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Using viscosity approximationmethod, we study strong convergence to a common element of the set of solutions of an equilibrium
problem and the set of common fixed points of a finite family of multivalued mappings satisfying the condition (𝐸) in the setting
of Hilbert space. Our results improve and extend some recent results in the literature.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖. Let 𝐶 be a nonempty closed convex subset 𝐻.
A subset 𝐶 ⊂ 𝐻 is called proximal if, for each 𝑥 ∈ 𝐻, there
exists an element 𝑦 ∈ 𝐶 such that

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 = dist (𝑥, 𝐶) = inf {‖𝑥 − 𝑧‖ : 𝑧 ∈ 𝐶} . (1)

A single-valued mapping 𝑇 : 𝐶 → 𝐶 is said to be
nonexpansive, if

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (2)

Let𝑃
𝐶
be a nearest point projection of𝐻 into𝐶; that is, for

𝑥 ∈ 𝐻, 𝑃
𝐶
𝑥 is a unique nearest point in 𝐶 with the property
󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐶𝑥

󵄩󵄩󵄩󵄩 := inf {󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 : 𝑦 ∈ 𝐶} . (3)

We denote by 𝐶𝐵(𝐶), 𝐾(𝐶), and 𝑃(𝐶) the collection of
all nonempty closed bounded subsets, nonempty compact
subsets, and nonempty proximal bounded subsets of 𝐶
respectively. The Hausdorff metric𝐻 on 𝐶𝐵(𝐻) is defined by

𝐻(𝐴, 𝐵) := max{sup
𝑥∈𝐴

dist (𝑥, 𝐵) , sup
𝑦∈𝐵

dist (𝑦, 𝐴)} , (4)

for all 𝐴, 𝐵 ∈ 𝐶𝐵(𝐻).

Let 𝑇 : 𝐻 → 2
𝐻 be a multivalued mapping. An element

𝑥 ∈ 𝐻 is said to be a fixed point of 𝑇, if 𝑥 ∈ 𝑇𝑥 and the set of
fixed points of 𝑇 is denoted by 𝐹(𝑇).

A multivalued mapping 𝑇 : 𝐻 → 𝐶𝐵(𝐻) is called

(i) nonexpansive if

𝐻(𝑇𝑥, 𝑇𝑦) ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , 𝑥, 𝑦 ∈ 𝐻; (5)

(ii) quasi-nonexpansive if 𝐹(𝑇) ̸= 0 and𝐻(𝑇𝑥, 𝑇𝑝) ≤ ‖𝑥−
𝑝‖ for all 𝑥 ∈ 𝐻 and all 𝑝 ∈ 𝐹(𝑇).

Recently, Garćıa-Falset et al. [1] introduced a new condi-
tion on single-valued mappings, called condition (𝐸), which
is weaker than nonexpansiveness.

Definition 1. A mapping 𝑇 : 𝐻 → 𝐻 is said to satisfy
condition (𝐸

𝜇
) provided that

󵄩󵄩󵄩󵄩𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ 𝜇 ‖𝑥 − 𝑇𝑥‖ +

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , 𝑥, 𝑦 ∈ 𝐻. (6)

We say that 𝑇 satisfies condition (𝐸) whenever 𝑇 satisfies
(𝐸
𝜇
) for some 𝜇 ≥ 1.

Recently, Abkar and Eslamian [2, 3] generalized this
condition for multivalued mappings as follows.
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Definition 2. A multivalued mapping 𝑇 : 𝐻 → 𝐶𝐵(𝐻) is
said to satisfy condition (𝐸) provided that

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝜇 dist (𝑥, 𝑇𝑥) + 󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , 𝑥, 𝑦 ∈ 𝐻, (7)

for some 𝜇 ≥ 1.

It is obvious that every nonexpansive multivalued map-
ping 𝑇 : 𝐻 → 𝐶𝐵(𝐻) satisfies the condition (𝐸), and every
mapping 𝑇 : 𝐻 → 𝐶𝐵(𝐻) which satisfies the condition (𝐸)
with nonempty fixed point set 𝐹(𝑇) is quasi-nonexpansive.

Example 3. Let us define a mapping 𝑇 on [0, 3] by

𝑇 (𝑥) =

{

{

{

[0,
𝑥

3
] , 𝑥 ̸= 3

[1, 2] 𝑥 = 3.

(8)

It is easy to see that 𝑇 satisfies the condition (𝐸) but is not
nonexpansive. Indeed, for 𝑥, 𝑦 ∈ [0, 3), 𝐻(𝑇𝑥, 𝑇𝑦) = |(𝑥 −

𝑦)/3| ≤ |𝑥 − 𝑦|. Let 𝑥 = 0 and 𝑦 = 3. Then 𝐻(𝑇𝑥, 𝑇𝑦) =
2 ≤ 3 = |𝑥 − 𝑦|. If 𝑥 ∈ (0, 3) and 𝑦 = 3, then, we have
dist(𝑥, 𝑇𝑥) = 2𝑥/3 and dist(𝑦, 𝑇𝑦) = 1; hence

𝐻(𝑇𝑥, 𝑇𝑦) = 2 −
𝑥

3
≤ 3 − 𝑥 +

4𝑥

3
=
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 + 2 dist (𝑥, 𝑇𝑥) .
(9)

Thus, 𝑇 satisfies the condition (𝐸). However, 𝑇 is not
nonexpansive; indeed for 𝑥 = 3 and 𝑦 = 7/3, 𝐻(𝑇𝑥, 𝑇𝑦) =
11/9 > 2/3 = |𝑥 − 𝑦|.

Let Ψ : 𝐶 × 𝐶 → R be a bifunction. The equilibrium
problem associated with the bifunction Ψ and the set 𝐶 is:

find 𝑥 ∈ 𝐶 such that Ψ (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (10)

Such a point 𝑥 ∈ 𝐶 is called the solution of the equilibrium
problem. The set of solutions is denoted by 𝐸𝑃(Ψ).

A broad class of problems in optimization theory, such as
variational inequality, convex minimization, and fixed point
problems, can be formulated as an equilibrium problem; see
[4, 5]. In the literature, many techniques and algorithms have
been proposed to analyze the existence and approximation of
a solution to equilibrium problem; see [6]. Many researchers
have studied various iteration processes for finding a com-
mon element of the set of solutions of the equilibrium
problems and the set of fixed points of a class of nonlinear
mappings. For example, see [7–22].

Fixed points and fixed point iteration process for non-
expansive mappings have been studied extensively by many
authors to solve nonlinear operator equations, as well as
variational inequalities; see, for example, [23–28]. In the
recent years, fixed point theory formultivaluedmappings has
been studied bymany authors; see [29–40] and the references
therein.

In this paper, using viscosity approximation method, we
study strong convergence to a common element of the set of
solutions of an equilibrium problem and the set of common
fixed points of a finite family of multivalued mappings
satisfying the condition (𝐸) in the setting of Hilbert space.
Our results improve and extend some recent results in the
literature.

2. Preliminaries

For solving the equilibrium problem, we assume that the
bifunction Ψ satisfies the following conditions:
(A1) Ψ(𝑥, 𝑥) = 0 for any 𝑥 ∈ 𝐶;
(A2) Ψ is monotone; that is, Ψ(𝑥, 𝑦) + Ψ(𝑦, 𝑥) ≤ 0 for any

𝑥, 𝑦 ∈ 𝐶;
(A3) Ψ is upper-hemicontinuous; that is, for each 𝑥, 𝑦, 𝑧 ∈

𝐶,

lim sup
𝑡→0
+

Ψ (𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ Ψ (𝑥, 𝑦) ; (11)

(A4) Ψ(𝑥, .) is convex and lower semicontinuous for each
𝑥 ∈ 𝐶.

Lemma 4 (see [4]). Let 𝐶 be a nonempty closed convex subset
of 𝐻 and let Ψ be a bifunction of 𝐶 × 𝐶 into R satisfying
(𝐴1)–(𝐴4). Let 𝑟 > 0 and 𝑥 ∈ 𝐻. Then, there exists 𝑧 ∈ 𝐶

such that

Ψ (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0 ∀𝑦 ∈ 𝐶. (12)

Lemma 5 (see [6]). Assume that Ψ : 𝐶 × 𝐶 → R satisfies
(𝐴1)–(𝐴4). For 𝑟 > 0 and 𝑥 ∈ 𝐻, define a mapping 𝑆

𝑟
: 𝐻 →

𝐶 as follows:

𝑆𝑟𝑥 = {𝑧 ∈ 𝐶 : Ψ (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(13)

Then, the following hold:
(i) 𝑆
𝑟
is single valued;

(ii) 𝑆
𝑟
is firmly nonexpansive; that is, for any 𝑥, 𝑦 ∈ 𝐻,
󵄩󵄩󵄩󵄩𝑆𝑟𝑥 − 𝑆𝑟𝑦

󵄩󵄩󵄩󵄩

2
≤ ⟨𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝑥 − 𝑦⟩ ; (14)

(iii) 𝐹(𝑆𝑟) = 𝐸𝑃(Ψ);
(iv) 𝐸𝑃(Ψ) is closed and convex.

Lemma 6 (see [41]). Let 𝐻 be a real Hilbert space. Then, for
all 𝑥, 𝑦, 𝑧 ∈ 𝐻 and 𝛼, 𝛽, 𝛾 ∈ [0, 1] with 𝛼 + 𝛽 + 𝛾 = 1 one has
󵄩󵄩󵄩󵄩𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧

󵄩󵄩󵄩󵄩

2
= 𝛼‖𝑥‖

2
+ 𝛽

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2
+ 𝛾‖𝑧‖

2

− 𝛼𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
− 𝛼𝛾‖𝑥 − 𝑧‖

2
− 𝛽𝛾

󵄩󵄩󵄩󵄩𝑧 − 𝑦
󵄩󵄩󵄩󵄩

2
.

(15)

Lemma 7. For every 𝑥 and 𝑦 in a Hilbert space 𝐻, the
following inequality holds:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
≤ ‖𝑥‖

2
+ 2⟨𝑦, 𝑥 + 𝑦⟩. (16)

Lemma8 (see [42]). Let {𝑎
𝑛
} be a sequence of nonnegative real

numbers, {𝛼
𝑛
} a sequence in (0, 1) with ∑∞

𝑛=1
𝛼
𝑛
= ∞, {𝛾

𝑛
}

a sequence of nonnegative real numbers with ∑∞
𝑛=1

𝛾
𝑛
< ∞,

and {𝛽
𝑛
} a sequence of real numbers with lim sup

𝑛→∞
𝛽
𝑛
≤ 0.

Suppose that the following inequality holds:

𝑎
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑎
𝑛
+ 𝛼
𝑛
𝛽
𝑛
+ 𝛾
𝑛
, 𝑛 ≥ 0. (17)

Then, lim
𝑛→∞

𝑎
𝑛
= 0.
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Lemma 9 (see [43]). Let {𝑢
𝑛
} be a sequence of real numbers

that does not decrease at infinity, in the sense that there exists
a subsequence {𝑢

𝑛
𝑖

} of {𝑢
𝑛
} such that 𝑢

𝑛
𝑖

< 𝑢
𝑛
𝑖
+1

for all 𝑖 ≥ 0.
For every sufficiently large number 𝑛 ≥ 𝑛

0
, define an integer

sequence {𝜏(𝑛)} as

𝜏 (𝑛) = max {𝑘 ≤ 𝑛 : 𝑢
𝑘
< 𝑢
𝑘+1
} . (18)

Then, 𝜏(𝑛) → ∞ as 𝑛 → ∞ and for all 𝑛 ≥ 𝑛
0
,

max {𝑢𝜏(𝑛), 𝑢𝑛} ≤ 𝑢𝜏(𝑛)+1. (19)

Lemma 10 (see [20]). Let 𝐶 be a closed convex subset of a real
Hilbert space𝐻. Let 𝑇 : 𝐶 → 𝐶𝐵(𝐶) be a quasi-nonexpansive
multivalued mapping. If 𝐹(𝑇) ̸= 0 and 𝑇(𝑝) = {𝑝} for all 𝑝 ∈

𝐹(𝑇). Then 𝐹(𝑇) is closed and convex.

Lemma 11 (see [20]). Let 𝐶 be a closed convex subset of a
real Hilbert space 𝐻. Let 𝑇 : 𝐶 → 𝑃(𝐶) be a multivalued
mapping such that 𝑃𝑇 is quasi-nonexpansive and 𝐹(𝑇) ̸= 0,
where 𝑃𝑇(𝑥) = {𝑦 ∈ 𝑇𝑥 : ‖𝑥 − 𝑦‖ = dist(𝑥, 𝑇𝑥)}. Then, 𝐹(𝑇) is
closed and convex.

Lemma 12 (see [16, 20]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻. Let 𝑇 : 𝐶 → 𝐾(𝐶)

be a multivalued mapping satisfying the condition (𝐸). If 𝑥
𝑛

converges weakly to V and lim
𝑛→∞

dist(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0, then

V ∈ 𝑇V.

3. A Strong Convergence Theorem

Theorem 13. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space𝐻 and Ψ a bifunction of 𝐶 × 𝐶 into R satis-
fying (𝐴1)–(𝐴4). Let 𝑇𝑖 : 𝐶 → 𝐶𝐵(𝐶) (𝑖 = 1, 2, . . . , 𝑚) be a
finite family ofmultivaluedmappings, each satisfying condition
(𝐸). Assume further that F = ⋂

𝑚

𝑖=1
𝐹(𝑇𝑖)⋂𝐸𝑃(Ψ) ̸= 0 and

𝑇
𝑖
(𝑝) = {𝑝}, (𝑖 = 1, 2, . . . , 𝑚) for each 𝑝 ∈ F. Let 𝑓 be a

𝑘-contraction of 𝐶 into itself. Let {𝑥
𝑛
} and {𝑢

𝑛
} be sequences

generated the following algorithm:

𝑥
0
∈ 𝐶,

𝑢
𝑛
∈ 𝐶 such that Ψ (𝑢

𝑛
, 𝑦) +

1

𝑟𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶

𝑦
𝑛,1

= 𝑎
𝑛,1
𝑢
𝑛
+ 𝑏
𝑛,1
𝑥
𝑛
+ 𝑐
𝑛,1
𝑧
𝑛,1
,

𝑦
𝑛,2

= 𝑎
𝑛,2
𝑢
𝑛
+ 𝑏
𝑛,2
𝑧
𝑛,1
+ 𝑐
𝑛,2
𝑧
𝑛,2
,

𝑦𝑛,3 = 𝑎𝑛,3𝑢𝑛 + 𝑏𝑛,3𝑧𝑛,2 + 𝑐𝑛,3𝑧𝑛,3

...

𝑦
𝑛,𝑚

= 𝑎
𝑛,𝑚
𝑢
𝑛
+ 𝑏
𝑛,𝑚
𝑧
𝑛,𝑚−1

+ 𝑐
𝑛,𝑚
𝑧
𝑛,𝑚
,

𝑥𝑛+1 = 𝜗𝑛𝑓 (𝑥𝑛) + (1 − 𝜗𝑛) 𝑦𝑛,𝑚,

∀𝑛 ≥ 0,

(20)

where 𝑧
𝑛,1

∈ 𝑇
1
(𝑢
𝑛
), 𝑧
𝑛,𝑘

∈ 𝑇
𝑘
(𝑦
𝑛,𝑘−1

) for 𝑘 = 2, . . . , 𝑚, and
{𝑎
𝑛,𝑖
}, {𝑏
𝑛,𝑖
}, {𝑐
𝑛,𝑖
}, {𝜗
𝑛
}, and {𝑟

𝑛
} satisfy the following conditions:

(i) {𝑎
𝑛,𝑖
}, {𝑏
𝑛,𝑖
}, {𝑐
𝑛,𝑖
} ⊂ [𝑎, 𝑏] ⊂ (0, 1), 𝑎

𝑛,𝑖
+ 𝑏
𝑛,𝑖
+ 𝑐
𝑛,𝑖

=

1, (𝑖 = 1, 2, . . . , 𝑚),

(ii) {𝜗
𝑛
} ⊂ (0, 1), lim

𝑛→∞
𝜗
𝑛
= 0, ∑∞

𝑛=1
𝜗
𝑛
= ∞,

(iii) {𝑟
𝑛
} ⊂ (0,∞), and lim inf

𝑛→∞
𝑟
𝑛
> 0.

Then, the sequences {𝑥
𝑛
} and {𝑢

𝑛
} converge strongly to 𝑞 ∈ F,

where 𝑞 = 𝑃F𝑓(𝑞).

Proof. Let 𝑄 = 𝑃F. It is easy to see that 𝑄𝑓 is a contraction.
By Banach contraction principle, there exists a 𝑞 ∈ F such
that 𝑞 = 𝑃F𝑓(𝑞). From Lemma 5 for all 𝑛 ≥ 0, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑟
𝑛

𝑞
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩 . (21)

We show that {𝑥
𝑛} is bounded. Since, for each 𝑖 = 1, 2, . . . , 𝑚,

𝑇𝑖 satisfies the condition (𝐸) and we have

󵄩󵄩󵄩󵄩𝑦𝑛,1 − 𝑞
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑎𝑛,1𝑢𝑛 + 𝑏𝑛,1𝑥𝑛 + 𝑐𝑛,1𝑧𝑛,1 − 𝑞

󵄩󵄩󵄩󵄩

≤ 𝑎
𝑛,1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝑏𝑛,1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝑐𝑛,1

󵄩󵄩󵄩󵄩𝑧𝑛,1 − 𝑞
󵄩󵄩󵄩󵄩

= 𝑎
𝑛,1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝑏𝑛,1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝑐𝑛,1 dist (𝑧𝑛,1, 𝑇1𝑞)

≤ 𝑎
𝑛,1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝑏𝑛,1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝑐𝑛,1𝐻(𝑇

1
𝑢
𝑛
, 𝑇
1
𝑞)

≤ 𝑎𝑛,1
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞

󵄩󵄩󵄩󵄩 + 𝑏𝑛,1
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩 + 𝑐𝑛,1
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩 ,

(22)

󵄩󵄩󵄩󵄩𝑦𝑛,2 − 𝑞
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑎𝑛,2𝑢𝑛 + 𝑏𝑛,2𝑧𝑛,1 + 𝑐𝑛,2𝑧𝑛,2 − 𝑞

󵄩󵄩󵄩󵄩

≤ 𝑎
𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝑏𝑛,2

󵄩󵄩󵄩󵄩𝑧𝑛,1 − 𝑞
󵄩󵄩󵄩󵄩 + 𝑐𝑛,2

󵄩󵄩󵄩󵄩𝑧𝑛,2 − 𝑞
󵄩󵄩󵄩󵄩

= 𝑎
𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝑏𝑛,2 dist (𝑧𝑛,1, 𝑇1𝑞) + 𝑐𝑛,2 dist (𝑧𝑛,2, 𝑇2𝑞)

≤ 𝑎𝑛,2
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞

󵄩󵄩󵄩󵄩 + 𝑏𝑛,2𝐻(𝑇1𝑢𝑛, 𝑇1𝑞) + 𝑐𝑛,2𝐻(𝑇2𝑦𝑛,1, 𝑇2𝑞)

≤ 𝑎
𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝑏𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝑐𝑛,2

󵄩󵄩󵄩󵄩𝑦𝑛,1 − 𝑞
󵄩󵄩󵄩󵄩

≤‖ 𝑥
𝑛
− 𝑞 ‖ .

(23)

By continuing this process, we obtain

󵄩󵄩󵄩󵄩𝑦𝑛,𝑚 − 𝑞
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 . (24)
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This implies that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜗𝑛𝑓𝑥𝑛 + (1 − 𝜗𝑛) 𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

≤ 𝜗
𝑛

󵄩󵄩󵄩󵄩𝑓𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + (1 − 𝜗𝑛)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

≤ 𝜗
𝑛 (
󵄩󵄩󵄩󵄩𝑓𝑥𝑛 − 𝑓𝑞

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓𝑞 − 𝑞

󵄩󵄩󵄩󵄩) + (1 − 𝜗𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

≤ 𝜗
𝑛
𝑘
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩 + 𝜗𝑛
󵄩󵄩󵄩󵄩𝑓𝑞 − 𝑞

󵄩󵄩󵄩󵄩 + (1 − 𝜗𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

= (1 − 𝜗
𝑛 (1 − 𝑘))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝜗𝑛

󵄩󵄩󵄩󵄩𝑓𝑞 − 𝑞
󵄩󵄩󵄩󵄩

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑓𝑞 − 𝑞
󵄩󵄩󵄩󵄩

1 − 𝑘
} .

(25)

By induction, we get

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 ≤ max{󵄩󵄩󵄩󵄩𝑥0 − 𝑞

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑓𝑞 − 𝑞
󵄩󵄩󵄩󵄩

1 − 𝑘
} , (26)

for all 𝑛 ∈ N. This implies that {𝑥𝑛} is bounded and we also
obtain that {𝑢𝑛}, {𝑦𝑛}, {𝑓𝑥𝑛}, and {𝑧𝑛,𝑖} are bounded. Next, we
show that lim𝑛→∞ dist(𝑢𝑛, 𝑇𝑖𝑢𝑛) = 0 for each 𝑖 ∈ N. By
Lemma 6, we have

󵄩󵄩󵄩󵄩𝑦𝑛,1 − 𝑞
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑎𝑛,1𝑢𝑛 + 𝑏𝑛,1𝑥𝑛 + 𝑐𝑛,1𝑧𝑛,1 − 𝑞

󵄩󵄩󵄩󵄩

2

≤ 𝑎𝑛,1
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2
+ 𝑏𝑛,1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 𝑐
𝑛,1

󵄩󵄩󵄩󵄩𝑧𝑛,1 − 𝑞
󵄩󵄩󵄩󵄩

2

− 𝑎
𝑛,1
𝑏
𝑛,1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

2
− 𝑎
𝑛,1
𝑐
𝑛,1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,1
󵄩󵄩󵄩󵄩

2

= 𝑎
𝑛,1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2
+ 𝑏
𝑛,1

󵄩󵄩󵄩󵄩𝑥𝑛 − q󵄩󵄩󵄩󵄩
2

+ 𝑐𝑛,1 dist (𝑧𝑛,1, 𝑇1𝑞)
2

− 𝑎
𝑛,1
𝑏
𝑛,1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

2
− 𝑎
𝑛,1
𝑐
𝑛,1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,1
󵄩󵄩󵄩󵄩

2

≤ 𝑎𝑛,1
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2
+ 𝑏𝑛,1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 𝑐
𝑛,1
𝐻(𝑇
1
𝑢
𝑛
, 𝑇
1
𝑞)
2

− 𝑎𝑛,1𝑏𝑛,1
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2
− 𝑎𝑛,1𝑐𝑛,1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,1
󵄩󵄩󵄩󵄩

2

≤ 𝑎
𝑛,1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2
+ 𝑏
𝑛,1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 𝑐𝑛,1
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

− 𝑎
𝑛,1
𝑏
𝑛,1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

2
− 𝑎
𝑛,1
𝑐
𝑛,1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,1
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2
− 𝑎𝑛,1𝑏𝑛,1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

2

− 𝑎
𝑛,1
𝑐
𝑛,1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,1
󵄩󵄩󵄩󵄩

2
.

(27)

Applying Lemma 6 once more, we have

󵄩󵄩󵄩󵄩𝑦𝑛,2 − 𝑞
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑎𝑛,2𝑢𝑛 + 𝑏𝑛,2𝑧𝑛,1 + 𝑐𝑛,2𝑧𝑛,2 − 𝑞

󵄩󵄩󵄩󵄩

2

≤ 𝑎
𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2
+ 𝑏
𝑛,2

󵄩󵄩󵄩󵄩𝑧𝑛,1 − 𝑞
󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛,2

󵄩󵄩󵄩󵄩𝑧𝑛,2 − 𝑞
󵄩󵄩󵄩󵄩

2

− 𝑎
𝑛,2
𝑐
𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,2
󵄩󵄩󵄩󵄩

2

= 𝑎
𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2
+ 𝑏
𝑛,2

dist (𝑧
𝑛,1
, 𝑇
1
𝑞)
2

+ 𝑐
𝑛,2

dist (𝑧
𝑛,2
, 𝑇
2
𝑞)
2
− 𝑎
𝑛,2
𝑐
𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,2
󵄩󵄩󵄩󵄩

2

≤ 𝑎
𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2
+ 𝑏
𝑛,2
𝐻(𝑇
1
𝑢
𝑛
, 𝑇
1
𝑞)
2

+ 𝑐𝑛,2𝐻(𝑇1𝑦𝑛,1, 𝑇2𝑞)
2
− 𝑎𝑛,2𝑐𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,2
󵄩󵄩󵄩󵄩

2

≤ 𝑎
𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2
+ 𝑏
𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛,2

󵄩󵄩󵄩󵄩𝑦𝑛,1 − 𝑞
󵄩󵄩󵄩󵄩

2

− 𝑎𝑛,2𝑐𝑛,2
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,2

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2
− 𝑎
𝑛,2
𝑐
𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,2
󵄩󵄩󵄩󵄩

2

− 𝑎
𝑛,1
𝑐
𝑛,1
𝑐
𝑛,2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,1
󵄩󵄩󵄩󵄩

2
− 𝑎
𝑛,1
𝑏
𝑛,1
𝑐
𝑛,2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

2
.

(28)

By continuing this process we have

󵄩󵄩󵄩󵄩𝑦𝑛,𝑚 − 𝑞
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑎𝑛,𝑚𝑢𝑛 + 𝑏𝑛,𝑚𝑧𝑛,𝑚−1 + 𝑐𝑛,𝑚𝑧𝑛,𝑚 − 𝑞

󵄩󵄩󵄩󵄩

2

≤ 𝑎𝑛,𝑚
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2
+ 𝑏𝑛,𝑚

󵄩󵄩󵄩󵄩𝑧𝑛,𝑚−1 − 𝑞
󵄩󵄩󵄩󵄩

2
+ 𝑐𝑛,𝑚

󵄩󵄩󵄩󵄩𝑧𝑛,𝑚 − 𝑞
󵄩󵄩󵄩󵄩

2

− 𝑎
𝑛,𝑚
𝑐
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,𝑚
󵄩󵄩󵄩󵄩

2

= 𝑎𝑛,𝑚
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2
+ 𝑏𝑛,𝑚 dist (𝑧𝑛,𝑚−1, 𝑇𝑚−1𝑞)

2

+ 𝑐
𝑛,𝑚

dist (𝑧
𝑛,𝑚
, 𝑇
𝑚
𝑞)
2
− 𝑎
𝑛,𝑚
𝑐
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,𝑚
󵄩󵄩󵄩󵄩

2

≤ 𝑎
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2
+ 𝑏
𝑛,𝑚
𝐻(𝑇
𝑚−1

𝑦
𝑛,𝑚−2

, 𝑇
𝑚−1

𝑞)
2

+ 𝑐
𝑛,𝑚
𝐻(𝑇
𝑚
𝑦
𝑛,𝑚−1

, 𝑇
𝑚
𝑞)
2
− 𝑎
𝑛,𝑚
𝑐
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,𝑚
󵄩󵄩󵄩󵄩

2

≤ 𝑎
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2
+ 𝑏
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑦𝑛,𝑚−2 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 𝑐
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑦𝑛,𝑚−1 − 𝑞
󵄩󵄩󵄩󵄩

2
− 𝑎
𝑛,𝑚
𝑐
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,𝑚
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2
− 𝑎𝑛,𝑚𝑐𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,𝑚
󵄩󵄩󵄩󵄩

2

− 𝑎
𝑛,𝑚−1

𝑐
𝑛,𝑚−1

𝑐
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,𝑚−1
󵄩󵄩󵄩󵄩

2

− ⋅ ⋅ ⋅ − 𝑎
𝑛,1
𝑐
𝑛,1
𝑐
𝑛,2
. . . 𝑐
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,1
󵄩󵄩󵄩󵄩

2

− 𝑎
𝑛,1
𝑏
𝑛,1
𝑐
𝑛,2
. . . 𝑐
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2
,

(29)
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which implies that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

2
=
󵄩󵄩󵄩󵄩𝜗𝑛𝑓𝑥𝑛 + (1 − 𝜗𝑛) 𝑦𝑛,𝑚 − 𝑞

󵄩󵄩󵄩󵄩

2

≤ 𝜗
𝑛

󵄩󵄩󵄩󵄩𝑓𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2
+ (1 − 𝜗

𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛,𝑚 − 𝑞

󵄩󵄩󵄩󵄩

2

≤ 𝜗𝑛
󵄩󵄩󵄩󵄩𝑓𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2
+ (1 − 𝜗𝑛)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

− (1 − 𝜗
𝑛
) 𝑎
𝑛,𝑚
𝑐
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,𝑚
󵄩󵄩󵄩󵄩

2

− (1 − 𝜗𝑛) 𝑎𝑛,𝑚−1𝑐𝑛,𝑚−1𝑐𝑛,𝑚
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,𝑚−1

󵄩󵄩󵄩󵄩

2

− ⋅ ⋅ ⋅ − (1 − 𝜗
𝑛
) 𝑎
𝑛,1
𝑐
𝑛,1
𝑐
𝑛,2
. . . 𝑐
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,1
󵄩󵄩󵄩󵄩

2

− (1 − 𝜗𝑛) 𝑎𝑛,1𝑏𝑛,1𝑐𝑛,2 . . . 𝑐𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2
.

(30)

Therefore, we have that

(1 − 𝜗
𝑛
) 𝑎
𝑛,1
𝑏
𝑛,1
𝑐
𝑛,2
. . . 𝑐
𝑛,𝑚

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩

2
+ 𝜗
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(31)

In order to prove that 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞, we consider the

following two cases.

Case 1. Suppose that there exists 𝑛
0
such that {‖𝑥

𝑛
− 𝑞‖} is

nonincreasing, for all 𝑛 ≥ 𝑛
0
. Boundedness of {‖𝑥

𝑛
− 𝑞‖}

implies that ‖𝑥
𝑛
− 𝑞‖ is convergent. From (31) and conditions

(i), (ii) we have that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (32)

By a similar argument, for 𝑘 = 1, 2, . . . , 𝑚, we obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,𝑘
󵄩󵄩󵄩󵄩 = 0. (33)

Hence,

lim
𝑛→∞

dist (𝑢
𝑛
, 𝑇
1
𝑢
𝑛
) ≤ lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,1
󵄩󵄩󵄩󵄩 = 0,

lim
𝑛→∞

dist (𝑢
𝑛
, 𝑇
𝑘
𝑦
𝑛,𝑘−1

) ≤ lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,𝑘
󵄩󵄩󵄩󵄩 = 0,

(𝑘 = 2, . . . , 𝑚) .

(34)

Therefore, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛,1
󵄩󵄩󵄩󵄩 ≤ lim
𝑛→∞

𝑏
𝑛,1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

+ lim
𝑛→∞

𝑐
𝑛,1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,1
󵄩󵄩󵄩󵄩 = 0.

(35)

For 𝑘 = 2, . . . , 𝑚, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛,𝑘
󵄩󵄩󵄩󵄩 ≤ lim
𝑛→∞

𝑏𝑛,𝑘
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,𝑘−1

󵄩󵄩󵄩󵄩

+ lim
𝑛→∞

𝑐𝑛,𝑘
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,𝑘

󵄩󵄩󵄩󵄩 = 0.

(36)

Using the previous inequality for 𝑘 = 2, . . . , 𝑚, we have

dist (𝑢𝑛, 𝑇𝑘𝑢𝑛) ≤ dist (𝑢𝑛, 𝑇𝑘𝑦𝑛,𝑘−1) + 𝐻 (𝑇𝑘𝑦𝑛,𝑘−1, 𝑇𝑘𝑢𝑛)

≤ dist (𝑢
𝑛
, 𝑇
𝑘
𝑦
𝑛,𝑘−1

) + 𝜇 dist (𝑦
𝑛,𝑘−1

, 𝑇
𝑘
𝑦
𝑛,𝑘−1

)

+
󵄩󵄩󵄩󵄩𝑦𝑛,𝑘−1 − 𝑢𝑛

󵄩󵄩󵄩󵄩

≤ (𝜇 + 1) dist (𝑢
𝑛
, 𝑇
𝑘
𝑦
𝑛,𝑘−1

) + (𝜇 + 1)
󵄩󵄩󵄩󵄩𝑦𝑛,𝑘−1 − 𝑢𝑛

󵄩󵄩󵄩󵄩

≤ (𝜇 + 1)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛,𝑘

󵄩󵄩󵄩󵄩 + (𝜇 + 1)
󵄩󵄩󵄩󵄩𝑦𝑛,𝑘−1 − 𝑢𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0,

𝑛 󳨀→ ∞.

(37)

Next, we show that

lim sup
𝑛→∞

⟨𝑞 − 𝑓𝑞, 𝑞 − 𝑥
𝑛
⟩ ≤ 0, (38)

where 𝑞 = 𝑃F𝑓(𝑞). To show this inequality, we choose a
subsequence {𝑥

𝑛
𝑖

} of {𝑥
𝑛
} such that

lim
𝑖→∞

⟨𝑞 − 𝑓𝑞, 𝑞 − 𝑥
𝑛
𝑖

⟩ = lim sup
𝑛→∞

⟨𝑞 − 𝑓𝑞, 𝑞 − 𝑥
𝑛
⟩ . (39)

Since {𝑥
𝑛
𝑖

} is bounded, there exists a subsequence {𝑥𝑛
𝑖
𝑗

} of
{𝑥
𝑛
𝑖

} which converges weakly to V. Without loss of gener-
ality, we can assume that 𝑥𝑛

𝑖

converges weakly to V. Since
lim𝑛→∞‖𝑥𝑛 −𝑢𝑛‖ = 0, we have 𝑢𝑛

𝑖

converges weakly to V. We
show that V ∈ F. Let us show V ∈ 𝐸𝑃(Ψ). Since 𝑢𝑛 = 𝑆𝑟

𝑛

𝑥𝑛,
we have

Ψ (𝑢
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0 ∀𝑦 ∈ 𝐶. (40)

From (A2), we have
1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ Ψ (𝑦, 𝑢

𝑛
) . (41)

Replacing 𝑛 with 𝑛
𝑖
, we have

⟨𝑦 − 𝑢
𝑛
𝑖

,

𝑢
𝑛
𝑖

− 𝑥
𝑛
𝑖

𝑟
𝑛
𝑖

⟩ ≥ Ψ(𝑦, 𝑢
𝑛
𝑖

) . (42)

From (A4), we have

0 ≥ Ψ (𝑦, V) , ∀ 𝑦 ∈ 𝐶. (43)

For 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶, let 𝑦𝑡 = 𝑡𝑦 + (1 − 𝑡)V. Since 𝑦, V ∈ 𝐶,
and 𝐶 is convex, we have 𝑦𝑡 ∈ 𝐶 and hence Ψ(𝑦𝑡, V) ≤ 0. So,
from (A1) and (A4) we have

0 = Ψ (𝑦
𝑡
, 𝑦
𝑡
) ≤ 𝑡Ψ (𝑦

𝑡
, 𝑦) + (1 − 𝑡) Ψ (𝑦

𝑡
, V) ≤ 𝑡Ψ (𝑦

𝑡
, 𝑦) ,

(44)

which gives 0 ≤ Ψ(𝑦
𝑡
, 𝑦). Letting 𝑡 → 0, we have, for

each 𝑦 ∈ 𝐶, 0 ≤ Ψ(V, 𝑦) Also, since 𝑢
𝑛
𝑖

⇀ V and
lim
𝑛→∞

dist(𝑢
𝑛
, 𝑇
𝑖
𝑢
𝑛
) = 0, by Lemma 12 we have V ∈

⋂
𝑚

𝑖=1
𝐹(𝑇
𝑖
). Hence, V ∈ F. Since 𝑞 = 𝑃F𝑓(𝑞) and V ∈ F,

it follows that

lim sup
𝑛→∞

⟨𝑞 − 𝑓𝑞, 𝑞 − 𝑥
𝑛
⟩ = lim
𝑖→∞

⟨𝑞 − 𝑓𝑞, 𝑞 − 𝑥
𝑛
𝑖

⟩

= ⟨𝑞 − 𝑓𝑞, 𝑞 − V⟩ ≤ 0.

(45)
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By using Lemma 7 and inequality (31) we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(1 − 𝜗𝑛) (𝑦𝑛,𝑚 − 𝑞)

󵄩󵄩󵄩󵄩

2
+ 2𝜗
𝑛
⟨𝑓𝑥
𝑛
− 𝑞, 𝑥

𝑛+1
− 𝑞⟩

≤ (1 − 𝜗
𝑛
)
2󵄩󵄩󵄩󵄩𝑦𝑛,𝑚 − 𝑞

󵄩󵄩󵄩󵄩

2
+ 2𝜗
𝑛
⟨𝑓𝑥
𝑛
− 𝑓𝑞, 𝑥

𝑛+1
− 𝑞⟩

+ 2𝜗
𝑛
⟨𝑓𝑞 − 𝑞, 𝑥

𝑛+1
− 𝑞⟩

≤ (1 − 𝜗𝑛)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2
+ 2𝜗𝑛𝑘

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

+ 2𝜗
𝑛
⟨𝑓𝑞 − 𝑞, 𝑥

𝑛+1
− 𝑞⟩

≤ (1 − 𝜗𝑛)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2
+ 𝜗𝑛𝑘 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩

2
)

+ 2𝜗
𝑛
⟨𝑓𝑞 − 𝑞, 𝑥

𝑛+1
− 𝑞⟩

≤ ((1 − 𝜗
𝑛
)
2
+ 𝜗
𝑛
𝑘)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2
+ 𝜗
𝑛
𝑘
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩

2

+ 2𝜗
𝑛
⟨𝑓𝑞 − 𝑞, 𝑥

𝑛+1
− 𝑞⟩ .

(46)

This implies that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

2
≤ (1 −

2 (1 − 𝑘) 𝜗𝑛

1 − 𝜗
𝑛
𝑘

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+
𝜗
2

𝑛

1 − 𝜗
𝑛
𝑘

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+
2𝜗
𝑛

1 − 𝜗𝑛𝑘
⟨𝑓𝑞 − 𝑞, 𝑥

𝑛+1
− 𝑞⟩ .

(47)

From Lemma 8, we conclude that the sequence {𝑥
𝑛
} con-

verges strongly to 𝑞.

Case 2. Assume that there exists a subsequence {𝑥
𝑛
𝑗

} of {𝑥
𝑛
}

such that
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑗

− 𝑞
󵄩󵄩󵄩󵄩󵄩󵄩
<
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑗+1

− 𝑞
󵄩󵄩󵄩󵄩󵄩󵄩
, (48)

for all 𝑗 ∈ N. In this case, from Lemma 9, there exists a
nondecreasing sequence {𝜏(𝑛)} of N for all 𝑛 ≥ 𝑛

0
(for some

𝑛
0
large enough) such that 𝜏(𝑛) → ∞ as 𝑛 → ∞ and the

following inequalities hold for all 𝑛 ≥ 𝑛
0
:

󵄩󵄩󵄩󵄩𝑥𝜏(𝑛) − 𝑞
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝜏(𝑛)+1 − 𝑞
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝜏(𝑛)+1 − 𝑞
󵄩󵄩󵄩󵄩 .

(49)

From (31) we obtain lim
𝑛→∞

‖𝑢
𝜏(𝑛)

− 𝑇
𝑖
𝑢
𝜏(𝑛)

‖ = 0, and
lim
𝑛→∞

‖𝑢
𝜏(𝑛)

− 𝑥
𝜏(𝑛)

‖ = 0. Following an argument similar
to that in Case 1, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝜏(𝑛) − 𝑞
󵄩󵄩󵄩󵄩 = 0, lim

𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝜏(𝑛)+1 − 𝑞
󵄩󵄩󵄩󵄩 = 0. (50)

Thus, by Lemma 9 we have

0 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩 ≤ max {󵄩󵄩󵄩󵄩𝑥𝜏(𝑛) − 𝑞
󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩} ≤
󵄩󵄩󵄩󵄩𝑥𝜏(𝑛)+1 − 𝑞

󵄩󵄩󵄩󵄩 .

(51)

Therefore, {𝑥
𝑛
} converges strongly to 𝑞 = 𝑃F𝑓(𝑞). This

completes the proof.

Now, we remove the condition that 𝑇(𝑝) = {𝑝} for all 𝑝 ∈
F, and state the following theorem.

Theorem 14. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻 and Ψ a bifunction of 𝐶 × 𝐶 into R

satisfying (𝐴1)–(𝐴4). Let, for each 1 ≤ 𝑖 ≤ 𝑚, 𝑇
𝑖
: 𝐶 → 𝑃(𝐶)

be multivalued mappings such that 𝑃
𝑇
𝑖

satisfies the condition
(𝐸). Assume that F = ⋂

𝑚

𝑖=1
𝐹(𝑇
𝑖
)⋂𝐸𝑃(Ψ) ̸= 0. Let 𝑓 be

a 𝑘-contraction of 𝐶 into itself. Let {𝑥
𝑛
} and {𝑢

𝑛
} be sequences

generated the following algorithm:

𝑥0 ∈ 𝐶,

𝑢𝑛 ∈ 𝐶 such that Ψ (𝑢𝑛, 𝑦) +
1

r
𝑛

⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑥𝑛⟩ ≥ 0,

∀𝑦 ∈ 𝐶

𝑦
𝑛,1

= 𝑎
𝑛,1
𝑢
𝑛
+ 𝑏
𝑛,1
𝑥
𝑛
+ 𝑐
𝑛,1
𝑧
𝑛,1
,

𝑦𝑛,2 = 𝑎𝑛,2𝑢𝑛 + 𝑏𝑛,2𝑧𝑛,1 + 𝑐𝑛,2𝑧𝑛,2,

𝑦
𝑛,3

= 𝑎
𝑛,3
𝑢
𝑛
+ 𝑏
𝑛,3
𝑧
𝑛,2
+ 𝑐
𝑛,3
𝑧
𝑛,3

...

𝑦
𝑛,𝑚

= 𝑎
𝑛,𝑚
𝑢
𝑛
+ 𝑏
𝑛,𝑚
𝑧
𝑛,𝑚−1

+ 𝑐
𝑛,𝑚
𝑧
𝑛,𝑚
,

𝑥𝑛+1 = 𝜗𝑛𝑓𝑥𝑛 + (1 − 𝜗𝑛) 𝑦𝑛,𝑚, ∀𝑛 ≥ 0,

(52)

where 𝑧
𝑛,1

∈ 𝑃
𝑇
1

(𝑢
𝑛
), 𝑧
𝑛,𝑘

∈ 𝑃
𝑇
𝑘

(𝑦
𝑛,𝑘−1

) for 𝑘 = 2, . . . , 𝑚, and
{𝑎
𝑛,𝑖
}, {𝑏
𝑛,𝑖
}, {𝑐
𝑛,𝑖
}, {𝜗
𝑛
} and, {𝑟

𝑛
} satisfy the following conditions:

(i) {𝑎𝑛,𝑖}, {𝑏𝑛,𝑖}, {𝑐𝑛,𝑖} ⊂ [𝑎, 𝑏] ⊂ (0, 1), 𝑎𝑛,𝑖 + 𝑏𝑛,𝑖 + 𝑐𝑛,𝑖 =

1,(𝑖 = 1, 2, . . . , 𝑚),

(ii) {𝜗
𝑛
} ⊂ (0, 1), lim

𝑛→∞
𝜗
𝑛
= 0, ∑∞

𝑛=1
𝜗
𝑛
= ∞,

(iii) {𝑟
𝑛
} ⊂ (0,∞), and lim inf

𝑛→∞
𝑟
𝑛
> 0.

Then, the sequences {𝑥𝑛} and {𝑢𝑛} converge strongly to 𝑞 ∈ F,
where 𝑞 = 𝑃F𝑓(𝑞).

Proof. Let 𝑝 ∈ F; then 𝑃
𝑇
𝑖

(𝑝) = {𝑝}, (𝑖 = 1, 2, . . . , 𝑚).
Now by substituting 𝑃

𝑇
𝑖

instead of 𝑇
𝑖
, and using a similar

argument as in the proof of Theorem 13, the desired result
follows.

As a corollary for single-valued mappings, we obtain the
following result.

Corollary 15. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻 and Ψ a bifunction of 𝐶 × 𝐶 into R

satisfying (𝐴1)–(𝐴4). Let, for each 1 ≤ 𝑖 ≤ 𝑚, 𝑇
𝑖
: 𝐶 → 𝐶

be a finite family of mappings satisfying condition (𝐸). Assume
that F = ⋂

𝑚

𝑖=1
𝐹(𝑇
𝑖
)⋂𝐸𝑃(Ψ) ̸= 0. Let 𝑓 be a 𝑘-contraction
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of 𝐶 into itself. Let {𝑥
𝑛
} and {𝑢

𝑛
} be sequences generated the

following algorithm:

𝑥0 ∈ 𝐶,

𝑢
𝑛 ∈ 𝐶 such that Ψ (𝑢𝑛, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑥𝑛⟩ ≥ 0,

∀𝑦 ∈ 𝐶

𝑦
𝑛,1

= 𝑎
𝑛,1
𝑢
𝑛
+ 𝑏
𝑛,1
𝑥
𝑛
+ 𝑐
𝑛,1
𝑇
1
𝑢
𝑛
,

𝑦𝑛,2 = 𝑎𝑛,2𝑢𝑛 + 𝑏𝑛,2𝑇1𝑢𝑛 + 𝑐𝑛,2𝑇2𝑦𝑛,1

...

𝑦
𝑛,𝑚

= 𝑎
𝑛,𝑚
𝑢
𝑛
+ 𝑏
𝑛,𝑚
𝑇
𝑚−1

𝑦
𝑛,𝑚−2

+ 𝑇
𝑚
𝑦
𝑛,𝑚−1

,

𝑥𝑛+1 = 𝜗𝑛𝑓𝑥𝑛 + (1 − 𝜗𝑛) 𝑦𝑛,𝑚, ∀𝑛 ≥ 0,

(53)

where {𝑎
𝑛,𝑖
}, {𝑏
𝑛,𝑖
},{𝑐
𝑛,𝑖
}, {𝜗
𝑛
}, and {𝑟

𝑛
} satisfy the following

conditions:

(i) {𝑎
𝑛,𝑖
}, {𝑏
𝑛,𝑖
}, {𝑐
𝑛,𝑖
} ⊂ [𝑎, 𝑏] ⊂ (0, 1), 𝑎

𝑛,𝑖
+ 𝑏
𝑛,𝑖
+ 𝑐
𝑛,𝑖
= 1,

(𝑖 = 1, 2, . . . , 𝑚),
(ii) {𝜗

𝑛
} ⊂ (0, 1), lim

𝑛→∞
𝜗
𝑛
= 0, ∑∞

𝑛=1
𝜗
𝑛
= ∞

(iii) {𝑟
𝑛
} ⊂ (0,∞), and lim inf

𝑛→∞
𝑟
𝑛
> 0.

Then, the sequences {𝑥
𝑛
} and {𝑢

𝑛
} converge strongly to 𝑞 ∈ F,

where 𝑞 = 𝑃F𝑓(𝑞).

Remark 16. Our results generalize the corresponding results
of S. Takahashi and W. Takahashi [9] from a single valued
nonexpansive mapping to a finite family of multivaluedmap-
pings satisfying the condition (𝐸). Our results also improve
the recent results of Eslamian [16].
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