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We deal with complementarity problems over second-order cones.The complementarity problem is an important class of problems
in the real world and involves many optimization problems. The complementarity problem can be reformulated as a nonsmooth
system of equations. Based on the smoothed Fischer-Burmeister function, we construct a smoothing Newton method for solving
such a nonsmooth system.The proposed method controls a smoothing parameter appropriately. We show the global and quadratic
convergence of the method. Finally, some numerical results are given.

1. Introduction

In this paper, we consider the second-order cone complemen-
tarity problem (SOCCP) of the following form:

find (𝑥, 𝑦, 𝑝) ∈ R𝑛 × R𝑛 × Rℓ such that

𝑥 ∈K, 𝑦 ∈K, ⟨𝑥, 𝑦⟩ = 0, 𝐹 (𝑥, 𝑦, 𝑝) = 0,
(1)

where ⟨⋅, ⋅⟩ denotes the Euclidean inner product, ℓ ≥ 0, 𝑛 ≥ 1,
𝐹 : R𝑛 × R𝑛 × Rℓ → R𝑛+ℓ is a continuously differentiable
function, and K denotes the Cartesian product of several
second-order cones (SOCs), that is,K =K𝑛
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The SOCCP is a wide class of complementarity problems.
For example, it involves the mixed complementarity problem

(MCP) and the nonlinear complementarity problem (NCP)
[1] as subclasses, since K = R𝑛

+
when 𝑛

𝑖
= 1 for

each 𝑖 = 1, . . . , 𝑚 (=𝑛). Moreover, the second-order cone
programming (SOCP) problem can be reformulated as an
SOCCPbyusing theKarush-Kuhn-Tucker (KKT) conditions.
Apart from them, somepractical problems in the game theory
[2, 3] and the architecture [4] can be reformulated as the
SOCCP.

Much theoretical and algorithmic research has beenmade
so far for solving the SOCCP. Fukushima et al. [5] showed that
the natural residual function, also called the min function,
and the Fischer-Burmeister function for the NCP can be
extended to the SOCCP by using the Jordan algebra. They
further constructed the smoothing functions for those SOC
complementarity (C-) functions and analyzed the properties
of their Jacobian matrices. Hayashi et al. [6] proposed a
smoothingmethod based on the natural residual and showed
its global and quadratic convergence. On the other hand,
Chen et al. [7] proposed another smoothing method with the
natural residual in which the smoothing parameter is treated
as a variable in contrast to [6]. Moreover, they showed the
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global and quadratic convergence of their method. Similar
to Chen et al., Narushima et al. [8] proposed a smoothing
method treating a smoothing parameter as a variable. They
used the Fischer-Burmeister function instead of the natural
residual function and also provided the global and quadratic
convergence of the method.

In the present paper, we propose a smoothing method
with the Fischer-Burmeister function for solving SOCCP (1).
The main difference from the existing methods is twofold.

(i) We do not assume the special structure on the
function 𝐹 in SOCCP (1). In [6, 7, 9, 10], the authors
focused on the following type of SOCCP:

𝑥 ∈K, 𝑦 ∈K, ⟨𝑥, 𝑦⟩ = 0, 𝑦 = 𝑓 (𝑥) , (3)

which is a special case of SOCCP (1) with

ℓ = 0, 𝐹 (𝑥, 𝑦, 𝑝) = 𝑓 (𝑥) − 𝑦 (4)

for some continuously differentiable function 𝑓 : R𝑛

→ R𝑛. In [11–13], the authors studied the following
type of SOCCP:

𝑥 ∈K, 𝑦 ∈K, ⟨𝑥, 𝑦⟩ = 0,

𝑥 = 𝑓 (𝑝) , 𝑦 = 𝑔 (𝑝) ,
(5)

which is obtained by letting

ℓ = 𝑛, 𝐹 (𝑥, 𝑦, 𝑝) = [
𝑓 (𝑝) − 𝑥
𝑔 (𝑝) − 𝑦

] , (6)

where 𝑓 and 𝑔 : R𝑛 → R𝑛 are continuously dif-
ferentiable functions. However, we assume neither (4)
nor (6).Therefore, ourmethod is applicable to a wider
class of SOCCPs.

(ii) In contrast to [8], we do not incorporate the smooth-
ing parameter into the decision variable. We control
the smoothing parameter appropriately in each itera-
tion.

This paper is organized as follows. In Section 2, we give
some preliminaries, which will be used in the subsequent
analysis. In Section 3, we review the SOC C-function. In
particular, we recall the property of the (smoothed) Fischer-
Burmeister function. In Section 4, we propose an algorithm
for solving the SOCCP and discuss its global and local con-
vergence properties. In Section 5,we report somepreliminary
numerical results.

Throughout the paper, we use the following notations. Let
R
+
and R

++
be the sets of nonnegative and positive reals. For

a symmetric matrix 𝐴, we write 𝐴 ⪰ 𝑂 (resp., 𝐴 ≻ O) if 𝐴 is
positive semidefinite (resp., positive definite). For any 𝑥, 𝑦 ∈
R𝑛, we write 𝑥 ⪰ 𝑦 (resp., 𝑥 ≻ 𝑦) if 𝑥−𝑦 ∈K𝑛 (resp., 𝑥−𝑦 ∈
intK𝑛), andwe denote by ⟨𝑥, 𝑦⟩ the Euclidean inner product,
that is, ⟨𝑥, 𝑦⟩ := 𝑥⊤𝑦. We use the symbol ‖ ⋅ ‖ to denote
the usual ℓ

2
-norm of a vector or the corresponding induced

matrix norm.We oftenwrite 𝑥 = (𝑥
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2
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often regard R𝑝 × R𝑞 as R𝑝+𝑞. We sometimes divide a vector

𝑥 ∈ R𝑛 according to the Cartesian structure of K, that is,
𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ R𝑛

1 × ⋅ ⋅ ⋅×R𝑛
𝑚 = R𝑛 with 𝑥𝑖 ∈ R𝑛

𝑖 . For any
Fréchet-differentiable function 𝐺 : R𝑛 → R𝑚, we denote its
transposed Jacobian matrix at 𝑥 ∈ R𝑛 by ∇𝐺(𝑥) ∈ R𝑛×𝑚. For
a given set 𝑆 ⊂ R𝑛, int 𝑆, bd 𝑆, and conv 𝑆 mean the interior,
the boundary, and the convex hull of 𝑆 in R𝑛, respectively.

2. Some Preliminaries

In this section, we recall some background materials and
preliminary results used in the subsequent sections.

First, we review the Jordan algebra associated with SOCs.
For any 𝑥 = (𝑥
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× R𝑛−1 (𝑛 ≥ 1), the Jordan product associated with K𝑛 is
defined as
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When 𝑛 = 1, that is, the second components 𝑥
2
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2
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vacuous, we interpret that the second component in (7) is also
vacuous. We will write 𝑥2 to mean 𝑥 ∘ 𝑥 and write 𝑥 + 𝑦 to
mean the usual componentwise addition of vectors 𝑥 and 𝑦.
For the Jordan product, the identity element 𝑒 ∈ R𝑛 is defined
by 𝑒 := (1, 0, . . . , 0)⊤. It is easily seen that 𝑥 ∘ 𝑒 = 𝑒 ∘ 𝑥 = 𝑥 for
any 𝑥 ∈ R𝑛. For any 𝑥 ∈K𝑛, we define 𝑥1/2 as
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Note that (𝑥1/2)2 = 𝑥1/2 ∘ 𝑥1/2 = 𝑥 and that for 𝑛 = 1, 𝑥 ∘ 𝑦 =
𝑥
1
𝑦
1
, 𝑒 = 1, and𝑥1/2 = 𝜍 = √𝑥1. Although the Jordan product

is not associative, associativity holds under the inner product
in the sense that
⟨𝑥, 𝑦 ∘ 𝑧⟩ = ⟨𝑦, 𝑧 ∘ 𝑥⟩ = ⟨𝑧, 𝑥 ∘ 𝑦⟩ for any 𝑥, 𝑦, 𝑧 ∈ R𝑛.

(9)

In addition, it follows readily from the definition of K𝑛 that
⟨𝑥, 𝑦⟩ ≥ 0 (resp., ⟨𝑥, 𝑦⟩ > 0) for any 𝑥, 𝑦 ⪰ 0 (resp., 𝑥, 𝑦 ≻ 0).
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which can be viewed as a linearmapping having the following
properties.
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where det(𝑥) := 𝑥2
1
− ‖𝑥

2
‖2 denotes the determinant of 𝑥.
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An important character of the Jordan algebra is its spec-
tral factorization. By the spectral factorization associatedwith
SOC, any 𝑥 = (𝑥

1
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2
) ∈ R×R𝑛−1 (𝑛 ≥ 1) can be decomposed
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for 𝑗 = 1, 2, with 𝑠
2
being any vector in R𝑛−1 satisfying ‖𝑠

2
‖ =

1. If 𝑥
2
̸= 0, the decomposition (12) is unique. We note again

that when 𝑛 = 1 (viz., 𝑥 = 𝑥
1
), we have 𝜆

1
(𝑥) = 𝜆

2
(𝑥) =

𝑥
1
, 𝑠{1} = 𝑠{2} = 1/2. The spectral factorization associated

with SOC leads to a number of interesting properties, some
of which are as follows.

Property 2. For any 𝑥 = (𝑥
1
, 𝑥

2
) ∈ R×R𝑛−1 (𝑛 ≥ 1), let 𝜆

1
(𝑥),

𝜆
2
(𝑥) and 𝑠{1}, 𝑠{2} be the spectral values and the associated

spectral vectors at 𝑥. Then the following statements hold.

(a) 𝑥 ∈ K𝑛 ⇔ 𝜆
1
(𝑥) ≥ 0, 𝑥 ∈ intK𝑛 ⇔ 𝜆

1
(𝑥) > 0,

𝑥 ∈ bdK𝑛 ⇔ 𝜆
1
(𝑥) = 0.

(b) 𝑥2 = 𝜆
1
(𝑥)2𝑠{1} + 𝜆

2
(𝑥)2𝑠{2} ∈K𝑛.

(c) Let 𝑥 ∈ K𝑛. Then 𝑥1/2 = √𝜆
1
(𝑥)𝑠{1} + √𝜆

2
(𝑥)𝑠{2} ∈

K𝑛. Moreover, 𝑥 ∈ intK𝑛 ⇔ 𝑥1/2 ∈ intK𝑛, 𝑥 ∈
bd K𝑛 ⇔ 𝑥1/2 ∈ bdK𝑛.

In what follows, we recall some definitions for functions
andmatrices.The semismoothness is a generalized concept of
the smoothness, which was originally introduced by Mifflin
[14] for functionals, and extended to vector-valued functions
by Qi and Sun [15]. For vector-valued functions associated
with SOC, see also the work of Chen et al. [16]. Now we give
the definition of the Clarke subdifferential [17].

Definition 1. Let 𝐻 : R𝑛 → R𝑚 be a locally Lipschitzian
function. The Clarke subdifferential of𝐻 at 𝑥 is defined by

𝜕𝐻 (𝑥) := conv { lim
𝑥→𝑥

∇𝐻 (𝑥) | 𝑥 ∈ D
𝐻
} , (14)

whereD
𝐻
is the set of points at which𝐻 is differentiable.

Note that if 𝐻 is continuously differentiable at 𝑥, then
𝜕𝐻(𝑥) = {∇𝐻(𝑥)}. We next give the definitions of the
semismoothness and the strong semismoothness.

Definition 2. A directionally differentiable and locally Lips-
chitzian function𝐻 : R𝑛 → R𝑚 is said to be semismooth at
𝑥 if

𝐻󸀠 (𝑥; 𝑑) − 𝑉⊤𝑑 = 𝑜 (‖𝑑‖) (15)

for any sufficiently small 𝑑 ∈ R𝑛 \ {0} and 𝑉 ∈ 𝜕𝐻(𝑥 + 𝑑),
where

𝐻󸀠 (𝑥; 𝑑) := lim
𝜏→+0

𝐻(𝑥 + 𝜏𝑑) − 𝐻 (𝑥)

𝜏
(16)

is the directional derivative of𝐻 at 𝑥 along the direction 𝑑. In
particular, if 𝑜(‖𝑑‖) can be replaced by𝑂(‖𝑑‖2), then function
𝐻 is said to be strongly semismooth.

It is known that if𝐻 is (strongly) semismooth, then
󵄩󵄩󵄩󵄩󵄩𝐻

󸀠 (𝑥; 𝑑) − (𝐻 (𝑥 + 𝑑) − 𝐻 (𝑥))
󵄩󵄩󵄩󵄩󵄩 = 𝑜 (‖𝑑‖) (𝑂 (‖𝑑‖

2))
(17)

holds (see [18], e.g.).
The definitions below for a function can be found in [10,

13, 19].

Definition 3 (see [10, 13]). A function 𝐹 = (𝐹1, . . . , 𝐹𝑚) with
𝐹𝑖 : R𝑛 → R𝑛

𝑖 is said to have

(a) the Cartesian 𝑃
0
-property, if for any 𝑥 = (𝑥1, . . . , 𝑥𝑚),

𝑦 = (𝑦1, . . . , 𝑦𝑚) ∈ R𝑛
1 × ⋅ ⋅ ⋅ × R𝑛

𝑚 with 𝑥 ̸= 𝑦, there
exists an index ] ∈ {1, . . . , 𝑚} such that 𝑥] ̸= 𝑦] and
⟨𝑥] − 𝑦], 𝐹](𝑥) − 𝐹](𝑦)⟩ ≥ 0;

(b) the uniform Cartesian 𝑃-property, if there exists a
constant 𝜌 > 0 such that, for any 𝑥 = (𝑥1, . . . , 𝑥𝑚),
𝑦 = (𝑦1, . . . , 𝑦𝑚) ∈ R𝑛

1×⋅ ⋅ ⋅×R𝑛
𝑚 , there exists an index

] ∈ {1, . . . , 𝑚} such that ⟨𝑥] − 𝑦], 𝐹](𝑥) − 𝐹](𝑦)⟩ ≥
𝜌‖𝑥 − 𝑦‖2.

By the definitions, it is clear that the Cartesian 𝑃-prop-
erty implies the Cartesian 𝑃

0
-property. Definition 3 is asso-

ciated with SOCCP (3), while the following definitions are
associated with SOCCP (5).

Definition 4 (see [19]). Let 𝐹 : R𝑛 → R𝑛 and 𝐺 : R𝑛 → R𝑛

be functions such that 𝐹 = (𝐹1, . . . , 𝐹𝑚), 𝐺 = (𝐺1, . . . , 𝐺𝑚)
with 𝐹𝑖 : R𝑛 → R𝑛

𝑖 and 𝐺𝑖 : R𝑛 → R𝑛
𝑖 . Then, 𝐹 and 𝐺 are

said to have

(a) the joint uniform Jordan 𝑃-property, if there exists a
constant 𝜌 > 0 such that

𝜆
2
((𝐹 (𝑥) − 𝐹 (𝑦)) ∘ (𝐺 (𝑥) − 𝐺 (𝑦)))

≥ 𝜌󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2 for any 𝑥, 𝑦 ∈ R𝑛;

(18)

(b) the joint Cartesian weak coerciveness, if there exists a
vector 𝑥 ∈ R𝑛 such that

lim
‖𝑥‖→∞

max
1≤𝑖≤𝑚

⟨𝐹𝑖 (𝑥) , 𝐺𝑖 (𝑥) − 𝐺𝑖 (𝑥)⟩

‖𝑥 − 𝑥‖
= +∞. (19)

Next we recall the concept of linear growth of a function,
which is weaker than the global Lipschitz continuity.

Definition 5 (see [19]). A function 𝐹 : R𝑛 → R𝑛 is said to
have linear growth, if there exists a constant 𝐶 > 0 such that
‖𝐹(𝑥)‖ ≤ ‖𝐹(0)‖ + 𝐶‖𝑥‖ for any 𝑥 ∈ R𝑛.
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The following definitions for a matrix are originally given
in [8], which is a generalization of the mixed 𝑃

0
-property [1].

Definition 6 (see [8]). Let𝑀 ∈ R(𝑛+ℓ)×(2𝑛+ℓ) be a matrix par-
titioned as follows:

𝑀 = [𝑀
1
𝑀

2
𝑀

3
] , (20)

where𝑀
1
,𝑀

2
∈ R(𝑛+ℓ)×𝑛 and𝑀

3
∈ R(𝑛+ℓ)×ℓ. Then,𝑀 is said

to have

(a) the Cartesian mixed 𝑃
0
-property, if the following

statements hold:

(1) 𝑀
3
has full column rank;

(2) for any 𝑥 = (𝑥1, . . . , 𝑥𝑚), 𝑦 = (𝑦1, . . . , 𝑦𝑚) ∈
R𝑛
1 × ⋅ ⋅ ⋅ × R𝑛

𝑚 with (𝑥, 𝑦) ̸= 0 and 𝑝 ∈ Rℓ such
that 𝑀

1
𝑥 + 𝑀

2
𝑦 + 𝑀

3
𝑝 = 0, there exists an

index ] ∈ {1, . . . , 𝑚} such that (𝑥], 𝑦]) ̸= 0 and
⟨𝑥], 𝑦]⟩ ≥ 0;

(b) the Cartesian mixed 𝑃-property, if (1) of (a) and the
following statement hold:

(2󸀠) for any 𝑥 = (𝑥1, . . . , 𝑥𝑚), 𝑦 = (𝑦1, . . . , 𝑦𝑚) ∈
R𝑛
1 × ⋅ ⋅ ⋅ × R𝑛

𝑚 with (𝑥, 𝑦) ̸= 0 and 𝑝 ∈ Rℓ such
that𝑀

1
𝑥+𝑀

2
𝑦+𝑀

3
𝑝 = 0, there exists an index

] ∈ {1, . . . , 𝑚} such that ⟨𝑥], 𝑦]⟩ > 0.

In the case ℓ = 0 (i.e.,𝑀
3
is vacuous) and𝑀 = [𝑀

1
− 𝐼],

𝑀 has the Cartesian mixed 𝑃
0
(𝑃)-property if and only if𝑀

1

has the Cartesian 𝑃
0
(𝑃)-property (see [10, 13], e.g.). By the

definitions, it is clear that the Cartesian mixed 𝑃-property
implies the Cartesian mixed 𝑃

0
-property. Moreover, when

𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

𝑚
= 1, the Cartesian mixed 𝑃

0
-property reduces

to the mixed 𝑃
0
-property (see [1, page 1013]).

We now introduce the Cartesian mixed Jordan 𝑃
0
(𝑃)-

property.

Definition 7. Let𝑀 ∈ R(𝑛+ℓ)×(2𝑛+ℓ) be a matrix partitioned as
follows:

𝑀 = [𝑀
1
𝑀

2
𝑀

3
] , (21)

where𝑀
1
,𝑀

2
∈ R(𝑛+ℓ)×𝑛 and𝑀

3
∈ R(𝑛+ℓ)×ℓ. Then,𝑀 is said

to have

(a) the Cartesianmixed Jordan𝑃
0
-property, if the follow-

ing statements hold:

(1) 𝑀
3
has full column rank;

(2) for any 𝑥 = (𝑥1, . . . , 𝑥𝑚), 𝑦 = (𝑦1, . . . , 𝑦𝑚) ∈
R𝑛
1 × ⋅ ⋅ ⋅ × R𝑛

𝑚 with (𝑥, 𝑦) ̸= 0 and 𝑝 ∈ Rℓ such
that𝑀

1
𝑥+𝑀

2
𝑦+𝑀

3
𝑝 = 0, there exists an index

] ∈ {1, . . . , 𝑚} such that (𝑥], 𝑦]) ̸= 0 and 𝑥] ∘𝑦] ⪰
0;

(b) the Cartesian mixed Jordan 𝑃-property, if (1) of (a)
and the following statement hold:

(2󸀠) for any 𝑥 = (𝑥1, . . . , 𝑥𝑚), 𝑦 = (𝑦1, . . . , 𝑦𝑚) ∈
R𝑛
1 × ⋅ ⋅ ⋅ × R𝑛

𝑚 with (𝑥, 𝑦) ̸= 0 and 𝑝 ∈ Rℓ such
that𝑀

1
𝑥+𝑀

2
𝑦+𝑀

3
𝑝 = 0, there exists an index

] ∈ {1, . . . , 𝑚} such that 𝑥] ∘ 𝑦] ≻ 0.

Note that the relation 𝑥] ∘ 𝑦] ⪰ 0 (resp., 𝑥] ∘ 𝑦] ≻ 0)
can be rewritten as 𝜆

1
(𝑥] ∘ 𝑦]) ≥ 0 (resp., 𝜆

1
(𝑥] ∘ 𝑦]) > 0).

By the definitions, it is clear that the Cartesian mixed Jordan
𝑃-property implies the Cartesian mixed Jordan 𝑃

0
-property,

and that the Cartesian mixed Jordan 𝑃
0
(𝑃)-property implies

the Cartesianmixed 𝑃
0
(𝑃)-property. Similar to the Cartesian

mixed 𝑃
0
-property, in the case 𝑛

1
= ⋅ ⋅ ⋅ = 𝑛

𝑚
= 1, the

Cartesian mixed Jordan 𝑃
0
-property also reduces to the mix-

ed 𝑃
0
-property.

3. SOC C-Function and
Its Smoothing Function

In this section, we introduce the SOC C-function and its
smoothing function. In Section 3.1, we give the concept of the
SOC C-function to transform the SOCCP into a system of
equations.We focus on the Fischer-Burmeister function as an
SOCC-function and review some properties of the smoothed
Fischer-Burmeister function in Section 3.2.

3.1. SOC C-Function. First, we recall the concept of the SOC
C-function.

Definition 8. A function 𝜙 : R𝑟 × R𝑟 → R𝑟 is said to be an
SOC complementarity (C-) function, if the following holds:

𝜙 (𝑥, 𝑦) = 0 ⇐⇒ 𝑥 ∈K
𝑟, 𝑦 ∈K

𝑟, ⟨𝑥, 𝑦⟩ = 0. (22)

Let 𝜙 : R𝑛 × R𝑛 → R𝑛 be defined as

𝜙 (𝑥, 𝑦) :=
[
[
[

[

𝜙1 (𝑥1, 𝑦1)
...

𝜙𝑚 (𝑥𝑚, 𝑦𝑚)

]
]
]

]

, (23)

where 𝑥 and 𝑦 ∈ R𝑛 are divided as 𝑥 = (𝑥1, . . . , 𝑥𝑚) and 𝑦 =
(𝑦1, . . . , 𝑦𝑚) with 𝑥𝑖, 𝑦𝑖 ∈ R𝑛

𝑖 , 𝑖 = 1, . . . , 𝑚, and 𝜙𝑖 : R𝑛
𝑖 ×

R𝑛
𝑖 → R𝑛

𝑖 are SOC C-functions. Then it follows from (22)
that

𝜙 (𝑥, 𝑦) = 0 ⇐⇒ 𝑥 ∈K, 𝑦 ∈K, ⟨𝑥, 𝑦⟩ = 0. (24)

Accordingly, SOCCP (1) is reformulated as a system of
equations 𝐻̂(𝑥, 𝑦, 𝑝) = 0, where 𝐻̂ : R𝑛 × R𝑛 × Rℓ → R2𝑛+ℓ

is defined by

𝐻̂ (𝑥, 𝑦, 𝑝) := [ 𝜙 (𝑥, 𝑦)
𝐹 (𝑥, 𝑦, 𝑝)

] . (25)

Moreover, we also give amerit function Ψ̂ : R𝑛×R𝑛×Rℓ → R
defined by

Ψ̂ (𝑥, 𝑦, 𝑝) :=
1

2

󵄩󵄩󵄩󵄩󵄩𝐻̂ (𝑥, 𝑦)
󵄩󵄩󵄩󵄩󵄩
2

=
1

2

󵄩󵄩󵄩󵄩󵄩𝜙 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩󵄩
2

+
1

2
󵄩󵄩󵄩󵄩𝐹 (𝑥, 𝑦, 𝑝)

󵄩󵄩󵄩󵄩
2

.

(26)
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Note that Ψ̂(𝑥, 𝑦, 𝑝) ≥ 0 for any (𝑥, 𝑦, 𝑝) ∈ R𝑛 × R𝑛 × Rℓ,
and that Ψ̂(𝑥, 𝑦, 𝑝) = 0 if and only if (𝑥, 𝑦, 𝑝) is a solution of
SOCCP (1).

There are many kinds of SOC C-functions. The natural
residual function 𝜙𝑖NR : R𝑛

𝑖 × R𝑛
𝑖 → R𝑛

𝑖 and the Fischer-
Burmeister function 𝜙𝑖FB : R

𝑛
𝑖 × R𝑛

𝑖 → R𝑛
𝑖 are respectively

defined by

𝜙𝑖NR (𝑥
𝑖, 𝑦𝑖) := 𝑥𝑖 − [𝑥𝑖 − 𝑦𝑖]

+

, (27)

𝜙𝑖FB (𝑥
𝑖, 𝑦𝑖) := 𝑥𝑖 + 𝑦𝑖 − ((𝑥𝑖)

2

+ (𝑦𝑖)
2

)
1/2

, (28)

where [𝑧]
+
denotes the projection of 𝑧 onto the SOC K𝑛

𝑖 .
Fukushima et al. [5] showed that (22) holds for functions 𝜙𝑖NR
and 𝜙𝑖FB. Chen et al. [7] andHayashi et al. [6] proposedmeth-
ods for solving SOCCPbased on the natural residual function
(27), whereas Narushima et al. [8] proposed methods for
solving SOCCP based on the Fischer-Burmeister function
(28).

In what follows, functions 𝜙FB,𝐻FB, andΨFB denote 𝜙, 𝐻̂,
and Ψ̂ with 𝜙𝑖FB, respectively. Also, functions 𝜙NR, 𝐻NR, and
ΨNR denote 𝜙, 𝐻̂, and Ψ̂ with 𝜙𝑖NR, respectively.

Recently, Bi et al. [20] showed the following inequality:

(2 − √2)
󵄩󵄩󵄩󵄩󵄩𝜙

𝑖

NR (𝑥
𝑖, 𝑦𝑖)

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩𝜙

𝑖

FB (𝑥
𝑖, 𝑦𝑖)

󵄩󵄩󵄩󵄩󵄩 ≤ (2 +
√2)

󵄩󵄩󵄩󵄩󵄩𝜙
𝑖

NR (𝑥
𝑖, 𝑦𝑖)

󵄩󵄩󵄩󵄩󵄩

for any 𝑥𝑖, 𝑦𝑖 ∈ R𝑛
𝑖 .

(29)

We see from (29) that the level-boundedness of ΨFB is
equivalent to that of ΨNR.

3.2. Smoothed FB Function and Its Properties. In this section,
we consider the smoothing function associated with the
Fischer-Burmeister function and give its properties and
Jacobian matrix.

Since𝐻FB is not differentiable in general, we cannot apply
conventional methods such as Newton’s method or Newton-
basedmethods.We therefore consider the smoothed Fischer-
Burmeister function 𝜙

𝑡
: R2𝑛 → R𝑛, which was originally

proposed by Kanzow [21] for solving NCP and generalized
by Fukushima et al. [5] to SOCCP. Let 𝜙𝑖

𝑡
: R2𝑛

𝑖 → R𝑛
𝑖 be

defined by

𝜙𝑖
𝑡
(𝑥, 𝑦) := 𝑥𝑖 + 𝑦𝑖 − (2𝑡2𝑒𝑖 + (𝑥𝑖)

2

+ (𝑦𝑖)
2

)
1/2

(30)

for each 𝑖 = 1, . . . , 𝑚, where 𝑡 is a smoothing parameter
and 𝑒𝑖 := (1, 0, . . . , 0)⊤ ∈ R𝑛

𝑖 . Then, the smoothed Fischer-
Burmeister function 𝜙

𝑡
: R2𝑛 → R𝑛 is defined as

𝜙
𝑡
(𝑥, 𝑦) :=

[
[
[

[

𝜙1
𝑡
(𝑥1, 𝑦1)
...

𝜙𝑚
𝑡
(𝑥𝑚, 𝑦𝑚)

]
]
]

]

. (31)

Also, the smoothing function 𝐻
𝑡
: R2𝑛+ℓ → R2𝑛+ℓ and the

merit function Ψ
𝑡
: R2𝑛+ℓ → R are defined as

𝐻
𝑡
(𝑥, 𝑦, 𝑝) := [

𝜙
𝑡
(𝑥, 𝑦)

𝐹 (𝑥, 𝑦, 𝑝)
] , (32)

Ψ
𝑡
(𝑥, 𝑦, 𝑝) :=

1

2
󵄩󵄩󵄩󵄩𝐻𝑡

(𝑥, 𝑦, 𝑝)󵄩󵄩󵄩󵄩
2

=
1

2
󵄩󵄩󵄩󵄩𝜙𝑡 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩
2

+
1

2
󵄩󵄩󵄩󵄩𝐹 (𝑥, 𝑦, 𝑝)

󵄩󵄩󵄩󵄩
2

,

(33)

respectively. Clearly, 𝜙
0
(𝑥, 𝑦) ≡ 𝜙FB(𝑥, 𝑦), and so 𝐻

0
(𝑥, 𝑦,

𝑝) ≡ 𝐻FB(𝑥, 𝑦, 𝑝) and Ψ0
(𝑥, 𝑦, 𝑝) ≡ ΨFB(𝑥, 𝑦, 𝑝). We note

that

󵄩󵄩󵄩󵄩󵄩𝜙
𝑖

𝑡
(𝑥𝑖, 𝑦𝑖) − 𝜙𝑖FB (𝑥, 𝑦)

󵄩󵄩󵄩󵄩󵄩 ≤
√2 |𝑡| (34)

holds for any 𝑡 ∈ R and (𝑥𝑖, 𝑦𝑖) ∈ R2𝑛
𝑖 (see [5] or [22]). From

definition (32) of𝐻
𝑡
and (34), it follows that

󵄩󵄩󵄩󵄩𝐻𝑡
(𝑥, 𝑦, 𝑝) − 𝐻FB (𝑥, 𝑦, 𝑝)

󵄩󵄩󵄩󵄩

= 󵄩󵄩󵄩󵄩𝜙𝑡 (𝑥, 𝑦) − 𝜙FB (𝑥, 𝑦)
󵄩󵄩󵄩󵄩

= (
𝑚

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝜙
𝑖

𝑡
(𝑥𝑖, 𝑦𝑖) − 𝜙𝑖FB (𝑥

𝑖, 𝑦𝑖)
󵄩󵄩󵄩󵄩󵄩
2

)

1/2

≤ √2𝑚 |𝑡|

(35)

for any 𝑡 ∈ R and (𝑥, 𝑦, 𝑝) ∈ R2𝑛+ℓ.
In what follows, we write 𝑥𝑖 = ((𝑥𝑖)

1
, (𝑥𝑖)

2
) ∈ R × R𝑛

𝑖
−1

for any vector 𝑥𝑖 ∈ R𝑛
𝑖 . Moreover, for convenience, we use

the following notation. For any 𝑥𝑖, 𝑦𝑖 ∈ R𝑛
𝑖 and any 𝑡 ∈ R,

we write 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖) ∈ R2𝑛
𝑖 and define the functions 𝑤𝑖

𝑡
,

𝑢𝑖
𝑡
: R2𝑛

𝑖 → R × R𝑛
𝑖
−1 by

𝑤𝑖

𝑡
= ((𝑤𝑖

𝑡
)
1

, (𝑤𝑖

𝑡
)
2

) := 2𝑡2𝑒𝑖 + (𝑥𝑖)
2

+ (𝑦𝑖)
2

,

𝑢𝑖
𝑡
= ((𝑢𝑖

𝑡
)
1

, (𝑢𝑖
𝑡
)
2

) := (2𝑡2𝑒𝑖 + (𝑥𝑖)
2

+ (𝑦𝑖)
2

)
1/2

.

(36)

Furthermore, we drop the subscript for 𝑡 = 0 for simplicity,
and thus,

𝑤𝑖 = ((𝑤𝑖)
1

, (𝑤𝑖)
2

) := (𝑥𝑖)
2

+ (𝑦𝑖)
2

,

𝑢𝑖 = ((𝑢𝑖)
1

, (𝑢𝑖)
2

) := ((𝑥𝑖)
2

+ (𝑦𝑖)
2

)
1/2

.

(37)

Direct calculation yields

(𝑤𝑖

𝑡
)
1

= 2𝑡2 +
󵄩󵄩󵄩󵄩󵄩𝑥

𝑖
󵄩󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩𝑦

𝑖
󵄩󵄩󵄩󵄩󵄩
2

= 2𝑡2 + (𝑤𝑖)
1

,

(𝑤𝑖

𝑡
)
2

= 2 ((𝑥𝑖)
1

(𝑥𝑖)
2

+ (𝑦𝑖)
1

(𝑦𝑖)
2

) = (𝑤𝑖)
2

.
(38)
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Note that (𝑤𝑖

𝑡
)
2
is actually independent of 𝑡, so that hereafter

we will write 𝑤𝑖

𝑡
= ((𝑤𝑖

𝑡
)
1
, (𝑤𝑖)

2
). We also easily get, for 𝑗 =

1, 2,

𝜆
𝑗
(𝑤𝑖

𝑡
) = 2𝑡2 +

󵄩󵄩󵄩󵄩󵄩𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩𝑦

𝑖
󵄩󵄩󵄩󵄩󵄩
2

+ 2(−1)𝑗
󵄩󵄩󵄩󵄩󵄩(𝑥

𝑖)
1

(𝑥𝑖)
2

+ (𝑦𝑖)
1

(𝑦𝑖)
2

󵄩󵄩󵄩󵄩󵄩

𝑠{𝑗} =
1

2
(1, (−1)𝑗(𝑤𝑖)

2

) ,

(39)

where 𝜆
1
(𝑤𝑖

𝑡
), 𝜆

2
(𝑤𝑖

𝑡
) and 𝑠{1}, 𝑠{2} are the spectral values

and the associated spectral vectors of 𝑤𝑖

𝑡
, respectively, with

(𝑤𝑖)
2
:= (𝑤𝑖)

2
/‖(𝑤𝑖)

2
‖ if (𝑤𝑖)

2
̸= 0, and otherwise, (𝑤𝑖)

2
being

any vector in R𝑛
𝑖
−1 satisfying ‖(𝑤𝑖)

2
‖ = 1.

Now we review some propositions needed to establish
convergence properties of the smoothing Newton method.
The following proposition gives explicit expression of the
transposed Jacobian matrix with 𝑡 ̸= 0.

Proposition 9 (see [5]). For any 𝑡 ̸= 0, 𝐻
𝑡
is continuously

differentiable on R2𝑛+ℓ, and its transposed Jacobian matrix is
given by

∇𝐻
𝑡
(𝑥, 𝑦, 𝑝) =

[
[
[
[
[
[
[

[

diag {∇
𝑥
𝑖𝜙𝑖

𝑡
(𝑥𝑖, 𝑦𝑖)}

𝑚

𝑖=1

∇
𝑥
𝐹 (𝑥, 𝑦, 𝑝)

diag {∇
𝑦
𝑖𝜙𝑖

𝑡
(𝑥𝑖, 𝑦𝑖)}

𝑚

𝑖=1

∇
𝑦
𝐹 (𝑥, 𝑦, 𝑝)

𝑂 ∇
𝑝
𝐹 (𝑥, 𝑦, 𝑝)

]
]
]
]
]
]
]

]

,

(40)

wherediag{𝐷
𝑖
}𝑚
𝑖=1

denotes the block-diagonalmatrixwith block
elements𝐷

𝑖
∈ R𝑛

𝑖
×𝑛
𝑖 , and

∇
𝑥
𝑖𝜙𝑖

𝑡
(𝑥𝑖, 𝑦𝑖) = 𝐼 − 𝐿

𝑥
𝑖𝐿−1

𝑢
𝑖

𝑡

,

∇
𝑦
𝑖𝜙𝑖

𝑡
(𝑥𝑖, 𝑦𝑖) = 𝐼 − 𝐿

𝑦
𝑖𝐿−1

𝑢
𝑖

𝑡

,

𝐿−1
𝑢
𝑖

𝑡

=

[
[
[
[
[

[

𝑏𝑖
𝑡

−𝑐𝑖
𝑡
(𝑤𝑖)

⊤

2

−𝑐𝑖
𝑡
(𝑤𝑖)

2

𝑎𝑖
𝑡
𝐼 + (𝑏𝑖

𝑡
− 𝑎i

𝑡
) (𝑤𝑖)

2

(𝑤𝑖)
⊤

2

]
]
]
]
]

]

(41)

with

𝑎𝑖
𝑡
:=

2

√𝜆
1
(𝑤𝑖

𝑡
) + √𝜆

2
(𝑤𝑖

𝑡
)
,

𝑏𝑖
𝑡
:=
1

2
(

1

√𝜆
1
(𝑤𝑖

𝑡
)
+

1

√𝜆
2
(𝑤𝑖

𝑡
)
) ,

𝑐𝑖
𝑡
:=
1

2
(

1

√𝜆
1
(𝑤𝑖

𝑡
)
−

1

√𝜆
2
(𝑤𝑖

𝑡
)
) .

(42)

In order to obtain the Newton step, the nonsingularity
of ∇𝐻

𝑡
is important. The next proposition establishes the

nonsingularity of ∇𝐻
𝑡
.

Proposition 10 (see [8]). Let 𝑡 be an arbitrary nonzero
number and let (𝑥, 𝑦, 𝑝) ∈ R2𝑛+ℓ be an arbitrary triple such
that the Jacobian matrix ∇𝐹(𝑥, 𝑦, 𝑝)⊤ has the Cartesian mixed
𝑃
0
-property at (𝑥, 𝑦, 𝑝), that is, ∇

𝑝
𝐹(𝑥, 𝑦, 𝑝) satisfies

rank ∇
𝑝
𝐹 (𝑥, 𝑦, 𝑝) = ℓ, (43)

and

∇𝐹(𝑥, 𝑦, 𝑝)
⊤

(𝜉, 𝜂, 𝜑) = 0, (𝜉, 𝜂) ̸= 0, 𝜑 ∈ Rℓ

𝜉 = (𝜉1, . . . , 𝜉𝑚) , 𝜂 = (𝜂1, . . . , 𝜂𝑚) ∈ R𝑛
1 × ⋅ ⋅ ⋅ × R𝑛

𝑚
}

󳨐⇒ 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛 𝑖𝑛𝑑𝑒𝑥 ] ∈ {1, . . . , 𝑚}

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝜉], 𝜂]) ̸= 0 , ⟨𝜉], 𝜂]⟩ ≥ 0.
(44)

Then, the matrix ∇𝐻
𝑡
(𝑥, 𝑦, 𝑝) given by (40) is nonsingular.

The local Lipschitz continuity and the (strong) semis-
moothness of𝐻FB play a significant role in establishing locally
rapid convergence.

Proposition 11. The function 𝐻FB is locally Lipschitzian on
R2𝑛+ℓ and, moreover, is semismooth on R2𝑛+ℓ. In addition, if
∇𝐹 is locally Lipschitzian, then𝐻FB is strongly semismooth on
R2𝑛+ℓ.

Proof. It follows from [23, Corollary 3.3] that 𝜙𝑖FB is globally
Lipschitzian and strongly semismooth. Since 𝐹 is a contin-
uously differentiable function,𝐻FB is locally Lipschitzian on
R2𝑛+ℓ. Also, the (strong) semismoothness of𝐻FB can be easily
shown from the strong semismoothness of 𝜙𝑖FB and the (local
Lipschitz) continuity of ∇𝐹.

We define function Θ
𝑖
: R2𝑛

𝑖 → R
+
by Θ

𝑖
(𝑥𝑖, 𝑦𝑖) :=

‖𝐿
𝑥
𝑖 𝐿

𝑦
𝑖‖. It is easily seen that Θ

𝑖
(𝑥𝑖, 𝑦𝑖) = 0 if and only if

(𝑥𝑖, 𝑦𝑖) = (0, 0). Now we partition R2𝑛
𝑖 as R2𝑛

𝑖 = Z𝑖

1
∪Z𝑖

2
∪

{(0, 0)}, where

Z
𝑖

1

:= {𝑧𝑖 = (𝑥𝑖, 𝑦𝑖) ∈ R2𝑛
𝑖 | 𝑤𝑖 = (𝑥𝑖)

2

+ (𝑦𝑖)
2

∈ intK𝑛
𝑖} ,

Z
𝑖

2
:= {𝑧𝑖 = (𝑥𝑖, 𝑦𝑖) ∈ R2𝑛

𝑖

| 𝑤𝑖 = (𝑥𝑖)
2

+ (𝑦𝑖)
2

∈ bd K
𝑛
𝑖 , 𝑤𝑖 ̸= 0} .

(45)

In order to achieve locally rapid convergence of the method,
we need to control the parameter 𝑡 so that the distance
between ∇𝐻

𝑡
and 𝜕𝐻FB is sufficiently small. The following

proposition is helpful to control the parameter 𝑡 appropri-
ately.
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Proposition 12 (see [22]). Let (𝑥, 𝑦, 𝑝) be any point in R2𝑛+ℓ.
Let 𝜃

𝑖
(𝑥𝑖, 𝑦𝑖) be any function such that Θ

𝑖
(𝑥𝑖, 𝑦𝑖) ≤ 𝜃

𝑖
(𝑥𝑖, 𝑦𝑖).

Let 𝛿 > 0 be given. Let 𝑡 : R2𝑛 × R
+
→ R

+
∪ {+∞} be defined

by

𝑡 (𝑥, 𝑦, 𝛿) := min {𝑡
𝑖
(𝑥𝑖, 𝑦𝑖, 𝛿) | 𝑖 = 1, . . . , 𝑚} , (46)

where
𝑡
𝑖
(𝑥𝑖, 𝑦𝑖, 𝛿)

:=

{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝜆
1
(𝑤𝑖) 𝛿

√2 (𝜃
𝑖
(𝑧𝑖)

2

− 𝜆
1
(𝑤𝑖) 𝛿2)

𝑖𝑓 zi = (𝑥𝑖, 𝑦𝑖) ∈Z𝑖

1
, 𝛿 <

𝜃i (𝑧
𝑖)

√𝜆
1
(𝑤𝑖)

,

(𝑤𝑖)
1

𝛿

2√𝜃
𝑖
(𝑧𝑖) (2𝜃

𝑖
(𝑧𝑖) − 𝛿√2(𝑤𝑖)

1
)

𝑖𝑓 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖) ∈Z𝑖

2
, 𝛿 <

2𝜃i (𝑧
𝑖)

√2(𝑤𝑖)
1

,

+∞

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(47)

Then, for any 𝑡 ∈ R such that 0 < |𝑡| ≤ 𝑡(𝑥, 𝑦, 𝛿),
dist (∇𝐻

𝑡
(𝑥, 𝑦, 𝑝) , 𝜕𝐻FB (𝑥, 𝑦, 𝑝)) < 𝛿, (48)

where dist(𝑋, 𝑆) denotesmin{‖𝑋 − 𝑌‖ | 𝑌 ∈ 𝑆}.

4. Smoothing Newton Method and
Its Convergence Properties

In this section, we first propose an algorithm of the smooth-
ing Newton method based on the Fischer-Burmeister func-
tion and its smoothing function.We then prove its global and
𝑄-superlinear (𝑄-quadratic) convergence.

4.1. Algorithm. Weprovide the smoothingNewton algorithm
based on the Fischer-Burmeister function. In what follows,
we write V(𝑘) = (𝑥(𝑘), 𝑦(𝑘), 𝑝(𝑘)) and 𝑧(𝑘) = (𝑥(𝑘), 𝑦(𝑘)) for sim-
plicity.

Algorithm 13.
𝑆𝑡𝑒𝑝 0. Choose 𝜂, 𝜌 ∈ (0, 1), 𝜂 ∈ (0, 𝜂], 𝜎 ∈ (0, 1/2), 𝑟 > 1,
𝜅 > 0, and 𝜅 > 0.

Choose V(0) = (𝑥(0), 𝑦(0), 𝑝(0)) ∈ R2𝑛+ℓ and 𝛽
0
∈ (0,∞).

Let 𝑡
0
:=‖ 𝐻FB(V

(0)) ‖. Set 𝑘 := 0.

𝑆𝑡𝑒𝑝 1. If a stopping criterion, such as ‖𝐻FB(V
(𝑘))‖ = 0, is

satisfied, then stop.
𝑆𝑡𝑒𝑝 2.

𝑆𝑡𝑒𝑝 2.0. Set V̂(0) := V(𝑘) and 𝑗 := 0.

𝑆𝑡𝑒𝑝 2.1. Compute 𝑑(𝑗) ∈ R2𝑛+ℓ by solving

𝐻
𝑡
𝑘

(V̂(𝑗)) + ∇𝐻
𝑡
𝑘

(V̂(𝑗))
⊤

𝑑(𝑗) = 0. (49)

𝑆𝑡𝑒𝑝 2.2. If ‖𝐻
𝑡
𝑘

(V̂(𝑗) + 𝑑(𝑗))‖ ≤ 𝛽
𝑘
, then let V(𝑘+1) := V̂(𝑗) + 𝑑(𝑗)

and go to Step 3. Otherwise, go to Step 2.3.
𝑆𝑡𝑒𝑝 2.3. Let 𝑙

𝑗
be the smallest nonnegative integer 𝑙 satisfying

Ψ
𝑡
𝑘

(V̂(𝑗) + 𝜌𝑙𝑑(𝑗)) ≤ (1 − 2𝜎𝜌𝑙)Ψ
𝑡
𝑘

(V̂(𝑗)) . (50)

Let 𝜏
𝑗
:= 𝜌𝑙𝑗 and V̂(𝑗+1) := V̂(𝑗) + 𝜏

𝑗
𝑑(𝑗).

𝑆𝑡𝑒𝑝 2.4. If
󵄩󵄩󵄩󵄩󵄩𝐻𝑡
𝑘

(V̂(𝑗+1))
󵄩󵄩󵄩󵄩󵄩 ≤ 𝛽𝑘, (51)

then let V(𝑘+1) := V̂(𝑗+1) and go to Step 3. Otherwise, set 𝑗 :=
𝑗 + 1 and go back to Step 2.1.
𝑆𝑡𝑒𝑝 3. Update the parameters as follows:

𝛿
𝑘+1

:=
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘+1))
󵄩󵄩󵄩󵄩󵄩 ,

𝑡
𝑘+1

:= min {𝜅𝛿𝑟
𝑘+1
, 𝑡
0
𝜂𝑘+1, 𝑡 (𝑧(𝑘+1), 𝜅𝛿

𝑘+1
)} ,

𝛽
𝑘+1

:= 𝛽
0
𝜂𝑘+1.

(52)

𝑆𝑡𝑒𝑝 4. Set 𝑘 := 𝑘 + 1. Go back to Step 1.
Note that the proposed algorithm consists of the outer

iteration steps and the inner iteration steps. Step 2 is the inner
iteration steps with the variable V̂ and the counter 𝑗, while the
outer iteration steps have the variable V and the counter 𝑘.

From Step 3 of Algorithm 13 and (48), the following
inequality holds:

min {󵄩󵄩󵄩󵄩󵄩∇𝐻𝑡
𝑘

(V(𝑘)) − 𝑌
󵄩󵄩󵄩󵄩󵄩 | 𝑌 ∈ 𝜕𝐻FB (V

(𝑘))}

≤ 𝜅
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘))
󵄩󵄩󵄩󵄩󵄩 .

(53)

Letting V∗ be a solution of SOCCP (1), we have𝐻FB(V
∗) = 0.

Therefore, from (53) and the local Lipschitz continuity of𝐻FB,
the following holds:

min {󵄩󵄩󵄩󵄩󵄩∇𝐻𝑡
𝑘

(V(𝑘)) − 𝑌
󵄩󵄩󵄩󵄩󵄩 | 𝑌 ∈ 𝜕𝐻FB (V

(𝑘))}

≤ 𝜅
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘)) − 𝐻FB (V
∗)
󵄩󵄩󵄩󵄩󵄩

= 𝑂 (
󵄩󵄩󵄩󵄩󵄩V

(𝑘) − V
∗
󵄩󵄩󵄩󵄩󵄩) .

(54)

In the rest of this section, we consider convergence
properties of Algorithm 13. In Section 4.2, we prove the
global convergence of the algorithm, and in Section 4.3, we
investigate local behavior of the algorithm. For this purpose,
we make the following assumptions.

Assumption 1.

(A1) The solution set S of SOCCP (1) is nonempty and
bounded.

(A2) The functionΨFB is level-bounded, that is, for any V ∈
R2𝑛+ℓ, the level set {V ∈ R2𝑛+ℓ | ΨFB(V) ≤ ΨFB(V)} is
bounded.

(A3) For any 𝑡 > 0 and V ∈ R2𝑛+ℓ, ∇𝐻
𝑡
(V) is nonsingular.
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From Proposition 10, Assumption (A3) holds if ∇𝐹(V)⊤

has the Cartesian mixed 𝑃
0
-property for any V ∈ R2𝑛+ℓ. The

following remarks correspond to SOCCPs (3) and (5).

Remark 14. The case of SOCCP (3). If ∇𝑓(𝑥)⊤ has the
Cartesian 𝑃

0
-property, then ∇𝐹(𝑥, 𝑦, 𝑝)⊤ with 𝐹 in (4) has

the Cartesian mixed 𝑃
0
-property and vice versa. Note that

∇𝑓(𝑥)⊤ has the Cartesian 𝑃
0
-property at any 𝑥 ∈ R𝑛 if 𝑓 has

the Cartesian𝑃
0
-property (see [10, 13] for the definition of the

Cartesian 𝑃
0
-property for a matrix).

Remark 15. The case of SOCCP (5). If ∇𝑓(𝑝) is nonsingular
and (∇𝑓(𝑝)−1∇𝑔(𝑝))⊤ has the Cartesian 𝑃

0
-property, then

∇𝐹(𝑥, 𝑦, 𝑝)⊤ with 𝐹 in (6) has the Cartesian mixed 𝑃
0
-

property.

Note that Assumption (A2) is equivalent to the coercive-
ness in the sense that

lim
‖V‖→∞

ΨFB (V) = +∞. (55)

We now give some sufficient conditions for Assumption (A2)
in the case of SOCCP (3) or (5).

Lemma 16. Consider SOCCP (5). Let Ψ̃FB : R𝑛 → R be a
function such that Ψ̃FB(𝑝) := (1/2)‖𝜙FB(𝑓(𝑝), 𝑔(𝑝))‖

2 for any
𝑝 ∈ R𝑛. Then Ψ̃FB is level-bounded if and only if Ψ̃FB is level-
bounded.

Proof. We use below condition (55) equivalent to the level-
boundedness. We first assume that Ψ̃FB is level-bounded and
claim that ΨFB is level-bounded. Suppose the contrary. Then,
we can find a sequence {V(𝑘)} = {(𝑥(𝑘), 𝑦(𝑘), 𝑝(𝑘))} ⊂ R3𝑛 such
that the sequence {ΨFB(V

(𝑘))} is bounded and ‖V(𝑘)‖ → ∞. If
{‖𝑝(𝑘)‖} is bounded, then we must have ‖(𝑥(𝑘), 𝑦(𝑘))‖ → ∞.
Thus, from the inequality

√2ΨFB (V
(𝑘)) ≥

󵄩󵄩󵄩󵄩󵄩(𝑓 (𝑝
(𝑘)) − 𝑥(𝑘), 𝑔 (𝑝(𝑘)) − 𝑦(𝑘))

󵄩󵄩󵄩󵄩󵄩

≥
󵄩󵄩󵄩󵄩󵄩(𝑥

(𝑘), 𝑦(𝑘))
󵄩󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩󵄩(𝑓 (𝑝
(𝑘)) , 𝑔 (𝑝(𝑘)))

󵄩󵄩󵄩󵄩󵄩
(56)

and from the continuity of𝑓 and 𝑔, we haveΨFB(V
(𝑘)) → ∞.

Since this is not possible, {‖𝑝(𝑘)‖} is unbounded. By taking
a subsequence if necessary, we may assume that ‖𝑝(𝑘)‖ →
∞ as 𝑘 → ∞. Since 𝜙FB is globally Lipschitzian by [23,
Corollary 3.3], we have from (33) that, for any (𝑥, 𝑦, 𝑝) ∈ R3𝑛,

√2Ψ̃FB (𝑝)

= 󵄩󵄩󵄩󵄩𝜙FB (𝑓 (𝑝) , 𝑔 (𝑝))
󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝜙FB (𝑓 (𝑝) , 𝑔 (𝑝)) − 𝜙FB (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝜙FB (𝑥, 𝑦)
󵄩󵄩󵄩󵄩

≤ 𝐿 󵄩󵄩󵄩󵄩(𝑓 (𝑝) , 𝑔 (𝑝)) − (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝜙FB (𝑥, 𝑦)
󵄩󵄩󵄩󵄩

≤ √𝐿2 + 1√󵄩󵄩󵄩󵄩(𝑓 (𝑝) − 𝑥, 𝑔 (𝑝) − 𝑦)
󵄩󵄩󵄩󵄩
2

+ 󵄩󵄩󵄩󵄩𝜙FB (𝑥, 𝑦)
󵄩󵄩󵄩󵄩
2

= √𝐿2 + 1√2ΨFB (𝑥, 𝑦, 𝑝),

(57)

where 𝐿 > 0 is a Lipschitz constant.Then, it follows from (57)
and the level-boundedness of Ψ̃FB that lim

𝑘→∞
ΨFB(V

(𝑘)) =
+∞, contradicting the boundedness of {ΨFB(V

(𝑘))}. This
proves the level-boundedness of ΨFB.

We next assume that ΨFB is level-bounded. Let {𝑝(𝑘)} ⊂
R𝑛 be an arbitrary sequence such that ‖𝑝(𝑘)‖ → ∞ and let
𝑥(𝑘) := 𝑓(𝑝(𝑘)) and 𝑦(𝑘) := 𝑔(𝑝(𝑘)). Then we have

2ΨFB (𝑥
(𝑘), 𝑦(𝑘), 𝑝(𝑘))

=
󵄩󵄩󵄩󵄩󵄩𝜙FB (𝑥

(𝑘), 𝑦(𝑘))
󵄩󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩𝑓 (𝑝

(𝑘)) − 𝑥(𝑘)
󵄩󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩𝑔 (𝑝

(𝑘)) − 𝑦(𝑘)
󵄩󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩󵄩𝜙FB (𝑓 (𝑝

(𝑘)) , 𝑔 (𝑝(𝑘)))
󵄩󵄩󵄩󵄩󵄩
2

= 2Ψ̃FB (𝑝
(𝑘)) .

(58)

Thus, from ‖(𝑥(𝑘), 𝑦(𝑘), 𝑝(𝑘))‖ ≥ ‖𝑝(𝑘)‖ → ∞ and the level-
boundedness of ΨFB, we have lim

𝑘→∞
Ψ̃FB(𝑝

(𝑘)) = +∞.
Therefore, Ψ̃FB is level-bounded.

Remark 17. Consider SOCCP (3). Let Ψ̃FB : R𝑛 → R be a
function such that Ψ̃FB(𝑥) := (1/2)‖𝜙FB(𝑥, 𝑓(𝑥))‖

2 for any𝑥 ∈
R𝑛. Then, in the same way as in Lemma 16, we can show that
Ψ̃FB is level-bounded if and only if Ψ̃FB is level-bounded (we
have only to consider 𝑔(𝑝) ≡ 𝑝).

We now provide some sufficient conditions under which
Assumption (A2) holds.

Proposition 18. Consider SOCCP (5). Assume that 𝑓 and 𝑔
have linear growth. Assume further that 𝑓 and 𝑔 satisfy one of
the following statements:

(a) 𝑓 and 𝑔 have the joint uniform Jordan 𝑃-property;
(b) 𝑓 and 𝑔 have the joint Cartesian weak coerciveness.

Then ΨFB is level-bounded.

Proof. It follows from [19] that Ψ̃NR(𝑝) :=
(1/2)‖𝜙NR(𝑓(𝑝), 𝑔(𝑝))‖

2 is level-bounded for each case.
Thus from Lemma 16 and (29), we have desired results.

The following condition was given by Pan and Chen
[13] to establish the level-boundedness property of the merit
function Ψ̃FB(𝑥) defined in Remark 17.

Condition A. Consider SOCCP (3). For any sequence {𝜉
𝑘
} ⊂

R𝑛 satisfying ‖𝜉
𝑘
‖ → ∞ with 𝜉𝑖

𝑘
∈ R𝑛

𝑖 , if there exists an
index ] ∈ {1, . . . , 𝑚} such that {𝜆

1
(𝜉]

𝑘
)} and {𝜆

1
(𝑓](𝜉

𝑘
))} are

bounded below, and 𝜆
2
(𝜉]

𝑘
), 𝜆

2
(𝑓](𝜉

𝑘
)) → ∞, then

lim sup
𝑘→∞

⟨
𝜉]
𝑘

󵄩󵄩󵄩󵄩𝜉
]
𝑘

󵄩󵄩󵄩󵄩
,
𝑓] (𝜉

𝑘
)

󵄩󵄩󵄩󵄩𝑓
] (𝜉

𝑘
)󵄩󵄩󵄩󵄩
⟩ > 0. (59)

Under Condition A, we have the following proposition,
which corresponds to Proposition 5.2 of [13].



Abstract and Applied Analysis 9

Proposition 19. Consider SOCCP (3). Assume that 𝑓 has the
uniform Cartesian P-property and satisfies Condition A. Then
ΨFB is level-bounded.

4.2. Global Convergence. In this section, we show the
global convergence of Algorithm 13. We first give the well-
definedness of the algorithm.

Lemma 20. Suppose that Assumption (A3) holds. Let 𝑡 be any
fixed positive number. Every stationary point V∗

𝑡
of Ψ

𝑡
satisfies

Ψ
𝑡
(V∗

𝑡
) = 0.

Proof. For each stationary point V∗
𝑡

of Ψ
𝑡
, ∇Ψ

𝑡
(V∗

𝑡
) =

∇𝐻
𝑡
(V∗

𝑡
)𝐻(V∗

𝑡
) = 0 holds. Since, from 𝑡 > 0 and Assumption

(A3), ∇𝐻
𝑡
(V∗

𝑡
) is nonsingular, we have 𝐻

𝑡
(V∗

𝑡
) = 0, and thus,

Ψ
𝑡
(V∗

𝑡
) = 0.

It follows from (35) that

√2ΨFB (V̂) ≤
󵄩󵄩󵄩󵄩𝐻𝑡

(V̂)󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐻FB (V̂) − 𝐻𝑡

(V̂)󵄩󵄩󵄩󵄩

≤ √2Ψ
𝑡
(V̂) + √2𝑚𝑡

(60)

for any V̂ ∈ R2𝑛+ℓ, and hence we have, from Assumption
(A2) and (55), that Ψ

𝑡
is level-bounded for any fixed 𝑡 > 0.

Therefore, there exists at least one stationary point of Ψ
𝑡
.

Thus from Lemma 20, the system 𝐻
𝑡
(V) = 0 has at least

one solution, and hence, there exists a point V satisfying
‖𝐻

𝑡
𝑘

(V)‖ < 𝛽
𝑘
in Step 2 at each iteration.

We are now ready to show the well-definedness of the
algorithm.

Proposition 21. Suppose that Assumptions (A2) and (A3)
hold. Then Algorithm 13 is well-defined.

Proof. To establish the well-definedness of Algorithm 13,
we only need to prove the well-definedness and the finite
termination property of Step 2 at each iteration. Now we fix 𝑘
and 𝑡

𝑘
> 0. Since∇𝐻

𝑡
𝑘

(V̂(𝑗)) is nonsingular for any V̂(𝑗) ∈ R2𝑛+ℓ

by 𝑡
𝑘
> 0 and Assumption (A3), 𝑑(𝑗) is uniquely determined

for any 𝑗 ≥ 0. In addition, we have

∇Ψ
𝑡
𝑘

(V̂(𝑗))
⊤

𝑑(𝑗)

= −𝐻
𝑡
𝑘

(V̂(𝑗))
⊤

∇𝐻
𝑡
𝑘

(V̂(𝑗))
⊤

∇𝐻
𝑡
𝑘

(V̂(𝑗))
−⊤

𝐻
𝑡
𝑘

(V̂(𝑗))

= −
󵄩󵄩󵄩󵄩󵄩𝐻𝑡
𝑘

(V̂(𝑗))
󵄩󵄩󵄩󵄩󵄩
2

≤ 0.

(61)

If ‖𝐻
𝑡
𝑘

(V̂(𝑗) + 𝑑(𝑗))‖ ≤ 𝛽
𝑘
, then Step 2 terminates in Step 2.2.

If ‖𝐻
𝑡
𝑘

(V̂(𝑗) + 𝑑(𝑗))‖ > 𝛽
𝑘
, then integer 𝑙 satisfying (50) can

be found at Step 2.3, because 𝑑(𝑗) ̸= 0 and ∇Ψ
𝑡
𝑘

(V̂(𝑗))⊤𝑑(𝑗) < 0.
Thus, Step 2 is well-defined at each iteration.

Next we prove the finite termination property of Step 2.
To prove by contradiction, we assume that Step 2 never stops
and then

󵄩󵄩󵄩󵄩󵄩𝐻𝑡
𝑘

(V̂(𝑗))
󵄩󵄩󵄩󵄩󵄩 > 𝛽𝑘 > 0 (62)

holds for all 𝑗 ≥ 0. We consider two cases.

(i) The case where there exists a subsequence 𝐽 such that
lim

𝑗∈𝐽,𝑗→∞
𝜏
𝑗
= 0. From the boundedness of the

level set of Ψ
𝑡
𝑘

at V̂(0) and the line search rule (50),
{V̂(𝑗)} is bounded. In addition, from the continuous
differentiability of Ψ

𝑡
𝑘

and Assumption (A3), {𝑑(𝑗)} is
also bounded.Thus, there exists a subsequence 𝐽󸀠 ⊂ 𝐽
such that

lim
𝑗∈𝐽
󸀠
,𝑗→∞

V̂
(𝑗) = V̂

∗
, lim

𝑗∈𝐽
󸀠
,𝑗→∞

𝑑(𝑗) = 𝑑
∗
. (63)

Now 𝜏
𝑗
̸= 1 holds for all sufficiently large 𝑗 ∈ 𝐽󸀠, and

hence, we have

Ψ
𝑡
𝑘

(V̂(𝑗) + 𝜌𝑙𝑗−1𝑑(𝑗)) − Ψ
𝑡
𝑘

(V̂(𝑗))

𝜌𝑙𝑗−1
> −2𝜎Ψ

𝑡
𝑘

(V̂(𝑗)) . (64)

Passing to the limit 𝑗 → ∞ with 𝑗 ∈ 𝐽󸀠 on the above
inequality and taking (62) into account, we have

∇Ψ
𝑡
𝑘

(V̂
∗
)
⊤

𝑑
∗
≥ −2𝜎Ψ

𝑡
𝑘

(V̂
∗
) > −2Ψ

𝑡
𝑘

(V̂
∗
) . (65)

On the other hand, it follows from (61) that
∇Ψ

𝑡
𝑘

(V̂
∗
)⊤𝑑

∗
= −2Ψ

𝑡
𝑘

(V̂
∗
), which contradicts (65).

(ii) The case where there exists 𝜏 > 0 such that 𝜏
𝑗
> 𝜏 for

all 𝑗. It follows from (50) that

Ψ
𝑡
𝑘

(V̂(𝑗)) ≤ (1 − 2𝜎𝜏)𝑗Ψ
𝑡
𝑘

(V̂(0)) , (66)

which implies ‖𝐻
𝑡
𝑘

(V̂(𝑗))‖ ≤ 𝛽
𝑘
holds for sufficiently

large 𝑗. This contradicts (62). Therefore, the proof is
complete.

In order to show the global convergence of the proposed
method, we recall the mountain pass theorem (see [24], e.g.),
which is as follows.

Lemma 22. Let 𝜑 : R𝑛 → R be a continuously differentiable
and level-bounded function. Let C ⊂ R𝑛 be a nonempty and
compact set and let 𝜑 be the minimum value of 𝜑 on bdC, that
is,

𝜑 := min
𝑥∈ bd C

𝜑 (𝑥) . (67)

Assume that there exist vectors 𝜉 ∈ C and 𝜂 ∉ C such that
𝜑(𝜉) < 𝜑 and 𝜑(𝜂) < 𝜑. Then, there exists a vector 𝜁 ∈ R𝑛 such
that ∇𝜑(𝜁) = 0 and 𝜑(𝜁) ≥ 𝜑.

By using the mountain pass theorem, we can show the
following global convergence property.

Theorem 23. Suppose that Assumptions (A1)–(A3) hold.
Then, any accumulation point of the sequence {V(𝑘)} generated
by Algorithm 13 is bounded, and hence, at least one accumu-
lation point exists, and any such point is a solution of SOCCP
(1).

Proof. From the choices of 𝑡
𝑘
and𝛽

𝑘
in Step 3 ofAlgorithm 13,

𝑡
𝑘
and 𝛽

𝑘
converge to zero. Since 𝛽

𝑘
→ 0, we have
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lim
𝑘→∞

‖𝐻
𝑡
𝑘

(V(𝑘))‖ = 0. Thus, it follows from 𝑡
𝑘
→ 0

and (35) that lim
𝑘→∞

‖𝐻FB(V
(𝑘))‖ = 0. It implies from

the continuity of 𝐻FB that any accumulation point of the
sequence {V(𝑘)} is a solution of 𝐻FB(V) = 0, and hence, it
suffices to prove the boundedness of {V(𝑘)}. To the contrary,
we assume {V(𝑘)} is unbounded. Then there exist an index set
𝐾 and a subsequence {V(𝑘)}

𝑘∈𝐾
such that lim

𝑘∈𝐾,𝑘→∞
‖V(𝑘)‖ =

∞. Since, by Assumption (A1), the solution setS is bounded,
there exists a compact neighborhood C of S such that S ⊂
intC. From the boundedness of C, V(𝑘) ∉ C for all 𝑘
sufficiently large 𝑘 ∈ 𝐾. In addition, fromS ⊂ intC, we have

𝜑 := min
V∈bd C

ΨFB (V) > 0, (68)

for otherwise, there would exist V ∈ bdC with ΨFB(V) = 0,
that is, V ∈ S ∩ bdC, which contradicts S ⊂ intC. Since 𝑡

𝑘

is small enough for all sufficiently large 𝑘, it follows from (35)
that

−
𝜑

2
< Ψ

𝑡
𝑘
(V) − ΨFB (V) <

𝜑

2
(69)

holds for any V ∈ C. Now we take V ∈ S ⊂ C. Then (69)
yields

󵄨󵄨󵄨󵄨󵄨Ψ𝑡
𝑘
(V) − ΨFB (V)

󵄨󵄨󵄨󵄨󵄨 = Ψ𝑡
𝑘
(V) <

𝜑

2
. (70)

Letting

Ṽ
(𝑘) ∈ arg min

V∈bd C

Ψ
𝑡
𝑘
(V) , (71)

we have from (68) and Ṽ(𝑘) ∈ bdC that 𝜑 ≤ ΨFB(Ṽ
(𝑘)).

Therefore, it follows from (69) and (70) that, for all sufficiently
large 𝑘,

min
V∈bd C

Ψ
𝑡
𝑘
(V) = Ψ

𝑡
𝑘

(Ṽ(𝑘))

> −
𝜑

2
+ ΨFB (Ṽ

(𝑘))

≥ −
𝜑

2
+ 𝜑 =

𝜑

2
.

(72)

On the other hand, since 0 ≤ ‖𝐻
𝑡
𝑘

(V(𝑘+1))‖ ≤ 𝛽
𝑘
and 𝛽

𝑘
→

0, we get

Ψ
𝑡
𝑘

(V(𝑘+1)) <
𝜑

2
(73)

for all 𝑘 sufficiently large.
Nowwe choose sufficiently large 𝑘̂ satisfying all the above

arguments with 𝑘̂ + 1 ∈ 𝐾 and apply Lemma 22 with
𝜑 = Ψ

𝑡
𝑘̂

, 𝜉 = V ∈ C,

𝜂 = V
(
̂
𝑘+1) ∉ C, 𝜑 = min

V∈bd C
Ψ
𝑡
𝑘̂

(V) >
𝜑

2
.

(74)

Then there exists 𝜁 ∈ R2𝑛+ℓ satisfying

∇Ψ
𝑡
𝑘̂

(𝜁) = 0, Ψ
𝑡
𝑘̂

(𝜁) ≥ 𝜑 >
𝜑

2
> 0, (75)

which contradicts Lemma 20, and therefore the proof is
complete.

4.3. Local 𝑄-Superlinear and 𝑄-Quadratic Convergence. In
Section 4.2, we have shown that the sequence {V(𝑘)} is bound-
ed, and any accumulation point of {V(𝑘)} is a solution of
SOCCP (1). In this section, we prove that {V(𝑘)} is superlin-
early convergent, or more strongly, quadratically convergent
if ∇𝐹 is locally Lipschitzian. In order to establish the super-
linear (quadratic) convergence of the algorithm, we need an
assumption that every accumulation point of {∇𝐻

𝑡
𝑘

(V(𝑘))} is
nonsingular. We first consider a sufficient condition for this
assumption to hold.

Let {V(𝑘)} and {𝑡
𝑘
} be the sequences generated by

Algorithm 13, and let V∗ = (𝑥∗, 𝑦∗, 𝑝∗) be any accumulation
point of {V(𝑘)}. Then, by Theorem 23, V∗ is a solution of
SOCCP (1). We call the following condition nondegeneracy
of a solution of the SOCCP (see also [13, 25]).

Definition 24. Let V∗ = (𝑥∗, 𝑦∗, 𝑝∗) ∈ R2𝑛+ℓ be a solution of
SOCCP (1) with 𝑥∗ = (𝑥∗1, . . . , 𝑥∗𝑚), 𝑦∗ = (𝑦∗1, . . . , 𝑦∗𝑚) ∈
R𝑛
1 × ⋅ ⋅ ⋅ × R𝑛

𝑚 . Then we say that V∗ is nondegenerate if 𝑥∗ +
𝑦∗ ≻ 0, or equivalently, 𝑥∗𝑖 + 𝑦∗𝑖 ≻ 0 for all 𝑖 = 1, . . . , 𝑚.

For a nondegenerate solution, we have the next lemma.

Lemma 25. Let V∗ = (𝑥∗, 𝑦∗, 𝑝∗) ∈ R2𝑛+ℓ be a nondegenerate
solution of SOCCP (1), and put 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖), 𝑧∗𝑖 = (𝑥∗𝑖, 𝑦∗𝑖) ∈
R2𝑛
𝑖 for 𝑖 = 1, . . . , 𝑚. Let 𝑡 ∈ R be a nonzero number. Then, for

each 𝑖, the following holds:

lim
(𝑡,𝑧𝑖)→ (0,𝑧∗𝑖)

∇
𝑥
𝑖𝜙𝑖

𝑡
(𝑥𝑖, 𝑦𝑖) = 𝐼 − 𝐿

𝑥
∗𝑖𝐿−1

𝑢
∗𝑖 ,

lim
(𝑡,𝑧𝑖)→ (0,𝑧∗𝑖)

∇
𝑦
𝑖𝜙𝑖

𝑡
(𝑥𝑖, 𝑦𝑖) = 𝐼 − 𝐿

𝑦
∗𝑖𝐿−1

𝑢
∗𝑖 ,

(76)

where

𝐿−1
𝑢
∗𝑖 = [

𝑏∗𝑖 −𝑐∗𝑖 (𝑤∗𝑖)
⊤

2

−𝑐∗𝑖 (𝑤∗𝑖)
2

𝑎∗𝑖𝐼 + (𝑏∗𝑖 − 𝑎∗𝑖) (𝑤∗𝑖)
2

(𝑤∗𝑖)
⊤

2

]

(77)

with

𝑎∗𝑖 :=
2

√𝜆
1
(𝑤∗𝑖) + √𝜆

2
(𝑤∗𝑖)

,

𝑏∗𝑖 :=
1

2
(

1

√𝜆
1
(𝑤∗𝑖)

+
1

√𝜆
2
(𝑤∗𝑖)

) ,

𝑐∗𝑖 :=
1

2
(

1

√𝜆
1
(𝑤∗𝑖)

−
1

√𝜆
2
(𝑤∗𝑖)

) .

(78)

Here𝑤∗𝑖 and 𝑢∗𝑖 are defined by (37) with 𝑥∗𝑖 and 𝑦∗𝑖. We also
write 𝑤∗𝑖 = ((𝑤∗𝑖)

1
, (𝑤∗𝑖)

2
) ∈ R × R𝑛

𝑖
−1, and set (𝑤∗𝑖)

2
:=

(𝑤∗𝑖)
2
/‖(𝑤∗𝑖)

2
‖ if (𝑤∗𝑖)

2
̸= 0, and otherwise, set (𝑤∗𝑖)

2
to any

vector in R𝑛
𝑖
−1 satisfying ‖(𝑤∗𝑖)

2
‖ = 1.
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Proof. Since V∗ is a solution of SOCCP (1), it follows from [5,
Propsition 4.2] that 𝑥∗𝑖 + 𝑦∗𝑖 − ((𝑥∗𝑖)2 + (𝑦∗𝑖)2)1/2 = 0 for all
𝑖 = 1, . . . , 𝑚. Hence, from the nondegeneracy of V∗, we have

𝑢∗𝑖 = ((𝑥∗𝑖)
2

+ (𝑦∗𝑖)
2

)
1/2

= 𝑥∗𝑖 + 𝑦∗𝑖 ≻ 0. (79)

By Property 1(c), this implies that𝐿
𝑢
∗𝑖 is nonsingular. In order

to prove this lemma, it suffices to show

lim
(𝑡,𝑧𝑖)→ (0,𝑧∗𝑖)

𝐿−1
𝑢
𝑖

𝑡

= 𝐿−1
𝑢
∗𝑖 . (80)

Since (36) yields lim
(𝑡,𝑧
𝑖
)→ (0,𝑧

∗𝑖
)
𝑢𝑖
𝑡
= 𝑢∗𝑖, (80) follows from

Property 1(c).

The following proposition gives a sufficient condition for
the nonsingularity of accumulation points of {∇𝐻

𝑡
𝑘

(V(𝑘))}.

Proposition 26. Suppose that Assumptions (A1)–(A3) hold.
Let {V(𝑘)} be a sequence generated by Algorithm 13 and let V∗
be any accumulation point of it. Moreover, assume that V∗
is nondegenerate and the Jacobian matrix ∇𝐹(V∗)⊤ has the
Cartesian mixed Jordan 𝑃-property, that is, rank ∇

𝑝
𝐹(V∗) = ℓ

and

∇𝐹(V∗)
⊤

(𝜉, 𝜂, 𝜑) = 0, (𝜉, 𝜂) ̸= 0, 𝜑 ∈ Rℓ

𝜉 = (𝜉1, . . . , 𝜉𝑚) , 𝜂 = (𝜂1, . . . , 𝜂𝑚) ∈ R𝑛
1 × ⋅ ⋅ ⋅ × R𝑛

𝑚

󳨐⇒ 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛 𝑖𝑛𝑑𝑒𝑥 ] 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜉] ∘ 𝜂] ≻ 0.
(81)

Then, every accumulation point of {∇𝐻
𝑡
𝑘

(V(𝑘))} is nonsingular.

Proof. ByTheorem 23, the sequence {V(𝑘)} is bounded and has
at least one accumulation point V∗. Hence, we may assume
that {V(𝑘)} converges to V∗ without loss of generality. It follows
from Lemma 25 and 𝑡

𝑘
→ 0 that any accumulation point of

{∇𝐻
𝑡
𝑘

(V(𝑘))}, say 𝐽
0
, is given in the following form:

𝐽
0
:=

[
[
[
[
[
[
[

[

diag {𝐼 − 𝐿
𝑥
∗𝑖𝐿−1

𝑢
∗𝑖}

𝑚

𝑖=1

∇
𝑥
𝐹 (V∗)

diag {𝐼 − 𝐿
𝑦
∗𝑖𝐿−1

𝑢
∗𝑖}

𝑚

𝑖=1

∇
𝑦
𝐹 (V∗)

𝑂 ∇
𝑝
𝐹 (V∗)

]
]
]
]
]
]
]

]

. (82)

In order to prove that 𝐽
0
is nonsingular, suppose that

𝐽⊤
0
(𝜉, 𝜂, 𝜑) = 0, where (𝜉, 𝜂, 𝜑) ∈ R2𝑛+ℓ. We will show that

(𝜉, 𝜂, 𝜑) = 0. It follows from (82) that

∇𝐹(V∗)
⊤

(𝜉, 𝜂, 𝜑) = 0, (83)

(𝐼 − 𝐿−1
𝑢
∗𝑖𝐿

𝑥
∗𝑖) 𝜉𝑖 + (𝐼 − 𝐿−1

𝑢
∗𝑖𝐿

𝑦
∗𝑖) 𝜂𝑖 = 0, 𝑖 = 1, . . . , 𝑚,

(84)

where 𝜉 = (𝜉1, . . . , 𝜉𝑚), 𝜂 = (𝜂1, . . . , 𝜂𝑚) ∈ R𝑛
1 × ⋅ ⋅ ⋅ × R𝑛

𝑚 .
Multiplying both sides of the above equations by 𝐿

𝑢
∗𝑖 from

the left-hand side, we get

(𝐿
𝑢
∗𝑖 − 𝐿

𝑥
∗𝑖) 𝜉𝑖 + (𝐿

𝑢
∗𝑖 − 𝐿

𝑦
∗𝑖) 𝜂𝑖 = 𝐿

𝑢
∗𝑖
−𝑥
∗𝑖𝜉𝑖 + 𝐿

𝑢
∗𝑖
−𝑦
∗𝑖𝜂𝑖

= 𝐿
𝑦
∗𝑖𝜉𝑖 + 𝐿

𝑥
∗𝑖𝜂𝑖

= 0
(85)

for all 𝑖 = 1, . . . , 𝑚, where the second equality uses the fact
𝑢∗𝑖 = 𝑥∗𝑖 + 𝑦∗𝑖 (see (79)). Suppose on the contrary that
(𝜉, 𝜂) ̸= 0. Then from (83) and the assumption (81), we have
that

𝜉] ∘ 𝜂] ≻ 0 (86)

for some ] ∈ {1, . . . , 𝑚}. Since 𝑥∗], 𝑦∗] ⪰ 0, by Property 1(b),
we have 𝐿

𝑥
∗] ⪰ 𝑂 and 𝐿

𝑦
∗] ⪰ 𝑂. By using Property 1(a), (85)

can be rewritten equivalently as

𝐿
𝑦
∗]𝜉] + 𝑥∗] ∘ 𝜂] = 0 or 𝑦∗] ∘ 𝜉] + 𝐿

𝑥
∗]𝜂] = 0. (87)

Multiplying both sides of the first equation in (87) by (𝜉])⊤
from the left, we have

(𝜉])
⊤

𝐿
𝑦
∗]𝜉] + ⟨𝜉], 𝑥∗] ∘ 𝜂]⟩

= (𝜉])
⊤

𝐿
𝑦
∗]𝜉] + ⟨𝑥∗], 𝜉] ∘ 𝜂]⟩ = 0.

(88)

Since 𝐿
𝑦
∗] is positive semidefinite, we have ⟨𝑥∗], 𝜉] ∘ 𝜂]⟩ ≤ 0.

Similarly, multiplying both sides of the second equation in
(87) by (𝜂])⊤ from the left, we have ⟨𝑦∗], 𝜉] ∘ 𝜂]⟩ ≤ 0. Adding
these two inequalities yields

⟨𝑥∗] + 𝑦∗], 𝜉] ∘ 𝜂]⟩ ≤ 0. (89)

On the other hand, by the nondegeneracy of V∗, we have 𝑥∗]+
𝑦∗] ≻ 0. This together with (86) yields

⟨𝑥∗] + 𝑦∗], 𝜉] ∘ 𝜂]⟩ > 0, (90)

which contradicts (89), and hence, we must have (𝜉, 𝜂) = 0.
Then, since the matrix ∇

𝑝
𝐹(V∗)⊤ ∈ R(𝑛+ℓ)×ℓ has full column

rank, we also have from (83) that 𝜑 = 0. Therefore, 𝐽
0
is

nonsingular.

Next, we show the local convergence properties of the
sequence {V(𝑘)} generated by Algorithm 13. The following
lemma plays a key role in proving such properties.

Lemma 27. Suppose that Assumptions (A1)–(A3) hold. Let
{V(𝑘)} be a sequence generated by Algorithm 13 and let V∗ be
any accumulation point of it. In addition, assume that every
accumulation point of {∇𝐻

𝑡
𝑘

(V(𝑘))} is nonsingular. Then, for
V(𝑘) sufficiently close to V∗,

󵄩󵄩󵄩󵄩󵄩V
(𝑘) + 𝑑(𝑘) − V

∗
󵄩󵄩󵄩󵄩󵄩 = 𝑜 (

󵄩󵄩󵄩󵄩󵄩V
(𝑘) − V

∗
󵄩󵄩󵄩󵄩󵄩) (91)
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holds, where 𝑑(𝑘) is defined by −∇𝐻
𝑡
𝑘

(V(𝑘))−⊤𝐻
𝑡
𝑘

(V(𝑘)). More-
over, if ∇𝐹 is locally Lipschitzian and 𝑟 ≥ 2, then

󵄩󵄩󵄩󵄩󵄩V
(𝑘) + 𝑑(𝑘) − V

∗
󵄩󵄩󵄩󵄩󵄩 = 𝑂 (

󵄩󵄩󵄩󵄩󵄩V
(𝑘) − V

∗
󵄩󵄩󵄩󵄩󵄩
2

) (92)

holds.

Proof. FromTheorem 23, {V(𝑘)} is bounded, and hence, there
exists at least one accumulation point, and any such point
V∗ satisfies 𝐻FB(V

∗) = 0. Since every accumulation point of
{∇𝐻

𝑡
𝑘

(V(𝑘))} is nonsingular, we have, from Assumption (A3),
that there exists a constant 𝑐

1
> 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩
∇𝐻

𝑡
𝑘

(V(𝑘))
−⊤󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑐
1

(93)

for all 𝑘. Let 𝑉
𝑘
∈ 𝜕𝐻FB(V

(𝑘)) such that

𝑉
𝑘
∈ argmin

𝑉∈𝜕𝐻FB(V(𝑘))

󵄩󵄩󵄩󵄩󵄩∇𝐻𝑡
𝑘

(V(𝑘)) − 𝑉
󵄩󵄩󵄩󵄩󵄩 . (94)

Note that𝑉
𝑘
exists for all 𝑘, because 𝜕𝐻FB(V

(𝑘)) is compact [17,
page 70]. We have from (93) and𝐻FB(V

∗) = 0 that
󵄩󵄩󵄩󵄩󵄩V

(𝑘) + 𝑑(𝑘) − V
∗
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
V
(𝑘) − ∇𝐻

𝑡
𝑘

(V(𝑘))
−⊤

𝐻
𝑡
𝑘

(V(𝑘)) − V
∗
󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
∇𝐻

𝑡
𝑘

(V(𝑘))
−⊤󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
∇𝐻

𝑡
𝑘

(V(𝑘))
⊤

(V(𝑘) − V
∗) − 𝐻

𝑡
𝑘

(V(𝑘))
󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑐
1
{
󵄩󵄩󵄩󵄩󵄩󵄩
(∇𝐻

𝑡
𝑘

(V(𝑘)) − 𝑉
𝑘
)
⊤

(V(𝑘) − V
∗)
󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩𝑉

⊤

𝑘
(V(𝑘) − V

∗) − 𝐻󸀠

FB (V
∗; V(𝑘) − V

∗)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩𝐻

󸀠

FB (V
∗; V(𝑘) − V

∗) − (𝐻FB (V
(𝑘)) − 𝐻FB (V

∗))
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘)) − 𝐻
𝑡
𝑘

(V(𝑘))
󵄩󵄩󵄩󵄩󵄩 } .

(95)

It follows from (54) that, for V(𝑘) sufficiently close to V∗,
󵄩󵄩󵄩󵄩󵄩󵄩
(∇𝐻

𝑡
𝑘

(V(𝑘)) − 𝑉
𝑘
)
⊤

(V(𝑘) − V
∗)
󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩∇𝐻𝑡

𝑘

(V(𝑘)) − 𝑉
𝑘

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩V

(𝑘) − V
∗
󵄩󵄩󵄩󵄩󵄩

= 𝑂 (
󵄩󵄩󵄩󵄩󵄩V

(𝑘) − V
∗
󵄩󵄩󵄩󵄩󵄩
2

) .

(96)

From (35), the inequality 𝑡
𝑘
≤ 𝜅𝛿𝑟

𝑘
= 𝜅‖𝐻FB(V

(𝑘))‖
𝑟

by Step 3
of Algorithm 13, and the local Lipschitz continuity of𝐻FB, we
get
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘)) − 𝐻
𝑡
𝑘

(V(𝑘))
󵄩󵄩󵄩󵄩󵄩 ≤

√2𝑚𝑡
𝑘

≤ √2𝑚𝜅
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘))
󵄩󵄩󵄩󵄩󵄩
𝑟

= √2𝑚𝜅
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘)) − 𝐻FB (V
∗)
󵄩󵄩󵄩󵄩󵄩
𝑟

= 𝑂(
󵄩󵄩󵄩󵄩󵄩V

(𝑘) − V
∗
󵄩󵄩󵄩󵄩󵄩
𝑟

) .

(97)

Since, by Proposition 11, 𝐻FB is semismooth, we have from
(15) and (17) that

󵄩󵄩󵄩󵄩󵄩𝑉
⊤

𝑘
(V(𝑘) − V

∗) − 𝐻󸀠

FB (V
∗; V(𝑘) − V

∗)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩𝐻

󸀠

FB (V
∗; V(𝑘) − V

∗) − (𝐻FB (V
(𝑘)) − 𝐻FB (V

∗))
󵄩󵄩󵄩󵄩󵄩

= 𝑜 (
󵄩󵄩󵄩󵄩󵄩V

(𝑘) − V
∗
󵄩󵄩󵄩󵄩󵄩) .

(98)

Therefore, from (95)–(97) and 𝑟 > 1, we obtain (91). More-
over, if∇𝐹 is locally Lipschitzian, then, by Proposition 11,𝐻FB
is strongly semismooth, and hence, we have

󵄩󵄩󵄩󵄩󵄩𝑉
⊤

𝑘
(V(𝑘) − V

∗) − 𝐻󸀠

FB (V
∗; V(𝑘) − V

∗)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩𝐻

󸀠

FB (V
∗; V(𝑘) − V

∗) − (𝐻FB (V
(𝑘)) − 𝐻FB (V

∗))
󵄩󵄩󵄩󵄩󵄩

= 𝑂 (
󵄩󵄩󵄩󵄩󵄩V

(𝑘) − V
∗
󵄩󵄩󵄩󵄩󵄩
2

) .

(99)

Therefore, from (95)–(97) and 𝑟 ≥ 2, we obtain (92).

Using Lemma 27, we obtain the local 𝑄-superlinear (𝑄-
quadratic) convergence result.

Theorem 28. Suppose that Assumptions (A1)–(A3) hold. Let
{V(𝑘)} be a sequence generated by Algorithm 13. If every accu-
mulation point of {∇𝐻

𝑡
𝑘

(V(𝑘))} is nonsingular, then the follow-
ing statements hold.

(a) For all 𝑘 sufficiently large, ‖𝐻FB(V̂
(𝑗) + 𝑑(𝑗))‖ ≤ 𝛽

𝑘
is

satisfied at 𝑗 = 0 in Step 2.2 of Algorithm 13. Moreover,
for all 𝑘 sufficiently large, V(𝑘+1) = V(𝑘) + 𝑑(𝑘) holds,
where 𝑑(𝑘) = −∇𝐻

𝑡
𝑘

(V(𝑘))−⊤𝐻
𝑡
𝑘

(V(𝑘)).

(b) The whole sequence {V(𝑘)} converges 𝑄-superlinearly to
a solution V∗ of SOCCP (1). Moreover, if ∇𝐹 is locally
Lipschitz continuous and 𝑟 ≥ 2, then the sequence {V(𝑘)}
converges 𝑄-quadratically.

Proof. Since (b) is directly obtained from (a) and Lemma 27,
it suffices to prove (a). Namely, we prove that ‖𝐻

𝑡
𝑘

(V(𝑘)+𝑑(𝑘))‖

≤ 𝛽
𝑘
= 𝛽

0
𝜂𝑘 for all 𝑘 sufficiently large.We have from (93) that

󵄩󵄩󵄩󵄩󵄩𝑑
(𝑘)
󵄩󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩
−∇𝐻

𝑡
𝑘

(V(𝑘))
−⊤

𝐻
𝑡
𝑘

(V(𝑘))
󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝑐

1

󵄩󵄩󵄩󵄩󵄩𝐻𝑡
𝑘

(V(𝑘))
󵄩󵄩󵄩󵄩󵄩 ,

(100)

and hence, it follows from the boundedness of {V(𝑘)} and
the continuity of 𝐻

𝑡
𝑘

that {𝑑(𝑘)} is bounded. Let V∗ be any
accumulation point of V(𝑘), and let V(𝑘) be sufficiently close to
V∗. By Theorem 23, V∗ is a solution of SOCCP (1), and thus,
𝐻FB(V

∗) = 0. From the local Lipschitz continuity of𝐻FB, we
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may assume that ‖𝐻FB(V
(𝑘))‖ is small enough. By Lemma 27

and (100), there exists a constant 𝑐
2
∈ (0, 1) such that

󵄩󵄩󵄩󵄩󵄩V
(𝑘) − V

∗
󵄩󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩−𝑑
(𝑘)
󵄩󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩V
(𝑘) + 𝑑(𝑘) − V

∗
󵄩󵄩󵄩󵄩󵄩

≤ 𝑐
1

󵄩󵄩󵄩󵄩󵄩𝐻𝑡
𝑘

(V(𝑘))
󵄩󵄩󵄩󵄩󵄩 + 𝑜 (

󵄩󵄩󵄩󵄩󵄩V
(𝑘) − V

∗
󵄩󵄩󵄩󵄩󵄩)

≤ 𝑐
1

󵄩󵄩󵄩󵄩󵄩𝐻𝑡
𝑘

(V(𝑘))
󵄩󵄩󵄩󵄩󵄩 + 𝑐2

󵄩󵄩󵄩󵄩󵄩V
(𝑘) − V

∗
󵄩󵄩󵄩󵄩󵄩 .

(101)

Therefore, we have from (35) with 𝑡
𝑘
≤ 𝜅‖𝐻FB(V

(𝑘))‖
𝑟

≤
𝜅‖𝐻FB(V

(𝑘))‖ that
󵄩󵄩󵄩󵄩󵄩V

(𝑘) − V
∗
󵄩󵄩󵄩󵄩󵄩

≤
𝑐
1

1 − 𝑐
2

󵄩󵄩󵄩󵄩󵄩𝐻𝑡
𝑘

(V(𝑘))
󵄩󵄩󵄩󵄩󵄩

≤
𝑐
1

1 − 𝑐
2

(
󵄩󵄩󵄩󵄩󵄩𝐻𝑡
𝑘

(V(𝑘)) − 𝐻FB (V
(𝑘))
󵄩󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩𝐻FB (V
(𝑘))
󵄩󵄩󵄩󵄩󵄩)

≤
𝑐
1

1 − 𝑐
2

(√2𝑚𝑡
𝑘
+
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘))
󵄩󵄩󵄩󵄩󵄩)

= 𝑂 (
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘))
󵄩󵄩󵄩󵄩󵄩) .

(102)

This together with Lemma 27 and the local Lipschitz conti-
nuity of𝐻FB yields that
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘) + 𝑑(𝑘))
󵄩󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩𝐻FB (V
(𝑘) + 𝑑(𝑘)) − 𝐻FB (V

∗)
󵄩󵄩󵄩󵄩󵄩

= 𝑂 (
󵄩󵄩󵄩󵄩󵄩V

(𝑘) + 𝑑(𝑘) − V
∗
󵄩󵄩󵄩󵄩󵄩)

= 𝑜 (
󵄩󵄩󵄩󵄩󵄩V

(𝑘) − V
∗
󵄩󵄩󵄩󵄩󵄩) = 𝑜 (

󵄩󵄩󵄩󵄩󵄩𝐻FB (V
(𝑘))
󵄩󵄩󵄩󵄩󵄩) .
(103)

Therefore, it follows again from (35) with 𝑡
𝑘
≤ 𝜅‖𝐻FB(V

(𝑘))‖
𝑟

that
󵄩󵄩󵄩󵄩󵄩𝐻𝑡
𝑘

(V(𝑘) + 𝑑(𝑘))
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩𝐻𝑡
𝑘

(V(𝑘) + 𝑑(𝑘)) − 𝐻FB (V
(𝑘) + 𝑑(𝑘))

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘) + 𝑑(𝑘))
󵄩󵄩󵄩󵄩󵄩

≤ √2𝑚𝑡
𝑘
+
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘) + 𝑑(𝑘))
󵄩󵄩󵄩󵄩󵄩

= 𝑜 (
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘))
󵄩󵄩󵄩󵄩󵄩) .

(104)

From (35), the choices of 𝑡
𝑘
and 𝛽

𝑘
in Step 3 of Algorithm 13,

and 0 < 𝜂 ≤ 𝜂 < 1, we get
󵄩󵄩󵄩󵄩󵄩𝐻FB (V

(𝑘))
󵄩󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩𝐻FB (V
(𝑘)) − 𝐻

𝑡
𝑘−1

(V(𝑘))
󵄩󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩𝐻𝑡
𝑘−1

(V(𝑘))
󵄩󵄩󵄩󵄩󵄩

≤ √2𝑚𝑡
𝑘−1
+ 𝛽

𝑘−1

≤ √2𝑚𝑡
0
𝜂𝑘−1 + 𝛽

0
𝜂𝑘−1

= 𝑐
3
𝜂𝑘,

(105)

where 𝑐
3
= 𝜂−1(√2𝑚𝑡

0
+ 𝛽

0
), and hence, (104) yields

‖𝐻
𝑡
𝑘

(V(𝑘)+𝑑(𝑘))‖ = 𝑜(𝜂𝑘).This implies that ‖𝐻
𝑡
𝑘

(V(𝑘)+𝑑(𝑘))‖ ≤

𝛽
𝑘
= 𝛽

0
𝜂𝑘. Taking into account V̂(0) = V(𝑘) and 𝑑(0) = 𝑑(𝑘), we

have ‖𝐻FB(V̂
(0) + 𝑑(0))‖ ≤ 𝛽

𝑘
and V(𝑘+1) = V(𝑘) + 𝑑(𝑘). Since,

by Lemma 27, V(𝑘+1) remains in the neighborhood of V∗, the
desired results are obtained.

5. Numerical Experiments

In this section, we show some numerical results for
Algorithm 13. The program was coded in MATLAB 7, and
computations were carried out on a machine with Intel Core
i7-3770K CPU (3.50GHz×2) and 8.0GB RAM. We set the
parameters 𝜂 = 𝜂 = 0.1, 𝜌 = 0.66, 𝜎 = 0.1, 𝑟 = 2, 𝜅 = 1,
𝜅 = 0.2, and 𝛽

0
= 2. We also set the function 𝑡

𝑖
as follows (see

[22] for details):

𝑡
𝑖
(𝑧𝑖, 𝛿) :=

{{{
{{{
{

󵄩󵄩󵄩󵄩󵄩𝑧
𝑖
󵄩󵄩󵄩󵄩󵄩 𝛿

√2 (1 − 𝛿2)
if 𝑧𝑖 ̸= (0, 0) ∈ R2, 𝛿 < 1,

1010 otherwise
(106)

for 𝑛
𝑖
= 1, and

𝑡
𝑖
(𝑧𝑖, 𝛿)

:=

{{{{{{{{{{{
{{{{{{{{{{{
{

𝜆
1
(𝑤𝑖) 𝛿

√2 (2(𝑤𝑖)
1
− 𝜆

1
(𝑤𝑖) 𝛿2)

if 𝑧𝑖 ∈Z𝑖

1
, 𝛿 < √

2(𝑤𝑖)
1

𝜆
1
(𝑤𝑖)

,

𝛿√(𝑤𝑖)
1

2√2 (2 − 𝛿)
if 𝑧𝑖 ∈Z𝑖

2
, 𝛿 < 2,

1010 otherwise
(107)

for 𝑛
𝑖
≥ 2. For all problems, we randomly chose the ini-

tial point (𝑥(0), 𝑦(0), 𝑝(0)) ∈ R2𝑛+ℓ whose components were
distributed on the interval [0, 1], by using rand command of
MATLAB. The stopping criterion in Step 1 is relaxed to

󵄩󵄩󵄩󵄩󵄩𝐻FB (V
(𝑘))
󵄩󵄩󵄩󵄩󵄩 ≤ 10

−8. (108)

We first solve the following second-order cone program-
ming (SOCP) problem:

minimize 𝑐⊤𝑥

subject to 𝐴𝑥 + 𝑏 = 0, 𝑥 ∈K,
(109)

which is reformulated as SOCCP (1) with

𝐹 (𝑥, 𝑦, 𝑝) := [
𝑂 −𝐼 𝐴⊤

𝐴 𝑂 𝑂
][

[

𝑥
𝑦
𝑝

]

]

+ [
𝑐
𝑏
] (110)

equivalently. We generate one hundred test problems ran-
domly such that there exist primal and dual strictly feasible
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Table 1: Numerical comparison of our method with SDPT3.

K 𝑛 ℓ
Our method SDPT3

Iter CPU Iter CPU
(K5)

3

× (K2)
2

× R
+

20 5 8.99 0.063 8.84 0.070
(K10)

5 50 10 8.28 0.058 9.82 0.078
(K100)

3

× (K50)
2 400 100 7.02 1.521 10.19 0.291

K500 × K200 × (K100)
3 1000 200 7.01 8.253 14.85 2.512

solutions. Specifically, we first choose matrix𝐴 ∈ Rℓ×𝑛 whose
components are distributed on [−100, 100], vectors 𝑥, 𝑦 ∈
intK and 𝑝 ∈ Rℓ randomly, and then set 𝑏 := −𝐴𝑥 and
𝑐 := −𝐴⊤𝑝 + 𝑦. Here, each component of (𝑥𝑖)

2
is distributed

on [−100, 100] and (𝑥𝑖)
1
is set to (𝑥𝑖)

1
:= ‖(𝑥𝑖)

2
‖+𝛼, where𝛼 ∈

(0, 100] is chosen randomly, and 𝑦 is also generated similarly,
while each component of 𝑝 is distributed on [0, 1]. In order to
compare our method with another method, we solve SOCP
(109) by SDPT3 [26, 27], which is the software of interior
point methods for solving semidefinite, second-order cone,
and linear programming problems. We use SDPT3 with the
default parameter and option settings. The obtained results
are shown in Table 1, in which “Iter” and “CPU” denote the
average values of the number of iterations and the CPU time
in seconds, respectively. In particular, the value of “Iter” in
“our method” denotes the number of times that the Newton
equations (49) have been solved. In the column ofK, (K5)3

denotes K5 ×K5 ×K5, for example. Since SDPT3 failed to
solve some test problems when K = (K5)3 × (K2)2 × R

+
,

the average values in this case were taken over the successful
trials only. We see from Table 1 that our method is superior
to or at least comparable with SDPT3 from the viewpoint
of the number of iterations. On the other hand, from the
viewpoint of CPU time, ourmethod is also superior to SDPT3
for small-scale problems. However, SDPT3 outperforms our
method for middle- or large-scale problems. We believe that
this is because SDPT3 is coded to reduce the computational
costs by means of some fundamental techniques on matrix
computation and so forth. For further development of our
method, we will need more appropriate tuning of our code.
However, it is not the purpose of this paper.

In order to confirm the local behaviors of the sequence
generated by Algorithm 13, we list the value of ‖𝐻FB(V̂

(𝑗))‖ at
each outer iteration 𝑘 in Table 2. In addition, to investigate
how the parameter 𝑟 affects the rate of convergence, we per-
formed the algorithm with 𝑟 = 1, 1.5, 2. We also investigate
the relation between the choices of 𝑟 and the behavior of {𝑡

𝑘
};

we list the behaviors of {𝑡
𝑘
}. We chose one of the above test

problems in the case K = K500 ×K200 × (K100)3. We note
that 2.66e − 09means 2.66 × 10−9, for example. We see from
Table 2 that the sequence generated by Algorithm 13 seems to
converge𝑄-quadratically and the parameter 𝑟 does not affect
the convergence of the sequence. On the other hand, we find
that the choices of 𝑟 affect the behavior of {𝑡

𝑘
}.

The next experiment is an application of Algorithm 13
to the robust Nash equilibrium problem in the game theory.
The robust Nash equilibrium [2, 3, 28, 29] is a new solution

concept for noncooperative games with uncertain informa-
tion. In this model, it is assumed that each player’s cost (pay-
off) function and/or the opponents’ strategies are uncertain,
but they belong to some uncertainty sets and each player
chooses his strategy by taking the worst possible case into
consideration. In other words, each player makes decision
according to the robust optimization policy. In this experi-
ment, we focus on the following 2-person robust Nash game
with quadratic cost functions:

Player 1:

minimize
𝑥
1

max
𝛿𝑥
2
∈𝐷
2

{
1

2
(𝑥1)

⊤

𝐴
11
𝑥1 + (𝑥1)

⊤

𝐴
12
(𝑥2 + 𝛿𝑥2)}

subject to 𝑥1 ≥ 0, 𝑒⊤𝑥1 = 1;
(111)

Player 2:

minimize
𝑥
2

max
𝛿𝑥
1
∈𝐷
1

{
1

2
(𝑥2)

⊤

𝐴
22
𝑥2 + (𝑥2)

⊤

𝐴
21
(𝑥1 + 𝛿𝑥1)}

subject to 𝑥2 ≥ 0, 𝑒⊤𝑥2 = 1,
(112)

where 𝐴
𝑖𝑗
∈ R𝑚

𝑖
×𝑚
𝑗 for (𝑖, 𝑗) ∈ {1, 2} × {1, 2} are given

matrices, 𝑒 is the vector of ones of appropriate dimension,
and 𝑥1 ∈ R𝑚

1 and 𝑥2 ∈ R𝑚
2 denote the mixed strategies

for Players 1 and 2, respectively. Moreover, 𝛿𝑥1 and 𝛿𝑥2 mean
the estimation error or noise, and each player knows that
they belong to the uncertainty sets 𝐷

1
and 𝐷

2
, respectively.

Under this situation, the tuple (𝑥1, 𝑥2) is called a robust
Nash equilibrium when 𝑥1 and 𝑥2 solve (111) and (112) simul-
taneously. In this experiment, we set

𝐴
11
:= [

[

30 −12 −3
−5 13 15
1 9 23

]

]

, 𝐴
12
:= [

[

−11 3 −10
−8 −15 −2
3 −1 −6

]

]

,

𝐴
21
:= [

[

3 −1 1
10 0 6
−1 6 6

]

]

, 𝐴
22
:= [

[

31 9 6
1 24 6
4 8 29

]

]

,

𝐷
1
:= {𝛿𝑥

1
| 󵄩󵄩󵄩󵄩𝛿𝑥1

󵄩󵄩󵄩󵄩 ≤ 𝜌1, 𝑒
⊤𝛿𝑥

1
= 0} ,

𝐷
2
:= {𝛿𝑥

2
| 󵄩󵄩󵄩󵄩𝛿𝑥2

󵄩󵄩󵄩󵄩 ≤ 𝜌2, 𝑒
⊤𝛿𝑥

2
= 0}

(113)
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Table 2: Numerical behaviors of ‖𝐻FB(V̂
(𝑗))‖.

𝑟 = 1 𝑟 = 1.5 𝑟 = 2

𝑘 𝑗 𝑡
𝑘

‖𝐻FB(V̂
(𝑗))‖ 𝑘 𝑗 𝑡

𝑘
‖𝐻FB(V̂

(𝑗))‖ 𝑘 𝑗 𝑡
𝑘

‖𝐻FB(V̂
(𝑗))‖

1 0 1.00e + 00 1.62e + 06 1 0 1.00e + 00 1.62e + 06 1 0 1.00e + 00 1.62e + 06
1 1 1.00e + 00 4.35e + 03 1 1 1.00e + 00 3.80e + 03 1 1 1.00e + 00 3.77e + 03
1 2 1.00e + 00 8.03e + 02 1 2 1.00e + 00 7.38e + 02 1 2 1.00e + 00 7.32e + 02
1 3 1.00e + 00 1.37e + 02 1 3 1.00e + 00 1.27e + 02 1 3 1.00e + 00 1.27e + 02
1 4 1.00e + 00 1.38e + 01 1 4 1.00e + 00 1.30e + 01 1 4 1.00e + 00 1.30e + 01
1 5 1.00e + 00 1.38e + 01 1 5 1.00e + 00 1.30e + 01 1 5 1.00e + 00 1.30e + 01
2 1 1.00e − 01 2.85e − 01 2 1 1.00e − 01 2.54e − 01 2 1 6.57e − 02 2.56e − 01
3 1 1.17e − 04 1.17e − 04 3 1 8.80e − 07 9.19e − 05 3 1 9.71e − 09 9.86e − 05
4 1 2.66e − 09 2.66e − 09 4 1 1.20e − 13 2.43e − 09 4 1 5.39e − 18 2.32e − 09

Table 3: Robust Nash equilibria with various choices of uncertainty radiuses.

Iter CPU 𝜌
1

𝜌
2

𝑥1 𝑥2

8 0.078 0.2 0.2 (0.3916, 0.6083, 0) (0.3247, 0.3625, 0.3128)

8 0.094 0.4 0.4 (0.4168, 0.5832, 0) (0.3354, 0.3152, 0.3495)

7 0.078 0.6 0.6 (0.4292, 0.5708, 0) (0.3477, 0.2821, 0.3702)

7 0.078 0.8 0.8 (0.4017, 0.5065, 0.0918) (0.3686, 0.2503, 0.3812)

9 0.078 1.0 1.0 (0.3627, 0.4589, 0.1784) (0.3891, 0.2258, 0.3851)

and change the values of 𝜌
1
and 𝜌

2
variously. Since 𝐷

1
and

𝐷
2
are defined by means of Euclidean norm, the robust

Nash equilibrium problem can be reformulated as an SOCCP
equivalently (the reformulated SOCCP is explicitly written in
Section 5.1.1 of [3]. We thus omit the details here). Here, we
emphasize that the reformulated SOCCP cannot be expressed
as any SOCP, and hence existing software such as SDPT3
cannot be applied. Moreover, if the reformulated SOCCP
is rewritten of the form (1), then it satisfies neither (4)
nor (6). The obtained results are summarized in Table 3, in
which 𝑥1 and 𝑥2 denote the obtained robust Nash equilibria
for various choices of uncertainty radiuses 𝜌

1
and 𝜌

2
. For

all problems, we could calculate the robust Nash equilibria
correctly. Moreover, as is discussed in the existing papers, we
can observe that the robust Nash equilibria move smoothly
as the values of 𝜌

1
and 𝜌

2
change gradually.

6. Conclusion

In this paper, we have proposed a smoothingNewtonmethod
with appropriate parameter control based on the Fischer-
Burmeister function for solving the SOCCP. We have shown
its global and 𝑄-quadratic convergence properties under
some assumptions. In addition, we have considered some suf-
ficient conditions for the assumptions. In numerical experi-
ments, we have confirmed the effectiveness of the proposed
methods.
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