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The concentration and orientation of suspended fibers in a mixing layer are investigated numerically. Two cases (diffusive and
nondiffusive) are investigated for the fiber concentration distribution. The fine structures of the instantaneous distributions under
these two cases are very different due to molecular diffusion. Sharp front of concentration is observed in the nondiffusive case.
However, there is no obvious difference in the mean concentration between the two cases. With regard to the orientation, a fiber
may rotate periodically or approach an asymptotic orientation, which is determined by a determinant defined with the stain rate.
The symmetric part of the strain rate tends to make a fiber align to an asymptotic orientation, while the antisymmetric part drives a
fiber to rotate. When a fluid parcel passes through a region with relatively high shear rate, fibers carried by the fluid parcel are most
likely to rotate incessantly. On the other hand, in the region of relatively high extension rate, fibers tend to align to some asymptotic
orientation. Generally, fibers tend to align with the shear plane. This fact has significant implications in predicting the rheological
properties of fiber suspension flows.

1. Introduction

Fiber suspension flows can be found in many processes, such
as papermaking, polymer flows in melt-blowing extruders,
and nanofibers in the respiratory system. Here, discussions
are limited to rigid fibers, which are very slender bodies and
can be treated as high aspect ratio cylinders or ellipsoids.
The aspect ratio 𝑟

𝑐
is generally defined as the ratio of the

maximum and the minimum characteristic sizes of a fiber.
Because of the high aspect ratio, fiber suspensions generally
exhibit anisotropic properties. From a macroscopic point
of view, fiber suspension flows are generally nonNewtonian
fluid, and the flows are described by the Navier-Stokes
equation with appropriate constitutive equations for the
strain rate and stress. In this scale, the effects of fiber addi-
tive are treated through ensemble average. In other words,
continuous fields are used to describe the fibers states, most
importantly fiber concentration and orientation distribution.
From a microscopic point of view, the flow around a single

fiber and the corresponding translational and rotational
dynamics of a fiber are of concern.These two perspectives are
integrated to provide a continuous constitutive equation for
the strain rate and the stress through the statistical average
on all the possible microscopic flow structures. This two-
scale perspective leads the research in fiber suspension flow
to focus on two main aspects.

One aspect is to investigate the movement of fibers in
various flows. Since fibers are generally very small, the flow
around a fiber can usually be seen as a creeping flow in
the moving coordinates aligned with the fiber’s mass center.
Other than the translational movement, the rotation of a
fiber has received investigation long ago [1]. Since then, a
lot of research works have been done on the orientation
of fibers in various flows [2–15]. The other aspect is to
investigate the new properties of flows caused by the addition
of fibers. Intrinsically, it is the additional stress induced by
the fiber suspensions that makes the fiber suspensions flows
exhibit special rheological properties [16, 17], such as the drag



2 Abstract and Applied Analysis

reducing [18, 19], shear thinning [20]. In his serial works [21–
23], Batchelor developed a well-accepted model about the
additional stress, which closely relies on the fiber orientation
distribution.

In this work, the translational and rotational movements
of fibers in a canonicalmixing layer are simulated.Themixing
layer configuration is geometrically simple and is a very
broadly used model to investigate the shear flow, which char-
acterizes the most important fluid dynamics. A Lagrangian
particles scheme is used to deal with the convection of
fibers. The evolution of fiber orientation is tracked along
Lagrangian trajectories. This new scheme provides insightful
understanding of the fiber rotational dynamics, which helps
understand and predict the rheological properties of fiber
suspension flow. Meanwhile, it is computationally efficient
and highly flexible in adjusting the discretization error on the
orientation distribution. The paper is organized as follows.
Models and methods are described in Section 2. The results
on fiber concentration and orientation are presented in
Section 3. Section 4 is the conclusion.

2. Models and Methods

2.1. Mixing Layer Configuration. This work is to simulate
the concentration and orientation distribution of fibers in a
canonical mixing layer. To save the computational time, the
flow is assumed to be homogeneous in the spanwise direction.
On the other hand, the feedback from the fiber additive
is neglected; only one-way coupling is considered. Hence,
a planar mixing is solved. The configuration is depicted
in Figure 1. The spacial dimension is normalized by the
momentum thickness of the mixing layer at the inlet. The
computational methods for the fluid dynamics are the same
as those in Zhou and He [24]. Finite difference scheme
with structured grid is used. At the inlet, the streamwise
velocity profile is imposed by combining two Blasius laminar
boundary layers. The two streams have inlet velocities 𝑢

1
=

15m/s and 𝑢
2
= 5m/s, respectively. The Reynolds number at

the inlet based on the velocity difference and the momentum
thickness is 111. The normalized fiber concentrations at the
two streams are 𝑐

1
= 1 and 𝑐

2
= 0, respectively.

2.2. Fiber Concentration. It is assumed that the fiber con-
centration 𝑐 is a passive scalar which satisfies the convection
diffusion equation

𝜕𝑐

𝜕𝑡

+ ∇ ⋅ (u𝑐) = 𝐷
𝑐
∇
2

𝑐. (1)

The assumption is valid when the fiber is very small and
follows the fluid flow very well; additionally, the fiber con-
centration is very low and the additional stress due to the
fiber additive is negligible.Themain purpose is to investigate
the Schmidt number effect on the fiber concentration in the
mixing layer configuration here.The Schmidt number is Sc =
]/𝐷
𝑐
, where ] is the kinematic viscosity. Two cases Sc = 1 and

Sc = ∞ (i.e., 𝐷
𝑐
= 0) are investigated. The concentrations in

the two streams of themixing layer at the inlet are assumed to
be 0 and 1 (nondimensionalized). The absolute magnitude of
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Figure 1: Schematic view of the mixing layer, with instantaneous
fiber concentration 𝑐 in the mixing layer for the case Sc = 1.

the concentration is immaterial, since the fiber concentration
has no impact on the fluid flow (one-way coupling).

2.3. Fiber Rotational Dynamics. The rotation of a fiber is
described by the Jeffery [1] equation

ṗ = 𝜔 ⋅ p + 𝜆 (𝜖 ⋅ p − 𝜖 : ppp) , (2)

where p is the unit vector aligned with the fiber axis
(Figure 2), the dot over a variable denotes the time derivative,
𝜔 = (∇u† − ∇u)/2 is the vorticity tensor, 𝜖 = (∇u† + ∇u)/2
is the deformation rate tensor, and 𝜆 = (𝑟2

𝑐
− 1)/(𝑟

2

𝑐
+ 1). The

equation is originally derived for an ellipsoid in Stokes flows.
It is found [1] that the force acting on the ellipsoid reduces to
two couples, with one tending tomake the ellipsoid adopt the
same rotation as the surrounding fluid and the other tending
to set the ellipsoid with its axes parallel to the principle
axes of distortion of the surrounding fluid. This discovery
was verified by the subsequent experiment of Taylor [25].
Furthermore, Bretherton [26] found that the same equation
(2) also applies to a revolution body.

As discussed in Section 2.1, themixing layer is assumed to
be homogeneous along the spanwise direction (𝑧 in Figure 2).
Hence, only components 𝜔

12
in the vorticity tensor and 𝜖

11
,

𝜖
12
, and 𝜖

22
in the deformation rate tensor are present to

determine the rotation of a fiber. Under this condition, the
Jeffery equation (2) is simplified to

𝑝̇
1
= 𝜔
12
𝑝
2
+ 𝜆 (𝜖

11
𝑝
1
+ 𝜖
12
𝑝
2
− 𝜖
11
𝑝
3

1

− 2𝜖
12
𝑝
1

2

𝑝
2
− 𝜖
22
𝑝
2

2

𝑝
1
) ,

(3a)

𝑝̇
2
= − 𝜔

12
𝑝
1
+ 𝜆 (𝜖

12
𝑝
1
+ 𝜖
22
𝑝
2
− 𝜖
11
𝑝
2

1
𝑝
2

− 2𝜖
12
𝑝
1
𝑝
2

2
− 𝜖
22
𝑝
3

2
) ,

(3b)

𝑝̇
3
= −𝜆𝑝

3
(𝜖
11
𝑝
2

1
+ 2𝜖
12
𝑝
1
𝑝
2
+ 𝜖
22
𝑝
2

2
) . (3c)

The orientation vector implicitly satisfies the condition 𝑝2
1
+

𝑝
2

2
+ 𝑝
2

3
= 1, since the fiber is rigid, which cannot extend or

shrink.
The rotational dynamic equations (3a), (3b), and (3c) are

integrated along a Lagrangian trajectory (discussed in the
next section) with the local vorticity and deformation rate by
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Figure 2: Schematics of fiber orientation. The bold line segment
denotes the fiber orientation vector.

the solver DOPRI5 [27], which uses a fourth order Runge-
Kuttamethodwith adaptive time step based a fifth order error
estimate.

2.4. Lagrangian Particles Scheme. For the translationalmove-
ment of fibers, two cases Sc = 1 and Sc = ∞ are consid-
ered. For Sc = 1, the WENO scheme [28] is used to solved
the convection diffusion equation (1). For the nondiffusive
case Sc = ∞, the traditional schemes in Eulerian frame-
work usually introduce numerical diffusion. To avoid the
numerical diffusion, the Lagrangian particles scheme [29]
is used for the case Sc = ∞. Under the conditions of
no diffusion and negligible inertial, the movement of the
mass center of a fiber follows the local fluid parcel. Hence,
the transport of fibers can be described by the Lagrangian
particles method. In the Lagrangian particles method, the
trajectories of a large number of Lagrangian particles are
tracked simultaneously. Meanwhile, the Lagrangian particles
carry the fiber concentration and orientation, which evolve
along the Lagrangian trajectories independently. The fiber
concentration is a scalar, which is easy to deal with. When
calculating the orientation distribution at a spatial position,
which is a function on the unit sphere (Figure 2), statistics of
fiber orientation at the position are required. A Monte Carlo
scheme is used to simulate the orientation evolution along
a trajectory. A Lagrangian particle carries many fibers, and
these fibers all obey the rotational dynamics equation (2).The
initial orientations of these fibers are generated randomly on
the unit sphere. The orientation distribution is approximated
through statistical averaging on the orientations of all these
fibers. Thousands of fibers are used to obtain statistically
convergent orientation distribution. The main advantage of
the Lagrangian particles scheme is that the convection of all
the fibers along a Lagrangian particle is solved simultaneous
in the same way. The number of fibers along a trajectory can
be adjusted conveniently to balance the computational cost
and the statistical error.

The dynamic equations for the Lagrangian particles and
the concentration and orientation of fibers are as follows:

dx𝑝

d𝑡
= k𝑝 (x𝑝) , (𝑝 = 1, 2, . . . , 𝑁

𝑝
) , (4)

d𝑐𝑝

d𝑡
= 0, (𝑝 = 1, 2, . . . , 𝑁

𝑝
) , (5)

in addition to (3a), (3b), and (3c), where the strain rate is
obtained along the trajectories determined by (4). Here x𝑝
and k𝑝 denote the location and the velocity of a Lagrangian
particle 𝑝, and𝑁

𝑝
is the number of Lagrangian particles.

In this study, the flow velocity is solved in the traditional
Eulerian framework. Fiber concentration and orientation
are evolved along Lagrangian trajectories. The Eulerian and
Lagrangian frameworks are coupled together. On the one
hand, trilinear interpolation is used to convert variables from
the Eulerian framework to the Lagrangian framework. To
calculate the particle trajectories, the particle velocity k𝑝(x𝑝)
is obtained by interpolating the Eulerian velocity field at
position x𝑝. The strain rate is also obtained from the Eulerian
field through interpolating it in a grid cell. On the other hand,
the reconstruction of Eulerian fields from the Lagrangian
particles uses

𝑐 (x) = 1

𝑁
Ω

∑

𝑝∈Ω

𝑐
𝑝

, (6)

where Ω is the set of particles located in the cell x and 𝑁
Ω

is the number of such particles. Similar treatment for the
orientation is carried out.

Lagrangian particles are injected at the inlet of themixing
layer at a rate proportional to the inlet velocity, to make the
number of particle 100 in a cell on average. The number
of particles be in a cell controls the discretization error
in evaluating the orientation distribution, which can be
conveniently adjusted. Increasing the number of particles
does not affect the cost of solving the fluid dynamics but
only increases the cost to track the Lagrangian trajectories
and the integration of fiber rotational dynamics along these
trajectories. It is found that 100 particles in a cell are enough
to produce statistically convergent results.

3. Results and Discussion

3.1. Fiber Concentration. The instantaneous fiber concentra-
tions for Sc = 1 and Sc = ∞ are given in Figure 3. The
concentration distribution for the two cases has similar large
structure. For Sc = 1, the concentration changes smoothly
from 0 to 1. However, for Sc = ∞, the concentration is
either 0 or 1; no intermediate value is in-between, which
is typical for nondiffusive mixing process. The Lagrangian
particles scheme captures the sharp front quite well. The
front separating 𝑐 = 0 and 1 in Figure 3(b) is not smooth
but exhibits staggered structure, which is related to the grid
resolution. It is clear that high resolution is needed to resolve
the fine scalar structure in high Schmidt numbers flows.

Although the instantaneous fine structures of the fiber
concentration for Sc = 1 and Sc = ∞ are very different, the
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Figure 3: Comparison of instantaneous fiber concentration distributions (clipped). (a) Sc = 1, (b) Sc = ∞. Same isocontours of 𝑐 = 0.9 and
𝑐 = 0.1 for Sc = 1 are also added in (b) for comparison purpose. The fiber concentration has a sharp front for Sc = ∞.
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Figure 4: Mean concentration a cross profiles at various crosswise
locations (𝑥∗ = 137, 𝑥∗ = 228, and 𝑥∗ = 319) for Sc = 1 (a, b, and c)
and Sc = ∞ (A, B, and C).

mean values are almost the same. Figure 4 shows the mean
concentration cross profiles at various streamwise locations,
where 𝑦+ = 𝑦/𝛿(𝑥∗) is the normalized coordinate with the
local momentum thickness (𝛿(𝑥∗)) of the mixing layer. The
profiles a, b, and c are for Sc = 1 at 𝑥∗ = 137, 𝑥∗ = 228,
and 𝑥∗ = 319, respectively. The profiles A, B, and C are for
Sc = ∞ at the same locations corresponding to a, b, and c.
There is no significant difference between the diffusive and
nondiffusive cases. Only minor difference between a and A is
observed. It is clear that themolecular diffusion has negligible
effect in determining the mean concentration in turbulent
flows. Generally, the Schmidt number for the translational
movement of a fiber is much larger than unity. Hence, the
molecular diffusion can be neglected in determining the
mean concentration.

3.2. Fiber Orientation. The orientation vector has three com-
ponents in the Cartesian coordinates. However, only two
of them are independent. The third one can be determined
through the normalization condition 𝑝2

1
+ 𝑝
2

2
+ 𝑝
2

3
= 1.

Equivalently, the orientation vector can be described in
the spherical coordinates with 𝜙 = arctan(𝑝

2
/𝑝
1
) and

𝜃 = arccos(𝑝
3
) (see Figure 2). For a given constant strain

rate, Zhou et al. [30] have derived the analytical solution for
the rotational movement of a fiber in a planar flow. They
found that a fiber either rotates periodically or approaches an
asymptotic orientation according to the sign of a determinant
Δ, which is defined with the strain rate. The asymptotic
orientation (if Δ > 0) and the period (if Δ < 0) are also given
there. In their derivation the shear stain is normalized by the
component 𝑢

𝑦
. Their formula cannot describe the case when

𝑢
𝑦
= 0. Here we extend their results slightly to present the

results in amore general form (including the case for 𝑢
𝑦
= 0).

The determinant is defined as

Δ = 𝜆
2

(𝜖
2

11
+ 𝜖
2

12
− 𝜔
2

12
) . (7)

If Δ > 0, the fiber approaches an asymptotic orientation with

𝜙 =

−𝜆𝜖
11
± 2Δ

𝜆𝜖
11
− 𝜔
12

, (8a)

𝜃 =

{
{

{
{

{

𝜋

2

if 𝜃
0
=

𝜋

2

,

0 otherwise,
(8b)

where 𝜃
0
is the initial polar angle.The results state that except,

for very special initial condition 𝜃
0
= 𝜋/2, a fiber will

approach the shear plane (𝜃 = 𝜋/2) and the azimuthal angle
given by (8a). If Δ < 0, the fiber rotates periodically, with
period

𝑇 =

𝜋

√|Δ|

. (9)

It is worth pointing out that the results on the asymptotic
angle (if Δ > 0) and the period (if Δ < 0) differ from those
of Zhou et al. [30] due to the difference in the definition
of Δ (a constant factor 4). The results here are slightly more
general in applicable conditions and more compact in form.

In this simulation, a large number of Lagrangian tra-
jectories (over one million) are tracked. The evolution of
fiber concentration and orientation along these trajectories is
simulated. The trajectories reveal how fluid parcels move in
the mixing layer. Figure 5 shows the Lagrangian trajectories
that pass through the same spatial cell (at various time
instants). The cell is located at 𝑥∗ = 319 and corresponds to
the median of the mean concentration, 𝑐 = 0.5. The median
𝑐 = 0.5 does not lie in the center line of the mixing layer
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Figure 5: Lagrangian trajectories passing through a point at various
time instants.

but shifts to the slow stream side (here negative 𝑦). From
a Lagrangian point of view, this can be explained by the
ensemble average of the concentration along the trajectories
passing through the cell. Since there is no diffusion, the
concentration along a Lagrangian trajectory is constant (see
(5)); the constant is determined by the initial value at the inlet
of the mixing layer. From Figure 5 it is obvious that a fluid
parcel originating from the fast stream (𝑦 > 0) is more likely
to travel down to the slow stream region than a fluid parcel
originating from the slow stream (𝑦 < 0) to travel up to the
fast stream region. That is why the median 𝑐 = 0.5 is located
in the slow stream region. On another aspect, the fluctuation
of the trajectories also quantitatively reflects the strength of
the mixing.

The fiber orientation along a Lagrangian trajectory is
determined by the vorticity and deformation rate that a fiber
undergoes. Figure 6 shows the profiles of the vorticity and
deformation rate along a sample Lagrangian trajectory. The
profile of the determinant Δ from (7) is also given in the
figure. Theoretical analysis demonstrates that a fiber will
rotate periodically if Δ < 0. From (7) it is clear that only 𝜔

12

contributes to the negative part of the determinant. In other
words, the antisymmetric part of the strain rate (vorticity)
drives a fiber to rotate, and the symmetric part (deformation
rate) tends to push a fiber to a specific orientation. In fact,
as Lipscomb et al. [31] pointed out, (2) may be interpreted
physically as stating the p rotates with the fluid according to
term “𝜔 ⋅p”, and simultaneously partially stains with the fluid
according to term “𝜆𝜖 ⋅ p”. The term, −𝜆𝜖 : p, compensates a
change of length which resulted from the motion described
by 𝜔 ⋅ p and 𝜆𝜖 ⋅ p, because p is of unit length. This physical
interpretation is very informative. However, it is far from
being straightforward to directly derive the conclusion from
(2) per se. Here, the determinant Δ (see (7)) has very simple
form, and it is straightforward to draw the conclusion from
the form of Δ. By comparing the components of the vorticity
and deformation rate in Figure 6, it is clear that the profile
of 𝜔
12

is more irregular than those of 𝜖
11

and 𝜖
12

(notice
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Figure 6: Profiles of the vorticity and deformation rate along a sam-
ple Lagrangian trajectory.The continuous gray is the corresponding
determinant Δ evaluated from (7).
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Figure 7: Components of the fiber orientation vector along the same
sample Lagrangian trajectory as used in Figure 6.

the zig-zag structures). Along this sample trajectory, most of
the Δ profile in Figure 6 is negative, indicating that a fiber
is of periodic rotation most of the time along the sample
Lagrangian trajectory but with changing period.

Figure 7 shows the three components of the orientation
vector for a fiber traveling along the same Lagrangian trajec-
tory as discussed in Figure 6. Both 𝑝

1
and 𝑝

2
exhibit nearly

periodic behavior. However, 𝑝
3
approaches 0. The initial

values of 𝑝
1
, 𝑝
2
, and 𝑝

3
are not important; all will exhibit

similar evolution behavior as shown in Figure 7; except that
for a special initial value 𝑝

3
= 1 (and hence 𝑝

1
= 𝑝
2
= 0),

the orientation vector will not change. The fact that 𝑝
3

approaches 0 shows that a fiber is very likely to align to the
shear plane (𝑥-𝑦), insensitive to its initial orientation.
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Figure 8: Orientation distribution at six positions: 1, 2, and 3 are at 𝑥∗ = 228 and correspond to 𝑐 = 0.3, 𝑐 = 0.5, and 𝑐 = 0.7, respectively; 4,
5, and 6 are at 𝑥∗ = 319 and correspond to 𝑐 = 0.3, 𝑐 = 0.5, and 𝑐 = 0.7, respectively. (a) Azimuthal angle 𝜙; (b) polar angle 𝜃.

Figures 6 and 7 show the strain rate and orientation along
the same sample Lagrangian trajectory. Along this selected
trajectory, the magnitude of vorticity 𝜔

12
is relatively high

compared to 𝜖
11

and 𝜖
12
, most of the Δ value is negative,

and hence a fiber mostly rotates periodically, with changing
period predicted by (9). Investigation in a large number of
Lagrangian trajectories shows that Δ is usually larger than
zero, whichmeans that fibers along these trajectories aremost
likely to approach an asymptotic orientation predicted by
(8a) and (8b). However, since the strain rate is not constant
along a trajectory, the asymptotic orientation also changes
correspondingly. Hence, a fiber seems to swing incessantly
when it tries to approach an evolving asymptotic orientation.
Through averaging the orientation over a very large number
of Lagrangian trajectories that pass through the same location
(at various time instants), the orientation distribution at
the location can be obtained. Figure 8 gives the orientation
distribution probability density function (pdf(𝜙) and pdf(𝜃))
at various locations. It is worth pointing out that pdf(𝜙) is
only shown in the range [−0.5𝜋, 0.5𝜋], which has period 𝜋,
since a fiber which orients at 𝜙 or 𝜙 + 𝜋 is indistinguishable
in its distribution, and pdf(𝜃) is given in the range [0, 0.5𝜋],
which has period 0.5𝜋, since the flow field is symmetric with
respect to the plane 𝜃 = 0. Distributions 1, 2, and 3 are at cross-
section 𝑥∗ = 228 and correspond to the mean concentration
𝑐 = 0.3, 𝑐 = 0.5, and 𝑐 = 0.7, respectively. Distributions 4,
5, and 6 are at cross section 𝑥∗ = 319 and also correspond
to 𝑐 = 0.3, 𝑐 = 0.5, and 𝑐 = 0.7, respectively. Through
comparing the corresponding distributions at 𝑥∗ = 228 and
𝑥
∗

= 319, no evident difference is found. It implies that the
fiber orientation distribution (which is uniformly distributed
at the inlet) has already reached a stable state, and it does
not evolve along the streamwise direction any longer in the
turbulent region. In Figure 8(a) the distributions pdf(𝜙) all

have similar shape, a peak, and a valley. Under a simple shear
flow, pdf(𝜙)will have a peak at 𝜙 = 0 [30, 32]. Here, due to the
synthetic effect of vorticity and deformation rate the peak is
in between 0 and 0.5𝜋, which is believed to be closely related
to the steady asymptotic direction predicted by (8a) and (8b).
On the other hand, the valley is believed to be related to the
unsteady asymptotic direction in (8a) and (8b). For pdf(𝜃),
it has a very high peak at 𝜃 = 0.5𝜋, which agrees with the
analysis on the evolution of 𝑝

3
in Figure 7 that a fiber is very

likely to turn to the shear plane (𝜃 = 0) and stays there. In
Figure 8 the distributions 1 and 4 correspond to 𝑐 = 0.3. Both
pdf(𝜙) andpdf(𝜃) are found to be flatter than the distributions
corresponding to 𝑐 = 0.5 or 𝑐 = 0.7. This may be due to
the position corresponding to 𝑐 = 0.3 is located in the slow
stream of the mixing layer, and the magnitude of the strain
rate is relatively smaller than those in the fast stream.

4. Conclusion

The concentration and orientation of suspended fibers in
a mixing layer are investigated numerically. The flow is
assumed to be homogeneous in the spanwise direction, and
the effects of fiber additive on the flow are neglected (very
dilute suspension). A Lagrangian particles scheme is used
to deal with the convection of fibers. With this Lagrangian
particles scheme, fiber concentration and orientation evolve
along Lagrangian trajectories independently. Ensemble aver-
age over a large number of Lagrangian trajectories is used
to obtain statistically steady values of concentration and
orientation. This Lagrangian particles scheme is found to
be very efficient to compute the fiber orientation, which
is discretized by hundreds of points on the unit sphere to
represent the fiber orientation distribution.



Abstract and Applied Analysis 7

Two cases Sc = 1 (diffusive) and Sc = ∞ (nondiffusive)
are investigated for the fiber concentration distribution.
The fine structures of the instantaneous distributions under
these two cases are very different due to the molecular
diffusion. Sharp front of the concentration is observed in the
nondiffusive case. However, there is no obvious difference in
the mean concentration between the two cases. Molecular
diffusion is negligible in determining themean concentration
of fibers in turbulent flows.

For the rotational dynamics of a fiber, the analytical
solution of Zhou et al. [30] is slightly generalized, and the
new solution is presented in a more compact and informative
form. A fiber will rotate periodically if the determinant is
negative, where the determinant is defined with the strain
rate. A fiber will approach an asymptotic orientation if
the determinant is positive. The sign of the determinant is
determined by the relative magnitude of the deformation
rate and the vorticity. The symmetric part of the strain rate
tends to make a fiber align to an asymptotic orientation,
while the antisymmetric part makes a fiber rotate. This
general conclusion helps understand the evolution of the
fiber orientation along Lagrangian trajectories. When a fluid
parcel passes through a region with relatively high shear rate,
fibers followed by the fluid parcel are most likely to rotate
incessantly. On the other hand, in the region of relatively
high extension rate, fibers tend to align to some asymptotic
orientation. Analysis on the orientation distribution shows
that the distribution is stable in the turbulent region, which
does not change along the streamwise direction. It is also
believed that the orientation is not sensitive to the initial
distribution at the inlet of the mixing layer. The pdf of the
azimuthal angle 𝜙 has the shape of a peak and a valley, which
most likely correspond to the steady and unsteady asymptotic
orientations predicted by the analytical solution. The pdf
of the polar angle 𝜃 has a prominent peak at 𝜃 = 0.5𝜋,
which shows that fibers are very likely to align with the shear
plane. This fact has significant implications in predicting the
rheology of fiber suspension flows.
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