑢, 𝜏) = 2Λ (𝑢)
1 − 𝑒

−𝜉𝜏

𝜓
−
+ 𝜓

+
𝑒−𝜉𝜏

,

𝜑
±
= ∓ (𝜅V − 𝑖𝑢𝜌𝜀V) + 𝜍,

𝜍 = √(𝜅V − 𝑖𝑢𝜌𝜀V)
2

+ 𝜀V
2 (𝑖𝑢 + 𝑢2),

𝜓
±
= ∓𝜅

𝜆
+ 𝜉,

𝜉 = √𝜅2
𝜆
− 2𝜀2

𝜆
Λ (𝑢),

Λ (𝑢) =
𝑝

1 − 𝑖𝑢𝜂
𝑢

+
𝑞

1 + 𝑖𝑢𝜂
𝑑

− 1 − 𝑖𝑢 (
𝑝

1 − 𝜂
𝑢

+
𝑞

1 + 𝜂
𝑑

− 1) .

(5)
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Proof. From (1), Feynman-Kac formula gives the following
PIDE for the characteristic function,

−𝑀
𝜏
+ (𝑟 −

1

2
𝑉 − 𝜆𝑚)𝑀

𝑥
+
1

2
𝑉𝑀

𝑥𝑥
+ 𝜅V (𝜃V − 𝑉)𝑀V

+
1

2
𝜀
2

V𝑉𝑀VV + 𝜌𝜀𝑉𝑀
𝑥V + 𝜅

𝜆
(𝜃

𝜆
− 𝜆)𝑀

𝜆

+
1

2
𝜀
2

𝜆
𝜆𝑀

𝜆𝜆
+ 𝜅

𝑟
(𝜃

𝑟
− 𝑟)𝑀

𝑟
+
1

2
𝜀
2

𝑟
𝑟𝑀

𝑟𝑟

+ 𝜆∫
∞

−∞

[𝑀 (𝑋 + 𝑦) −𝑀]𝜔 (𝑦) 𝑑𝑦 = 0,

𝑀 (Φ,𝑋, 𝑟, 𝑉, 𝜆, 0) = 𝑒
Φ𝑋

.

(6)

We conjecture that the solution of PDE (6) is

𝑀(Φ,𝑋, 𝑟, 𝑉, 𝜆, 𝜏)

= 𝑒
𝑋Φ+𝑟𝜏Φ+𝐴(Φ,𝜏)+𝐵(Φ,𝜏)𝑉+𝐶(Φ,𝜏)+𝐷(Φ,𝜏)𝜆+𝐸(Φ,𝜏)+𝐹(Φ,𝜏)𝑟

,
(7)

with initial conditions 𝐴(Φ, 0) = 0, 𝐵(Φ, 0) = 0, 𝐶(Φ, 0) = 0,
𝐷(Φ, 0) = 0, 𝐸(Φ, 0) = 0, and 𝐹(Φ, 0) = 0.

We consider the integral term in (6):

𝜆∫
∞

−∞

[𝑀 (𝑋+𝑦) −𝑀]𝜔 (𝑦) 𝑑𝑦=𝜆𝑀(Φ,𝑋, 𝑟, 𝑉, 𝜆, 𝜏) 𝑈 (Φ),

(8)

where 𝑈(Φ) := ∫
∞

−∞
(𝑒Φ𝑦 − 1)𝜔(𝑦)𝑑𝑦 = 𝑝/(1 − Φ𝜂

𝑢
) + 𝑞/(1 +

Φ𝜂
𝑑
) − 1.
Substituting (7) and (8) into (6) yields

− 𝐴
𝜏
(Φ, 𝜏) − 𝐵

𝜏
(Φ, 𝜏) 𝑉 − 𝐶

𝜏
(Φ, 𝜏) − 𝐷

𝜏
(Φ, 𝜏) 𝜆

− 𝐸
𝜏
(Φ, 𝜏) − 𝐹

𝜏
(Φ, 𝜏) 𝑟 −

1

2
𝑉Φ − 𝜆𝑚Φ

+
1

2
𝑉Φ

2
+ 𝜅V𝜃𝑉𝐵 (Φ, 𝜏) − 𝜅V𝑉𝐵 (Φ, 𝜏)

+
1

2
𝜀
2

V𝑉𝐵
2
(Φ, 𝜏) + 𝜌𝜀𝑉Φ𝐵 (Φ, 𝜏)

+ 𝜅
𝑟
𝜃
𝑟
𝐹 (Φ, 𝜏) − 𝜅

𝑟
𝑟𝐹 (Φ, 𝜏) +

1

2
𝜀
2

𝑟
𝑟𝐹

2
(Φ, 𝜏)

+𝜅
𝜆
𝜃
𝜆
𝐷 (Φ, 𝜏) − 𝜅

𝜆
𝜆𝐷 (Φ, 𝜏) +

1

2
𝜀
2

𝜆
𝜆𝐷

2
(Φ, 𝜏)

+ 𝜆𝑈 (Φ) = 0.

(9)

If we denote Λ(Φ) := 𝑈(Φ) − 𝑚Φ = 𝑝/(1 − Φ𝜂
𝑢
) + 𝑞/(1 +

Φ𝜂
𝑑
) − 1 − Φ(𝑝/(1 − 𝜂

𝑢
) + 𝑞/(1 + 𝜂

𝑑
) − 1), then (9) leads to a

system of seven ordinary differential equations:

𝐴
𝜏
(Φ, 𝜏) + 𝐶

𝜏
(Φ, 𝜏) + 𝐸

𝜏
(Φ, 𝜏)

= 𝜅V𝜃V𝐵 (Φ, 𝜏) + 𝜅
𝜆
𝜃
𝜆
𝐷 (Φ, 𝜏) + 𝜅

𝑟
𝜃
𝑟
𝐹 (Φ, 𝜏) ,

(10)

𝐵
𝜏
(Φ, 𝜏) = −

1

2
(Φ − Φ

2
) − (𝜅V − 𝜌𝜀Φ)

× 𝐵 (Φ, 𝜏) +
1

2
𝜀
2
𝐵
2
(Φ, 𝜏) ,

(11)

𝐷
𝜏
(Φ, 𝜏) = −𝜅

𝜆
𝐷(Φ, 𝜏) +

1

2
𝜀
2

𝜆
𝐷

2
(Φ, 𝜏) + Λ (Φ) , (12)

𝐹
𝜏
(Φ, 𝜏) = −𝑘

𝑟
𝐹 (Φ, 𝜏) +

1

2
𝜀
2

𝑟
𝐹
2
(Φ, 𝜏) , (13)

𝐴
𝜏
(Φ, 𝜏) = 𝑘V𝜃V𝐵 (Φ, 𝜏) , (14)

𝐶
𝜏
(Φ, 𝜏) = 𝑘

𝜆
𝜃
𝜆
𝐷 (Φ, 𝜏) , (15)

𝐸
𝜏
(Φ, 𝜏) = 𝑘

𝑟
𝜃
𝑟
𝐹 (Φ, 𝜏) . (16)

We consider the second ODE (11), in which the general
solution can be derived for the Riccati equation. Making the
substitution,

𝐵 (Φ, 𝜏) = −
2𝑂

󸀠
(𝜏)

𝜀2𝑂 (𝜏)
. (17)

Hence,

𝑂
󸀠󸀠
(𝜏) + (𝑘V − 𝜌𝜀Φ)𝑂

󸀠
(𝜏) −

𝜀
2

4
(Φ − Φ

2
)𝑂 (𝜏) = 0. (18)

The ODE (11) has a general solution of the form

𝑂 (𝜏) = 𝐶
1
𝑒
(−1/2)

𝜑−𝜏 + 𝐶
2
𝑒
(1/2)
𝜑+𝜏 , (19)

where

𝜑
±
= ∓ (𝑘V − 𝜌𝜀Φ) + 𝜍,

𝜍 = √(𝑘V − 𝜌𝜀Φ)
2

+ 𝜀2 (Φ − Φ2).

(20)

According to (15) and initial condition 𝐶(Φ, 0) = 0, 𝐶
1

and 𝐶
2
are two constants to be determined from boundary

conditions,

𝑂 (0) = 𝐶
1
+ 𝐶

2
,

𝑂
󸀠
(0) = −

1

2
𝜑
−
𝐶
1
+
1

2
𝜑
+
𝐶
2
.

(21)

We obtain that the solutions of (21) is

𝐶
1
=

𝜑
+
𝑂 (0)

2𝜍
,

𝐶
2
=

𝜑
−
𝑂 (0)

2𝜍
.

(22)



4 Journal of Applied Mathematics

Therefore, the exact solution of (11) is

𝐵 (Φ, 𝜏) = − (Φ − Φ
2
)

1 − 𝑒−𝜍𝜏

𝜑
−
+ 𝜑

+
𝑒−𝜍𝜏

. (23)

Substituting (23) into (14) and using initial conditions
𝐴(Φ, 0) = 0, we have

𝐴 (Φ, 𝜏) = −
𝜅V𝜃V

𝜀2
(𝜑

+
𝜏 + 2 ln [

𝜑
−
+ 𝜑

+
𝑒−𝜍𝜏

2𝜍
]) . (24)

The OEDs for 𝐶(Φ, 𝜏), 𝐷(Φ, 𝜏), 𝐸(Φ, 𝜏), and 𝐹(Φ, 𝜏) are
solved by analogy. Hence

𝐶 (Φ, 𝜏) = −
𝜅
𝜆
𝜃
𝜆

𝜀2
(𝜓

+
𝜏 + 2 ln[

𝜓
−
+ 𝜓

+
𝑒−𝜉𝜏

2𝜉
]) ,

𝐷 (Φ, 𝜏) = 2Λ (Φ)
1 − 𝑒

−𝜉𝜏

𝜓
−
+ 𝜓

+
𝑒−𝜉𝜏

,

𝐸 (Φ, 𝜏) = 0,

𝐹 (Φ, 𝜏) = 0,

𝜓
±
= ∓𝜅

𝜆
+ 𝜉,

𝜉 = √𝜅2
𝜆
− 2𝜀2

𝜆
Λ (Φ).

(25)

Using 𝜙(𝑢) = 𝑀(𝑖𝑢), it is easy to get Theorem 1.

4. Power Option Pricing Using the Fast
Fourier Transform

4.1. Power Option. Under the risk-neutral measure Q, the
price of the power call option 𝐶(𝑆, 𝑟, 𝑉, 𝜆, 𝑡) at time 𝑡 with
strike price𝐾 and maturity date 𝑇 is given by

𝐶 (𝑆, 𝑟, 𝑉, 𝜆, 𝑡) = 𝐸
Q
[𝑒

−∫
𝑇

𝑡

𝑟
𝑢
𝑑𝑢
(𝑆

𝛽
− 𝐾)

+

] . (26)

As a European option, the valuation of power at initial
time is

𝑐 (𝐾, 𝑇, 𝛽) := 𝐶 (𝑆, 𝑟, 𝑉, 𝜆, 0) = 𝐸
Q
[𝑒

−∫
𝑇

0

𝑟
𝑢
𝑑𝑢
(𝑆

𝛽
− 𝐾)

+

] .

(27)

Remark 2. In particularly, when 𝛽 = 1, the power option
degenerates into the vanilla option.

4.2. Fast Fourier Transform. Let 𝑘 denote the log of the strike
price 𝐾, and let 𝑐(𝑘) be the desired value of an initial power
call option with strike price 𝑒𝑘.The risk-neutral density of the
price 𝑋(𝑇) at time 𝑇 is 𝑞

𝑇
(𝑋). From (27), the initial value of

power call option is related to the risk-neutral density 𝑞
𝑇
(𝑋)

by

𝑐 (𝑘) = 𝑒
−∫
𝑇

0

𝑟
𝑢
𝑑𝑢

∫
∞

𝑘

(𝑒
𝛽𝑋(𝑇)

− 𝑒
𝑘
) 𝑞

𝑇
(𝑋) 𝑑𝑋. (28)

Here we employ the price of a zero coupon bond 𝑄(𝑇) at
time 𝑇 to express the stochastic discounted process 𝑒−∫

𝑇

0

𝑟
𝑢
𝑑𝑢

𝑄 (𝑇) = 𝑃 (𝑇) 𝑒
−𝐻(𝑇)𝑟

0 , (29)

where

𝑃 (𝑇) = [
2𝑚𝑒(𝑇/2)(𝜅𝑟+𝑚)

(𝜅
𝑟
+ 𝑚) (𝑒𝑚𝑇 − 1) + 2𝑚

]

2𝜅
𝑟
𝜃
𝑟
/𝜀
2

𝑟

,

𝐻 (𝑇) =
2 (𝑒𝑚𝑇 − 1)

(𝜅
𝑟
+ 𝑚) (𝑒𝑚𝑇 − 1) + 2𝑚

,

𝑚 = √𝜅2
𝑟
+ 2𝜀2

𝑟
.

(30)

Then (28) can be written as

𝑐 (𝑘) = 𝑄 (𝑇)∫
∞

𝑘

(𝑒
𝛽𝑋(𝑇)

− 𝑒
𝑘
) 𝑞

𝑇
(𝑋) 𝑑𝑋. (31)

Note that 𝑐(𝑘) tends to 𝑆𝛽
0
as 𝑘 tends to −∞, and hence the

call pricing function (31) is not square integrable. According
toWong and Lo [15], we now consider the modified call price
function 𝑐(𝑘) defined by

𝑐 (𝑘) ≡ 𝑒
𝛼𝑘
𝑐 (𝑘) , for 𝛼 > 0. (32)

The Fourier transform of 𝑐(𝑘) is defined by

𝜛
𝑇
(𝑢)

= ∫
∞

−∞

𝑒
𝑖𝑢𝑘

𝑐 (𝑘) 𝑑𝑘

= ∫
∞

−∞

𝑒
𝑖𝑢𝑘

𝑒
𝛼𝑘
𝑐 (𝑘) 𝑑𝑘

= ∫
∞

−∞

𝑒
𝑖𝑢𝑘

𝑒
𝛼𝑘
𝑄 (𝑇)∫

∞

𝑘

(𝑒
𝛽𝑋

− 𝑒
𝑘
) 𝑞

𝑇
(𝑋) 𝑑𝑋𝑑𝑘

= 𝑄 (𝑇)∫
∞

−∞

𝑞
𝑇
(𝑋)∫

𝑋

−∞

(𝑒
𝛽𝑋+𝛼𝑘

− 𝑒
(1+𝛼)𝑘

) 𝑒
𝑖𝑢𝑘

𝑑𝑘 𝑑𝑋

= 𝑄 (𝑇)∫
∞

−∞

𝑒
−𝑟𝑇

𝑞
𝑇
(𝑋)(

𝑒(𝛽+𝛼+𝑖𝑢)𝑋

𝛼 + 𝑖𝑢
−

𝑒
(1+𝛼+𝑖𝑢)𝑋

1 + 𝛼 + 𝑖𝑢
)𝑑𝑋

= 𝑄 (𝑇) [
𝜙
𝑇
(𝑢 − (𝛽 + 𝛼) 𝑖)

𝛼 + 𝑖𝑢
−
𝜙
𝑇
(𝑢 − (1 + 𝛼) 𝑖)

1 + 𝛼 + 𝑖𝑢
] .

(33)

Then the inverse transform of 𝜛
𝑇
(𝑢) is given by

𝑐 (𝑘) =
1

𝜋
∫
∞

0

𝑒
−𝑖𝑢𝑘

𝜛
𝑇
(𝑢) 𝑑𝑢. (34)

Then

𝑐 (𝑘) =
𝑒−𝛼𝑘

𝜋
∫
∞

0

𝑒
−𝑖𝑢𝑘

𝜛
𝑇
(𝑢) 𝑑𝑢. (35)



Journal of Applied Mathematics 5

Using the Trapezoid rule for the integral in (35), the value of
𝑐(𝑘) is approximated as

𝑐 (𝑘) ≈
𝑒
−𝛼𝑘

𝜋

𝑁

∑
𝑗=0

𝑒
−𝑖𝑢𝑘

𝜛
𝑇
(𝑢

𝑗
) ], (36)

where 𝑢
𝑗
= ](𝑗 − 1)

The FFT returns 𝑁 values of 𝑘 and for a regular spacing
size of 𝑧 where𝑁 is a power of 2. The value for 𝑘 is

𝑘
𝑢
= −𝑏 + 𝑧 (𝑎 − 1) , for 𝑎 = 1, . . . , 𝑁, (37)

which corresponds to log strike prices ranging from −𝑏 to 𝑏,
where 𝑏 = 𝑁𝑧/2.

Substituting (37) into (36) yields

𝑐 (𝑘
𝑢
) ≈

𝑒−𝛼𝑘𝑢

𝜋

𝑁

∑
𝑗=0

𝑒
−𝑖𝑧](𝑗−1)(𝑎−1)

𝑒
𝑖𝑏𝑢
𝑗𝜛

𝑇
(𝑢

𝑗
) ]; (38)

here we denote ]𝑧 = 2𝜋/𝑁.
With Simpson’s rule weightings, the value of European

call option is

𝑐 (𝑘
𝑢
) ≈

𝑒−𝛼𝑘𝑢

𝜋

𝑁

∑
𝑗=1

𝑒
−𝑖(2𝜋/𝑁)(𝑗−1)(𝑎−1)

𝑒
𝑖𝑏𝑢
𝑗𝜛

𝑇

× (𝑢
𝑗
)
]
3
[3 + (−1)

𝑗
− ℓ

𝑗−1
] ,

(39)

where

ℓ
𝑛
= {

1, 𝑛 = 0,

0, otherwise.
(40)

5. Numerical Examples and Discussion

In this section, we present several numerical experiments to
compare numerical differences between the FFT and Monte
Carlo simulation and discuss the effects of power coefficient.
Now, we perform some Monte Carlo simulations for the
endowment dynamics by using the discrete scheme of system
(1) as follows:

ln 𝑆 (𝑡 + Δ𝑡) = ln 𝑆 (𝑡) + (𝑟 − 𝑑 − 𝜆 (𝑡)𝑚 −
1

2
𝑉 (𝑡)) Δ𝑡

+ √𝑉 (𝑡)𝑑𝑊
𝑠
(𝑡)

+ (𝑒
𝑦
− 1) ln 𝑆 (𝑡) (𝑁 (𝑡 + Δ𝑡) − 𝑁 (𝑡)) ,

𝑉 (𝑡 + Δ𝑡) = 𝑉 (𝑡) + 𝜅V (𝜃V − 𝑉 (𝑡)) Δ𝑡 + 𝜀V√𝑉 (𝑡)𝑑𝑊
V
(𝑡) ,

𝜆 (𝑡 + Δ𝑡) = 𝜆 (𝑡) + 𝜅
𝜆
(𝜃

𝜆
− 𝜆 (𝑡)) 𝑑𝑡 + 𝜀

𝜆
√𝜆 (𝑡)𝑑𝑊

𝜆
(𝑡) ,

𝑟 (𝑡 + Δ𝑡) = 𝑟 (𝑡) + 𝜅
𝑟
(𝜃

𝑟
− 𝑉 (𝑡)) Δ𝑡 + 𝜀

𝑟
√𝑟 (𝑡)𝑑𝑊

𝑟
(𝑡) ,

(41)

where 𝑑𝑊𝑠(𝑡) = 𝜀
1
√Δ𝑡, 𝑑𝑊V(𝑡) = 𝜌𝜀

1
√Δ𝑡, 𝑑𝑊𝜆(𝑡) =

𝜀
2
√Δ𝑡, and 𝑑𝑊𝑟(𝑡) = 𝜀

3
√Δ𝑡; Δ𝑡 is the time interval; 𝜀

1
, 𝜀

2
,

Table 1: Power option prices in 𝛽 = 0.98 case: FFT versus Monte
Carlo.

Strike price FFT Monte Carlo % difference
90.2830 6.0740 6.0725 0.0246
92.1938 5.4487 5.448 0.0136
94.1451 4.8635 4.8624 0.0218
96.1377 4.3188 4.3212 −0.0544
98.1724 3.8143 3.8137 0.0161
100.2502 3.3498 3.3505 −0.0223
102.3720 2.9244 2.9242 0.0066
104.5387 2.5371 2.538 −0.035
106.7512 2.1867 2.1859 0.035
107.8750 2.0249 2.0235 0.0693
110.1581 1.7269 1.7255 0.0824

Table 2: Power option prices in𝛽 = 1 case: FFT versusMonte Carlo.

Strike price FFT Monte Carlo % difference
90.2830 10.7797 10.7799 −0.002
92.1938 9.9356 9.9344 0.0117
94.1451 9.1277 9.1266 0.0126
96.1377 8.3574 8.3575 −0.0013
98.1724 7.6256 7.6263 −0.0095
100.2502 6.9334 6.936 −0.0373
102.3720 6.2811 6.2804 0.0106
104.5387 5.6691 5.6693 −0.0033
106.7512 5.0974 5.0973 0.0016
107.8750 4.8265 4.8246 0.0401
110.1581 4.3145 4.3141 0.0102

and 𝜀
3
are samples from the standard normal distribution

with correlation coefficient 0; 𝑁(𝑡) = 𝑗, if 𝑆
𝑗
≤ 𝑡 ≤ 𝑆

𝑗+1
,

𝑆
𝑗

= ∑
𝑗

𝑘=1
𝜏
𝑘
, 𝜏

𝑘
is the 𝑘th jump interval which obeys an

exponential distribution with parameter 𝜆.
The option prices are calculated by Monte Carlo simula-

tion using

𝑉 (𝑆 (𝑡) , 𝐾, 𝑉 (𝑡) , 𝜆 (𝑡) , 𝑟 (𝑡) , 𝑡)

= 𝐸
Q
[(

𝑆𝜀
𝑇
+ 𝑆𝜀−

𝑇

2
− 𝐾)

+

| 𝐹
𝑡
] .

(42)

In our numerical examples by the FFT, we take𝑁 = 4098

and ] = 600/𝑁 which lead to the log strike spacing of
𝑧 = 𝜋/300 and the damping coefficient 𝛼 = 1.18. Other
parameters are denoted as 𝑟

0
= 0.05, 𝜅V = 0.3, 𝜃V = 0.15,

𝜀V = 0.1, 𝜅
𝜆
= 5, 𝜃

𝜆
= 0.6, 𝜀

𝜆
= 0.3, 𝜅

𝑟
= 0.5, 𝜃

𝑟
= 0.05,

𝜀
𝑟
= 0.1, 𝜌 = −0.25, 𝜂

𝑢
= 0.03, 𝜂

𝑑
= 0.13, 𝑝 = 0.4, 𝑞 = 0.6,

𝑆
0
= 100, 𝑉

0
= 0.15, 𝜆

0
= 3, 𝑇 = 0.5, 𝜅 = 100, and Δ𝑡 = 0.01.

The results are presented in Tables 1, 2, and 3.
Numerical examples presented that the FFT is faster

than Monte Carlo method with different parameters. To
different strike prices, the FFT takes around approximate 340
seconds to produce 4098 option prices in three numerical
experiments. However, Monte Carlo technique takes around
1260 seconds. On the level of the accuracy, comparing with
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Table 3: Power option prices in 𝛽 = 1.02 case: FFT versus Monte
Carlo.

Strike price FFT Monte Carlo % difference
90.2830 15.9551 15.9556 −0.0031
92.1938 14.8717 14.8715 0.0012
94.1451 13.81993 13.8197 0.0014
96.1377 12.8024 12.8038 −0.0111
98.1724 11.8216 11.8219 −0.0025
100.2502 10.8797 10.8799 −0.0018
102.3720 9.9786 9.9802 −0.0159
104.5387 9.1201 9.1193 0.0088
106.7512 8.3053 8.306 −0.0084
107.8750 7.9147 7.9155 −0.0105
110.1581 7.1675 7.1673 0.0034
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Figure 1: Power option prices in 𝛽 = 0.98 case.

Monte Carlo, we show that the percentage differences of the
FFT are less than 0.1% in Tables 1, 2, and 3.Therefore, the FFT
is more accurate and faster than Monte Carlo.

To examine effects of the power coefficient 𝛽, we calculate
valuations with 𝛽 = 0.98, 𝛽 = 1, and 𝛽 = 1.02. Firstly, we
can see that with the 𝛽 rising, the gaps between 𝑆

𝛽 and 𝐾

become greater in Figures 1, 2, and 3. Secondly, accordoing
to different 𝛽, we find that valuations of option are increasing
with the growth of 𝛽. It is because the fluctuations and risks
of the underlying asset price are enhancing with the growth
of 𝛽, and in order to compensate risk, the option seller
need gets higher price of option. It means that the seller can
design different power options with different risks or prices
by defining different the power coefficients.Therefore, power
option is one of convenient options which are designed easily.

6. Conclusion

In this paper, we study a more general and realistic double
exponential-jump model which links the stochastic interest
rate, volatility, and jump intensity. If we decide the constant
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Figure 2: Power option prices in 𝛽 = 1 case.
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Figure 3: Power option prices in 𝛽 = 1.02 case.

interest rate, volatility, or jump intensity, our model can be
degenerated into many previous models, for example, Black
and Scholes’ model in [1], Santa-Clara and Yan’ model in [4,
5], Carr andMadan’s model in [14], Zhang andWang’s model
in [10, 11], and Zhang and Wang’s model in [17].

Moreover, we obtain the characteristic function of the
log asset price, which is important to not only take the
FFT in [14–17] but also derive the option pricing formula,
for example, in [18]. Then, in our paper, a power option
is defined and its valuations are computed with the FFT
by characteristic function. Through numerical examples,
comparing the results produced from the FFT and theMonte
Carlo simulations of power option valuation, we find that
the FFT is approximate with Monte Carlo approach but has
better stability, higher accuracy, and faster speed in pricing
power option. In addition, we show that the seller can design
different power options with different risks or prices by
defining different the power coefficients.
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