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A convenient computational approach for solving mathematical model related to diffusion dispersion during flow through packed
bed is presented.The algorithm is based on the mixed collocationmethod.Themethod is particularly useful for solving stiff system
arising in chemical and process engineering. The convergence of the method is found to be of order 2 using the roots of shifted
Chebyshev polynomial. Model is verified using the literature data. This method has provided a convenient check on the accuracy
of the results for wide range of parameters, namely, Peclet numbers. Breakthrough curves are plotted to check the effect of Peclet
number on average and exit solute concentrations.

1. Introduction

The removal of the solublematerial, occupying the interstitial
space between the particles and in the pores of the particles,
from a saturated packed bed of particles is carried out by
the introduction of a solvent, for example, water or weak
wash liquor flowing through the bed. Solute removal is
associated with diffusion like dispersion of the solvent in
the direction of flow, known as longitudinal dispersion. The
mechanics involved are the sum of displacement of the fluid
containing solute by movement of water plug controlled by
fluid mechanics, dispersion due to back mixing, diffusion
due to concentration gradient, and adsorption-desorption due
to relative affinity of various solutes towards the particle
surface.The core problem is the prediction of the behavior of
initially sharp interface between the liquids having identical
dynamical and kinematical properties. This problem is of
considerable practical importance, for example, in determin-
ing the efficiency of solvent utilization or filtrate recovery
in washing of filter cakes. Mathematically, such chemical
engineering processes can be best described by two point
boundary value problems as follows:
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A great deal of effort has been applied to compute effi-
ciently the solution of transient partial differential equations
(1) and (2) analytically [1–7] and numerical algorithms such
as Hermite radial basis function interpolation numerical
scheme [8], two-stage Lie-group shooting method [9], finite
difference method [10–12], spectral collocation method [13],
Sinc differential quadrature method [14], orthogonal colloca-
tion method [10, 15–17], fitted mesh collocation method [18],
a novel numerical scheme [19], Galerkin/Petrov Galerkin
method [20–22], orthogonal collocation on finite elements
[23–25], factorized diagonal Padé approximation [26], spline
collocation methods [27, 28], variational iteration method
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Figure 1: A simple shell balance.

(VIM) [29, 30], homotopy analysis method [31, 32], homo-
topy perturbation method (HPM) [33–35], and energy bal-
ance method [36].

In finite-difference method, however, the solution of the
system is very unstable and requires strict selection of step
size. Nevertheless, the accuracy of numerical solution is not
so high.The discretization of even a few PDEs by the method
of lines can lead to an extremely large system of ODEs;
the numerical solution of which may have severe cost and
storage implications. The Galerkin method is unsuitable for
large systems because the integration process becomes very
tedious.Themethod ofOCMhere is preferred overHPMand
VIM, due to its simplicity and easy adaptability to computer
codes. In OCM the choice of trial function is comparatively
simple over other weighted residual methods. Due to its
easy adaptability to computer codes, Finlayson [37] has also
preferred OCM over other weighted residual methods and
also over HPM and VIM.

The present paper emphasizes the use of mixed colloca-
tionmethod. It is a variation of theweighted residualmethod.
It was developed to solve the models related to the transport
phenomenon by Villadsen and Stewart [15]. The collocation
points are the zeros of the orthogonal polynomials taken from
the expansion of the trial function, enforcing the residual to
vanish at the collocation points. It is a very simple, elegant,
and particularly useful technique for chemical engineering
problems. It gained popularity due to less computational time
and easy adaptability to the computer programs. Its accuracy
is comparable with the analytical one.

2. Theoretical Formulation

Consider a thin slice of a packed bed consisting of homo-
geneous symmetrical porous particles, as shown in Figure 1,
through which filtrate or wash water flows.The mass balance
equation for the packed bed can be described by an axial
dispersion model as
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The adsorption equilibrium relationship, describing the
intraparticle solute concentration as a function of the external
solute concentration, is linear; that is, 𝑞 = 𝑘𝑐. The inlet
boundary condition is assumed to be Danckwerts as
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At the outlet, no flux is assumed; that is, there is no loss of
solute from the bed through the plane at which the displacing
liquid is introduced as follows:
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The initial condition is

𝑐 = 𝑞 = 𝐶
𝑖
, at 𝜏 = 0, ∀𝜉. (6)

The equations (3)–(6) are converted into the dimen-
sionless form using dimensionless parameters mentioned in
nomenclature. The following equations are obtained:
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The exit solute concentration (𝐶
𝑒
) is calculated at 𝜉

∗
= 1.

The average solute concentration (𝐶av) is calculated by the
integration over the bed cross section as

𝐶av = ∫

1

0

𝐶 𝑑𝜉
∗
. (8)

3. Numerical Procedure

Details about the collocation method are available elsewhere
[15, 24, 25, 37]. In this method, the trial function simply
converts the system of partial differential equations into a
set of differential algebraic equations (DAEs). The system
obtained can be solved by using any computer subroutine.

After applying the mixed orthogonal collocation on (7),
following set of DAEs is obtained:
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The first- and second-order derivatives (𝐴
𝑗𝑖
s and 𝐵

𝑗𝑖
s) are

calculated by the method given by [24, 37]. The set of DAE’s
is solved using MATLAB with ode15s system solver. This
program uses the backward differentiation formula to solve
the stiff system of differential algebraic equations.
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3.1. Collocation Points. In the present study, zeros of shifted
Chebyshev polynomials have been used as collocation points,
which tend to minimize the error as proposed by Fan et
al. [38] and yield satisfactory results for the unsymmetrical
boundary value problems. The equidistant spacing in the
collocation points is usually not preferred due to Runge
divergence phenomenon (Villadsen and Stewart[15]). The
𝑁+1 interpolation points are chosen to be the extreme values
of an 𝑁th order shifted Chebyshev polynomial. The zeros of
shifted Chebyshev polynomials are calculated using Gauss-
Lobatto quadrature formula as

cos−1 (2𝜉∗
𝑗
− 1) =

𝜋 (𝑁 − 𝑗)

𝑁

, 𝑗 = 0, 1, . . . , 𝑁; (10)

five to nineteen zeros are used as collocation points to solve
the model.

3.2. Convergence Criterion. The convergence of the method
for steady state is checked by applying the following formula:
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where𝑀 is the lumped coefficientmatrix and𝐶 is the column
matrix of the collocation solutions at any time 𝑡. For large
values of the parameter Pe, the values of 𝐶 may fluctuate.
This indicates that more elements should be inserted to make
0 < 𝐿

∗
< 1. With the increase in number of elements, the

method converges asymptotically (Arora et al. [24]).

4. Verification of the Model

The numerical results are verified by comparing with the
analytic ones given by Brenner [1]. A good agreement is found
between these two results.The comparison is presented for 17
interior collocation points in Figure 2 for Pe 0, 32, and 80. A
deviation of 0%–5% is found between the numerical results
and analytic results for these Peclet numbers. However,
the magnitude of error has decreased with the increase in
collocation points, which is discussed in the next section.

4.1. Error Calculation. The relative error for exit solute con-
centration is calculated using the formulae (𝐶ex − 𝐶nm)/𝐶ex,
where 𝐶ex is the analytic value reported by Brenner [1]
and 𝐶nm is the numerical value of the present case for
exit solute concentration. The relative error is plotted for
different degrees of freedom for Pe = 40 in Figure 3. For
small degree of freedom, that is, for three interior collocation
points, the error increases very sharply, but as the number
of collocation points increases up to seventeen, the error
becomes negligible. After seventeenth degree of freedom,
the concentration profiles overlap with each other and yield
identical results. It justifies the fact that with the increase
in the number of interior collocation points after 15, no
significant change in the relative error is observed. Also for
small ormedium range of Pe, the relative error is approaching
to zero as the analytic and numerical results are matching
perfectly in Figure 2.
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Figure 2: Comparison between analytic and numerical results for
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5. Results and Discussion

The analytic solutions of similar type of axial dispersion
models using different boundary conditions are available in
the literature [1, 3]. These analytic solutions have constituted
a basis for the comparison with the numerical solutions
obtained from the present study. The results are presented
in the form of breakthrough curves for various degrees of
freedom for awide range of Peclet numbers varying fromvery
small to very large.

5.1. Effect of Peclet Number on 𝐶
𝑎V. Figure 4 shows the effect

of different Pe varying from 0 to 200 on average solute
concentration. For Pe = 200, the concentration profile is
very peaked and the convergence rate is very fast. However,
for small Pe, the concentration profile is much curved and
the convergence rate is very slow. It is also very clear from
Figure 4 that for large Pe, the behavior of concentration
profile is more or less the same, which ultimately shows that
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for higher Pe the effect of axial dispersion coefficient is the
least.

5.2. Effect of Peclet Number on 𝐶
𝑒
. Figure 5 shows that for

very small Pe, the exit solute concentration profile is very
steep, indicating that large time period is required for the
solute to diffuse out from the particle pores. As the Pe
increases the curve follows a Gaussian shape (Figure 6). For
medium range of Pe, however, the time for washing is large
resulting in slow convergence of concentration profiles, but it
is still in the range of acceptability.

Figure 7 shows the effect of large Pe on exit solute
concentration. It is observed that as Pe increases, the time for
washing decreases sharply. It indicates the fact that for large
Pe, axial dispersion coefficient becomes smaller, as a result,
more solute will diffuse out from the particle pores.
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Figure 6: Gaussian behavior of 𝐶
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curves for various Pe.
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5.3. Limiting Cases. Perfect mixing, that is, when Pe → 0. In
such situation each differential element of the solvent intro-
duced into the bed instantaneously mixes with the contents
of the bed, and an equal volume of the fluid is displaced from
the bed. The bed behaves like a perfect mixing chamber. For
very small Pe, diffusion plays a dominant role since interstitial
velocity is very small, resulting in slow convergence of the
concentration profiles as shown in Figure 8. This type of
situation is not considered ideal for industrial practice.

Perfect displacement, that is, when, Pe → ∞. In such a
situation, (3) reduces into a partial differential equation of
order one. The role of interstitial velocity becomes more
important than that of the diffusion. The solution profile
becomes very broaden, and time forwashing falls very rapidly
as shown in Figure 9. In such a situation the initial contents
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Figure 9: The case of perfect displacement.

of the bed are pushed out in a piston-like fashion by the
displacing fluid. But this situation is not practical as the
diffusion can never be zero or the interstitial velocity can
never be infinite.

Ideally, it is not possible to remove all the soluble
impurities from the packed bed.Therefore an optimum range
of Pe should be followed in the industry to keep a balance
between the removal of impurities and time of washing. Al-
Jabari et al. [20] have also shown that flow characterization of
homogeneous packed beds for bed void fraction of about 0.9
can best be represented by Pe = 40. This flow is intermediate
between the cases of perfect displacement (Pe = ∞) and
perfect mixing (Pe = 0).

5.4. Effect of Peclet Number on Packed Bed. Effect of Pe
on exit solute concentration at different locations in the
mass transfer zone (MTZ) for constant 𝜏

∗ is presented in
Figure 10. For small Pe, more back mixing effect is obtained
due to increasing effect of axial dispersion coefficient keeping
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Figure 10: Effect of different Pe onmass transfer zone for fixed value
of 𝜏∗.

the interstitial velocity and cake thickness constant. For
higher Pe, steeper mass transfer zone is observed. This figure
indicates that for small Pe, large time is required for the solute
to diffuse out of the particle pores.

6. Conclusions

Numerical solution of a packed bed comprising of porous
semisolid cylindrical particles is presented. A robust and
convenient technique of mixed collocation method shows
good agreement with the analytic results. The method is
computationally efficient as it consumes less computation
time. It is also observed that the efficiency of the results
increases with the increase in collocation points. For efficient
washing operations, the Pe should lie within the range of 20
to 40. A similar type of nonlinear problem can also be solved
in exactly the same manner, as the condition of linearity is of
no special use.

Nomenclature

𝑐: Concentration of solute in the liquor, kg/m3
C: Dimensionless concentration, (𝑐 − 𝐶

𝑆
)/(𝐶
𝑖
− 𝐶
𝑆
)

𝐶
𝑖
: Inlet solute concentration, kg/m3

𝐶
𝑆
: Solute concentration in the wash liquor, kg/m3

𝐷
𝐿
: Longitudinal dispersion coefficient, m2/s

𝑘: Mass transfer coefficient, m/s
𝐿: Thickness of the cake, m
Pe: Peclet number, dimensionless Pe = 𝑢𝐿/𝐷

𝐿

𝑞: Concentration of solute on the particles, kg/m3
𝑄: Dimensionless concentration, (𝑞 − 𝐶

𝑆
)/(𝐶
𝑖
− 𝐶
𝑆
)

𝑢: Interstitial velocity through bed, m/s
𝜀: Porosity of cake, dimensionless
𝜉: Distance from point of introduction of solvent, m
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𝜉
∗: Dimensionless distance, 𝜉/𝐿

𝜏: Time, s
𝜏
∗: Dimensionless time, 𝜏∗ = 𝑢𝜏𝜀/𝐿(1 − 𝜀)𝑘.
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