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This paper investigates the adaptive synchronization of complex dynamical networks satisfying the local Lipschitz condition
with switching topology. Based on differential inclusion and nonsmooth analysis, it is proved that all nodes can converge to
the synchronous state, even though only one node is informed by the synchronous state via introducing decentralized adaptive
strategies to the coupling strengths and feedback gains. Finally, some numerical simulations are worked out to illustrate the
analytical results.

1. Introduction

In recent years, the research on the synchronization of
complex dynamical networks has attracted great attention
and emerged a large number of outstanding works (e.g., [1–8]
and the references therein).

For a network, the synchronization implies that all nodes
will converge to the same state, which can be a homoge-
neous equilibrium point or a periodic orbit. To enhance the
synchronization of such network, a lot of research methods
are developed, and one of the most significant methods
is to design effective adaptive strategies for the relevant
parameters, such as the coupling strengths and the feedback
gains [1–4, 8–10]. In references [4, 10, 11], there must have
information channel by using a special indicator function;
however, in reality, the information channel between any
two nodes of a network may be lost or changed. Driven
by it, we will investigate the synchronization of the com-
plex dynamical networks with switching topology, which
can lead to some information channels that occurred as

well as another information channels that disappeared, by
introducing adaptive strategies to the coupling strengths and
feedback gains. Different from [8], the coupling strengths
𝑐
𝜎(𝑡)

𝑖𝑗
(𝑡) are dynamic and variable, which can change according

to the switching signal, the neighbor rule, and the switched
coupling configuration 𝑎𝜎(𝑡)

𝑖𝑗
. Yet, “fast switching” [5] is hardly

to be realized and bears new features and difficulties. Here,
we attack the problem by invoking the theory of differential
inclusion and nonsmooth analysis [12–18].

So far, most attentions have been focused on nonlin-
ear dynamics satisfying the globally Lipschitz condition.
However, many known systems only satisfy the local Lips-
chitz condition, such as Lorenz system, Chen system, and
FitzHugh-Rinzel system [9–11]. In this paper, we will also
examine nonlinear dynamics of such complex network sat-
isfying the local Lipschitz condition.

The main contribution of the current work lies in
characterizing synchronization of complex dynamical net-
works. First, the nonlinear dynamics of all nodes and the
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synchronous goal satisfies the local Lipschitz condition.
Second, the adaptive strategies are introduced to the coupling
strengths and the feedback gains. Third, the topology of
complex dynamical networks can switch even though the
information is discontinue, we can also solves the syn-
chronization based on differential inclusion and nonsmooth
analysis. In this paper, we will prove that all nodes of the
complex dynamical network which is steered by the adaptive
strategies can converge to the synchronous goal, even though
only one node is informed by the synchronous goal if the
neighboring graph remains connected.

This paper is organized as follows. Section 2 describes
the model with the nonlinear dynamics satisfying the local
Lipschitz condition, and some preliminaries about the nons-
mooth analysis and the local Lipschitz condition are given.
The main results are shown in Section 3, while Section 4
presents some simulations to illustrate our theoretical results.
The conclusion is given in Section 5.

2. Preliminaries and Model Formulation

2.1. Model Formulation. Consider a dynamical network with
𝑁 nodes, and each node updates its state by

�̇�
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + ∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝜎(𝑡)

𝑖𝑗
𝑐
𝜎(𝑡)

𝑖𝑗
(𝑡)(𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡))+ 𝑢

𝑖
(𝑡) ,

𝑖=1, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))
𝑇

∈𝑅
𝑛 (𝑖 = 1, 2, . . . , 𝑁)

is the state vector of node 𝑖, 𝑡 ∈ [0, +∞), 𝑓 : 𝑅𝑛 → 𝑅
𝑛 is

a continuous map, and𝑁
𝑖
(𝑡) is the neighboring set of node 𝑖

at the instant 𝑡. Notice that the coupling between the nodes
may vary in time. Therefore, the interconnection graphG

𝜎(𝑡)

of the model is time varying, where 𝜎(𝑡) : [0, +∞) →

𝑀 = {1, 2, . . . , 𝑚} is the switching signal. For all 𝑘 ∈ 𝑀,
𝐴
𝑘
= (𝑎
𝑘

𝑖𝑗
) ∈ 𝑅

𝑁×𝑁 is the weighted coupling configuration
of network (1), which has 𝑎𝑘

𝑖𝑖
= −∑

𝑗∈𝑁𝑖(𝑡)
𝑎
𝑘

𝑖𝑗
. If there exists

communication channel between node 𝑖 and node 𝑗 at the
switching segment 𝑘, then 𝑎𝑘

𝑖𝑗
= 𝑎
𝑘

𝑗𝑖
> 0; otherwise, 𝑎𝑘

𝑖𝑗
= 0.

𝑐
𝜎(𝑡)

𝑖𝑗
(𝑡) denotes the coupling strengths between node 𝑖 and

node 𝑗. 𝑢
𝑖
(𝑡) is the feedback controller designed as

𝑢
𝑖
(𝑡) = −ℎ

𝑖
𝑐
𝑖
(𝑡) (𝑥
𝑖
(𝑡) − 𝑥

0
(𝑡)) , 𝑖 = 1, . . . , 𝑁, (2)

where ℎ
𝑖
= 1, if the node 𝑖 is controlled; otherwise, ℎ

𝑖
= 0;

𝑐
𝑖
(𝑡) is the feedback gain. 𝑥(𝑡) is a desired synchronous state

for network (1) with

�̇�
0
(𝑡) = 𝑓 (𝑥

0
(𝑡)) . (3)

The adaptive strategies on the coupling strengths and the
feedback gains are designed as

̇𝑐
𝜎(𝑡)

𝑖𝑗
(𝑡) = 𝑘

𝑖𝑗
𝑎
𝜎(𝑡)

𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

𝑇

(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) ,

̇𝑐
𝑖
(𝑡) = 𝑘

𝑖
ℎ
𝑖
(𝑥
𝑖
(𝑡) − 𝑥

0
(𝑡))
𝑇

(𝑥
𝑖
(𝑡) − 𝑥

0
(𝑡)) ,

(4)

where 𝑐
𝑖𝑗
(0) ≥ 0, 𝑐

𝑖
(0) ≥ 0, 𝑘

𝑖𝑗
> 0, and 𝑘

𝑖
> 0 are the adaptive

parameters of the coupling strength and the feedback gains,
respectively.

In the 𝑘th (for all 𝑘 ∈ 𝑀) time period, the weighted
coupling configuration matrix of network (1) is defined as

𝐵
𝑘
=

[

[

[

[

[

[

[

𝑎
𝑘

11
𝑐
𝑘

11
𝑎
𝑘

12
𝑐
𝑘

12
⋅ ⋅ ⋅ 𝑎

𝑘

1𝑁
𝑐
𝑘

1𝑁

𝑎
𝑘

21
𝑐
𝑘

21
𝑎
𝑘

22
𝑐
𝑘

22
⋅ ⋅ ⋅ 𝑎

𝑘

2𝑁
𝑐
𝑘

2𝑁

...
... d

...
𝑎
𝑘

𝑁1
𝑐
𝑘

𝑁1
𝑎
𝑘

𝑁2
𝑐
𝑘

𝑁2
⋅ ⋅ ⋅ 𝑎
𝑘

𝑁𝑁
𝑐
𝑘

𝑁𝑁

]

]

]

]

]

]

]

∈ 𝑅
𝑁×𝑁

, (5)

with 𝑎𝑘
𝑖𝑖
𝑐
𝑘

𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑎
𝑘

𝑖𝑗
𝑐
𝑘

𝑖𝑗
.

2.2.Mathematical Preliminaries. In this section,we introduce
some useful concepts, assumptions, and lemmas.

2.2.1. Concepts of Nonsmooth Analysis

Definition 1 (see [16], Filippov). A vector function 𝑥(⋅) is
called a solution of equation �̇� = 𝑓(𝑥, 𝑡) on [𝑡

0
, 𝑡
1
] if 𝑥(⋅) is

absolutely continuous on [𝑡
0
, 𝑡
1
], and for almost all 𝑡 ∈ [𝑡

0
, 𝑡
1
],

�̇� ∈ 𝐾 [𝑓] (𝑥, 𝑡) ≡ 𝐾 [𝑓] (𝑥)

≜ co {lim𝑓 (𝑥
𝑖
) | 𝑥
𝑖
→ 𝑥, 𝑥

𝑖
∉ 𝑁
𝑓
∪𝑁} ,

(6)

where𝑁
𝑓
⊂ 𝑅
𝑛

, 𝜇(𝑁
𝑓
) = 0;𝑁 ⊂ 𝑅

𝑛

, 𝜇(𝑁) = 0.

Definition 2 (see [16], generalized directional derivative). The
generalized directional derivative of 𝑓 at 𝑥 in the direction V,
denoted by 𝑓∘(𝑥; V), is defined as

𝑓
∘

(𝑥; V) := lim
𝑦→𝑥,

sup
𝑡↓0

𝑓 (𝑦 + 𝑡V) − 𝑓 (𝑦)
𝑡

, (7)

where 𝑦 is a vector in the Banach space 𝑋 and 𝑡 is a positive
scalar.

Definition 3 (see [18]). 𝑓(𝑥) : 𝑅𝑚 × 𝑅 → 𝑅 is called regular
if

(i) for all V, the usual one sided directed derivative
𝑓


(𝑥; V) exists,
(ii) for all V, 𝑓(𝑥; V) = 𝑓∘(𝑥; V).

2.2.2. Assumptions

Assumption 1. If each 𝑓
𝑖
of the nonlinear function 𝑓(𝑥

𝑖
(𝑡)) =

(𝑓
1
(𝑥
𝑖
(𝑡)), 𝑓

2
(𝑥
𝑖
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑖
(𝑡)))
𝑇 in network (1) satisfies

the local Lipschitz condition, for any compact set S ∈ 𝑅
𝑚,

there exists a positive constant 𝜂(S), such that

(𝑥 − 𝑦)
𝑇

[𝑓 (𝑥) − 𝑓 (𝑦)] ≤ 𝜂 (S)




𝑥 − 𝑦






2

, ∀𝑥, 𝑦 ∈ S. (8)
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Assumption 2. The synchronous state 𝑥
0
is bounded; that is,

there exists a compact set S = S(𝑥
0
(0)) ∈ 𝑅

𝑛 such that the
trajectory of (3) starting from 𝑥

0
(0) is always in the compact

set S.

Remark 4. Note that the nonlinear dynamics of network (1)
only satisfies the local Lipschitz condition. If the Jacobian
matrix of 𝑓 is continuous, then 𝑓 is at least local Lipschitz.
Many famous systems may not be governed by global Lip-
schitz nonlinearity but by local Lipschitz nonlinearity, such
as Lorenz system and Chen system; therefore, it is worthy of
discussing the local Lipschitz nonlinearity dynamics.

Assumption 3 (see [13]). The interconnection graph G re-
mains connected.

2.2.3. Lemmas

Lemma 5 (see [2]). If 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑅

𝑁×𝑁 is a symmetric
irreducible matrix with 𝑎

𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑎
𝑖𝑗
and the matrix

𝐸 = diag(𝑒, 0, . . . , 0) with 𝑒 > 0, then all eigenvalues of the
matrix 𝐴 − 𝐸 are negative.

Lemma 6 (see [18], Chain Rule). Let 𝑥(⋅) be a Filippov
solution to �̇� = 𝑓(𝑥, 𝑡) on an interval containing 𝑡 and let
𝑉 : 𝑅

𝑛

× 𝑅 → 𝑅 be a Lipschitz and regular function.
Then𝑉(𝑥(𝑡), 𝑡) is absolutely continuous, (𝑑/𝑑𝑡)𝑉(𝑥(𝑡), 𝑡) exists
almost everywhere, and

𝑑

𝑑𝑡

𝑉 (𝑥 (𝑡) , 𝑡)

a.e.
∈

̇
�̃� (𝑥, 𝑡) , (9)

where ̇
�̃�(𝑥, 𝑡) := ⋂

𝜉∈𝜕𝑉(𝑥(𝑡),𝑡)
𝜉
𝑇

[
𝐾𝑓(𝑥(𝑡),𝑡)

1
] .

Remark 7 (see [12]). In Lemma 6, the (global) Lipschitz
continuity required to 𝑉(𝑥) can be relaxed to the local
condition.

Lemma 8 (see [17], Lyapunov’s theorem generalized). If
(i) 𝑉 : 𝑅𝑛 → 𝑅,𝑉(0) = 0 and 𝑉(𝑥) > 0, for all 𝑥 ̸= 0;
(ii) 𝑥 : 𝑅 → 𝑅

𝑛 and 𝑉(𝑥(𝑡)) is absolutely continuous on
[0, +∞) with

𝑑

𝑑𝑡

[𝑉 (𝑥 (𝑡))] < −𝜀 < 0 𝑎.𝑒. 𝑜𝑛 {𝑡 | 𝑥 (𝑡) ̸= 0} , (10)

then 𝑥 converges to 0 in finite time.

It is worth noting that if the condition 𝑉(0) = 0 in (i) of
Lemma 8 cannot hold; thenwe can have the following lemma.

Lemma 9. If
(i) 𝑉 : 𝑅𝑛 → 𝑅, 𝑉(𝑥) > 0, for all 𝑥 ̸= 0;
(ii) 𝑥 : 𝑅 → 𝑅

𝑛 and 𝑉(𝑥(𝑡)) is absolutely continuous on
[0, +∞) with

𝑑

𝑑𝑡

[𝑉 (𝑥 (𝑡))] < −𝜀 < 0 𝑎.𝑒. 𝑜𝑛 {𝑡 | 𝑥 (𝑡) ̸= 0} , (11)

then 𝑥 converges to 0 as 𝑡 → ∞.

Proof. If Lemma 9 is not true, thenwe have𝑥(𝑡) ̸= 0, for all 𝑡 ∈
[𝑡
0
, +∞) and (𝑑/𝑑𝑡)[𝑉(𝑥(𝑡))] < −𝜀 < 0 a.e. on {𝑡 | 𝑥(𝑡) ̸= 0}.

Therefore,

lim
𝑡→∞

𝑉 (𝑡) = 𝑉 (𝑥 (0)) + ∫

∞

0

�̇� (𝑡) 𝑑𝑡 = −∞, (12)

since 𝑉(𝑥(0)) is bounded, which contradicts with 𝑉(𝑥) > 0,
for all 𝑥 ̸= 0.

This completes the proof.

3. Main Results

Denote

𝑑
0
≜

1

2

𝑁

∑

𝑖=1

(𝑥
𝑖
(0) − 𝑥

0
)
2

, (13)

and construct a closed space

B (𝜎𝑑
0
, 𝑥
0
) = {𝑥 ∈ 𝑅

𝑁𝑛

|

1

2

𝑁

∑

𝑖=1





𝑥
𝑖
− 𝑥
0






2

≤ 𝜎𝑑
0
} , (14)

where 𝑥 = (𝑥𝑇
1
, 𝑥
𝑇

2
, . . . , 𝑥

𝑇

𝑁
)
𝑇 and 𝜎 > 1 is a constant. Under

Assumption 1, for all 𝑥 ∈ B(𝜎𝑑
0
, 𝑥
0
), there exists a constant

𝜂(𝜎, 𝑥
0
) such that

𝑁

∑

𝑖=1

(𝑥
𝑖
− 𝑥
0
)
𝑇

(𝑓 (𝑥
𝑖
) − 𝑓 (𝑥

0
)) ≤ 𝜂 (𝜎, 𝑥

0
)




𝑥
𝑖
− 𝑥
0






2

. (15)

In order to get themain result, we construct the following
potential function:

𝑉 (𝑡) =

1

2

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖
(𝑡) 𝑥
𝑖
(𝑡) +

𝑁

∑

𝑖=1

∑

𝑗∈𝑁𝑖(𝑡)

(𝑐
𝑖𝑗
(𝑡) − 𝑚)

2

4𝑘
𝑖𝑗

+

𝑁

∑

𝑖=1

(𝑐
𝑖
(𝑡) − 𝑚)

2

2𝑘
𝑖

,

(16)

where𝑚 > 0 is sufficiently large. For convenience, we denote
𝑐 = (𝑐

𝑖𝑗
)
𝑁×𝑁

and 𝑐 = (𝑐𝑇
1
, 𝑐
𝑇

2
, . . . , 𝑐

𝑇

𝑁
)
𝑇. Then, we can have the

following results.

Theorem 10. Supposing that Assumptions 1–3 hold, then the
combined trajectories of all nodes and the parameters (𝑥, 𝑐, 𝑐)
in (1) and (2) are geared to a compact hyper-ellipsoid

Ω(𝜎𝑑
0
, 𝑚, 𝑥
0
) = {(𝑥, 𝑐, 𝑐) ∈ 𝑅

𝑁𝑛

× 𝑅
𝑁𝑛

× 𝑅
𝑁

| 𝑉 < 𝜎𝑑
0
} ,

(17)

if the initial value is selected from

Ω
0
(𝜎𝑑
0
, 𝑚, 𝑥
0
)

= {(𝑥, 𝑐, 𝑐) ∈ 𝑅
𝑁𝑛

× 𝑅
𝑁𝑛

× 𝑅
𝑁

| 𝑉 (0) < 𝜎𝑑
0
} .

(18)
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Proof. Taking the derivative of 𝑉(𝑡) in [𝑡
0
, 𝑡
1
), we can get

�̇� (𝑡) =

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖
(𝑡)
[

[

𝑓 (𝑥
𝑖
(𝑡)) − 𝑓 (𝑥

0
(𝑡))

+∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
𝑐
𝑖𝑗
(𝑡) (𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡))

]

]

+

1

2

𝑁

∑

𝑖=1

∑

𝑗∈𝑁𝑖

(𝑐
𝑖𝑗
(𝑡) − 𝑚) 𝑎

𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

𝑇

× (𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

+

𝑁

∑

𝑖=1

(𝑐
𝑖
(𝑡) − 𝑚) ℎ

𝑖
𝑥
𝑇

𝑖
(𝑡) 𝑥
𝑖
(𝑡)

=

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖
(𝑡) (𝜂 (𝜎, 𝑥

0
) 𝐼
𝑁
) 𝑥
𝑖
(𝑡)

−

1

2

𝑚

𝑁

∑

𝑖=1

∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

𝑇

(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

− 𝑚

𝑁

∑

𝑖=1

ℎ
𝑖
𝑥
𝑇

𝑖
(𝑡) 𝑥
𝑖
(𝑡)

= 𝑥
𝑇

(𝑡) [((𝜂 (𝜎, 𝑥
0
) 𝐼
𝑁
) + 𝑚 (𝐴 − 𝐻)) ⊗ 𝐼

𝑛
] 𝑥 (𝑡) .

(19)

Under Assumption 3, Lemma 5 implies that 𝐴 − 𝐻 < 0 in
[𝑡
0
, 𝑡
1
). Since𝑚 is a sufficiently large positive constant, then

�̇� ≤ 0, (20)

which implies

𝑉 (𝑡) ≤ 𝑉 (0) , 𝑡 ∈ [𝑡
0
, 𝑡
1
) . (21)

Similarly,

𝑉 (𝑡) ≤ 𝑉 (𝑡
𝑘−1
) , 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) , 𝑘 = 1, 2, . . . , 𝑚. (22)

Thus, we have

𝑉 (𝑡) ≤ 𝑉 (0) < 𝜎𝑑
0
. (23)

Therefore, we can conclude that the combined trajectories of
all nodes with the parameters (𝑥, 𝑐, 𝑐) are geared to a compact
hyper-ellipsoidΩ(𝜎𝑑

0
, 𝑚, 𝑥
0
) = {(𝑥, 𝑐, 𝑐) ∈ 𝑅

𝑁𝑛

× 𝑅
𝑁𝑛

× 𝑅
𝑁

|

𝑉 < 𝜎𝑑
0
} if the initial value is selected fromΩ

0
(𝜎𝑑
0
, 𝑚, 𝑥
0
) =

{(𝑥, 𝑐, 𝑐) ∈ 𝑅
𝑁𝑛

× 𝑅
𝑁𝑛

× 𝑅
𝑁

| 𝑉(0) < 𝜎𝑑
0
}.

This completes the proof.

Theorem 11. If network (1) steered by adaptive laws (3) and the
initial value of (𝑥, 𝑐, 𝑐) is defined as (18), under Assumptions 1–
3, then all nodes will converge to the synchronous state even
when only one node is controlled by (2).
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Figure 1: Trajectories of the synchronous state.

Proof. Let 𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥(𝑡). Construct the Lyapunov

function, one has

𝑉 (𝑡) =

1

2

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖
(𝑡) 𝑥
𝑖
(𝑡) +

𝑁

∑

𝑖=1

∑

𝑗∈𝑁𝑖(𝑡)

(𝑐
𝑖𝑗
(𝑡) − 𝑚)

2

4𝑘
𝑖𝑗

+

N
∑

i=1

(ci (t) −m)2

2ki
,

(24)

where𝑚 > 0 is a sufficiently large constant.
By Definition 1, we can obtain

�̇�
𝑖
(𝑡)

a.e.
∈ 𝐾

[

[

𝑓 (𝑥
𝑖
(𝑡)) + ∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗
𝑐
𝑖𝑗
(𝑡) (𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡))

− ℎ
𝑖
𝑐
𝑖
(𝑡) (𝑥
𝑖
(𝑡) − 𝑥 (𝑡))

]

]

,

̇𝑐
𝑖𝑗
(𝑡)

a.e.
∈ 𝐾 [𝑘

𝑖𝑗
𝑎
𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

𝑇

(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))] .

(25)

Because the topology of network (1) is switching, we have

�̇�
𝑖
(𝑡) ⊆ 𝐾

[

[

𝑓 (𝑥
𝑖
(𝑡)) + ∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝑖𝑗
𝑐
𝑖𝑗
(𝑡) (𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡))

]

]

− ℎ
𝑖
𝑐
𝑖
(𝑡) (𝑥
𝑖
(𝑡) − 𝑥 (𝑡)) .

(26)

Also by Definition 3, we know that 𝑉(𝑡) is regular, then

𝜕𝑉 ⊆
[

[

𝑥
𝑇

1
(𝑡) , . . . , 𝑥

𝑇

𝑁
(𝑡) ,

𝑁

∑

𝑗=2

(𝑐
1𝑗
(𝑡) − 𝑚)

2𝑘
1𝑗

, . . . ,

𝑁−1

∑

𝑗=1

(𝑐
𝑁−1𝑗

(𝑡) − 𝑚)

2𝑘
𝑁−1𝑗

,

𝑐
1
(𝑡) − 𝑚

𝑘
1

, . . . ,

𝑐
𝑁
(𝑡) − 𝑚

𝑘
𝑁

]

]

𝑇

.

(27)
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Figure 2: The topologies of network (1).

Hence,

̇
�̃� ⊂ 𝐾

[

[

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖
(𝑡)
[

[

𝑓 (𝑥
𝑖
(𝑡)) − 𝑓 (𝑥

0
(𝑡))

+∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
𝑐
𝑖𝑗
(𝑡) (𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡))

]

]

]

]

+ 𝐾
[

[

1

2

𝑁

∑

𝑖=1

∑

𝑗∈𝑁𝑖

(𝑐
𝑖𝑗
(𝑡) − 𝑚) 𝑎

𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

𝑇

× (𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) +

𝑁

∑

𝑖=1

(𝑐
𝑖
(𝑡) − 𝑚) ℎ

𝑖
𝑥
𝑇

𝑖
(𝑡) 𝑥
𝑖
(𝑡)]

= 𝐾{

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖
(𝑡) (𝜂 (𝜎, 𝑥

0
) 𝐼
𝑁
) 𝑥
𝑖
(𝑡)

−

1

2

𝑚

𝑁

∑

𝑖=1

∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

𝑇

(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

−𝑚

𝑁

∑

𝑖=1

ℎ
𝑖
𝑥
𝑇

𝑖
(𝑡) 𝑥
𝑖
(𝑡)} .

(28)

Consequently,

̇
�̃� ⊂ 𝐾 [𝑥

𝑇

(𝑡) [((𝜂 (𝜎, 𝑥
0
) 𝐼
𝑁
) + 𝑚 (𝐴 − 𝐻)) ⊗ 𝐼

𝑛
] 𝑥 (𝑡)] .

(29)
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Figure 3: Trajectories convergence of 10 nodes with only one node
informed by controllers (2).

Lemma 5 indicates that all the eigenvalues of 𝐴 − 𝐻 are
negative, and there exists 𝜀 > 0 such that

𝑑

𝑑𝑡

[𝑉 (𝑥 (𝑡))] < −𝜀 < 0 a.e. on {𝑡 | 𝑥 (𝑡) ̸= 0} , (30)

since𝑚 is a sufficiently large positive constant.
From Lemma 9, we can get that all the nodes of network

(1) can converge to the synchronous state 𝑥(𝑡).This completes
the proof.

Remark 12. Note also thatTheorem 11 is still establishedwhen
𝐴
𝑘 is asymmetric.

Similar to the proof of Theorem 11, we also have

̇
�̃� ⊂ 𝐾[𝑥

𝑇

(𝑡) [( (𝜂 (𝜎, 𝑥
0
) 𝐼
𝑁
)

+𝑚(

𝐴 + 𝐴
𝑇

2

− 𝐻)) ⊗ 𝐼
𝑛
]𝑥 (𝑡)] ,

(31)

since (𝐴 + 𝐴𝑇)/2 is symmetric.

4. Simulations

In this section, number simulations are given to illustrate
our theoretical results. All nodes of network (1) and the syn-
chronous goal share the same nonlinear dynamics described
as the Lorenz system as follows:

𝑓 (𝑥 (𝑡)) = 𝑓 (𝑥
1

, 𝑥
2

, 𝑥
3

) =

{
{
{

{
{
{

{

�̇�
1

= 10 (𝑥
2

− 𝑥
1

) ,

�̇�
2

= 28𝑥
1

− 𝑥
1

𝑥
3

− 𝑥
2

,

�̇�
3

= 𝑥
1

𝑥
2

−

8

3

𝑥
3

,

(32)

as shown in Figure 1. Then the network can be shown as
follows:

[

[

[

�̇�
1

𝑖

�̇�
2

𝑖

�̇�
3

𝑖

]

]

]

=

[

[

[

[

10 (𝑥
2

𝑖
− 𝑥
1

𝑖
)

28𝑥
1

𝑖
− 𝑥
1

𝑖
𝑥
3

𝑖
− 𝑥
2

𝑖

𝑥
1

𝑖
𝑥
2

𝑖
−

8

3

𝑥
3

𝑖

]

]

]

]

+ ∑

𝑗∈𝑁𝑖(𝑡)

𝑎
𝜎(𝑡)

𝑖𝑗
𝑐
𝜎(𝑡)

𝑖𝑗
(𝑡) (𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡))

− ℎ
𝑖
𝑐
𝑖
(𝑡) (𝑥
𝑖
(𝑡) − 𝑥

0
(𝑡)) .

(33)

Figure 2 shows the topology of network (1) with subgraphs
(a), (b), and (c) during the time intervals [0, 4], [4, 12],
[12, 50], respectively.

The initial values of the 10 nodes are chosen randomly,
and the initial value of the synchronous goal is 𝑥

0
(0) =

[10, 10, 10]
𝑇. There is only one node informed by the syn-

chronous goal, and the 10th node is given, that is, ℎ
𝑖
(𝑖 =

1, 2, . . . , 9) = 0 and ℎ
10
= 1. The initial values of the adaptive

parameters are 𝑐
𝑖𝑗
(0) = 0 with the weight of 𝑘

𝑖𝑗
(0) = 0 for all

𝑖 and 𝑗, while 𝑐
𝑖
(0) = 0 with the weight of 𝑘

𝑖
(0) = 0 for all 𝑖.

Figure 3 describes the convergence of the state errors on
the x-axis, y-axis, and z-axis, respectively. From this figure,
we can see that all nodes of network (1) can synchronize to
the synchronous state when the neighboring graphG remains
connected with switching topology even though only one
node is informed by the synchronous state. Figure 4 shows
the change trends of the adaptive coupling strengths and the
adaptive feedback gains, respectively, and all these parameters
converge to the constants.

5. Conclusion

In this paper, we have investigated the synchronization
of complex dynamical networks with switching topology
via differential inclusion method. Different from the most
previous work, all nodes and the synchronous state in this
paper share the same intrinsic nonlinear dynamics governed
by the local Lispchitz condition. By adding decentralized
adaptive strategies to the coupling strengths and the feedback
gains, all nodes can converge to the synchronous state even
when only one node is pinning controlled by the synchronous
state if the neighboring graph G of the switching topology
remains connected.
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