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The main objective of this paper is to establish two new nonlinear sum-difference inequalities with multiple iterated sums. Under
several practical assumptions, the inequalities are solved through rigorous analysis, and explicit bounds for the unknown functions
are given clearly.These new inequalities can be used as handy tools in the study of the estimation of solutions of difference equations.

1. Introduction

One of the best known and widely used inequalities in the
study of nonlinear differential equations is Gronwall-Bellman
inequality [1, 2], which can be stated as follows: if 𝑢 and 𝑓
are nonnegative continuous functions on an interval [𝑎, 𝑏]
satisfying

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑡

𝑎

𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏] , (1)

for some constant 𝑐 ≥ 0, then

𝑢 (𝑡) ≤ 𝑐 exp(∫
𝑡

𝑎

𝑓 (𝑠) 𝑑𝑠) , 𝑡 ∈ [𝑎, 𝑏] . (2)

It has become one of the very few classic and most
influential results in the theory and applications of inequal-
ities. Because of its fundamental importance, over the years,
many generalizations and analogous results of (2) have been
established, such as [3–14].

Among these references, Baı̆nov and Simeonov [4, P. 107]
considered the following interesting Gronwall-type inequal-
ity:
𝑢 (𝑡)

≤ 𝑎 (𝑡) +

𝑛

∑

𝑖=1

∫

𝑡

𝛼

𝑓
1
(𝑡, 𝑡
1
)

× (∫

𝑡
1

𝛼

𝑓
2
(𝑡
1
, 𝑡
2
) ⋅ ⋅ ⋅ (∫

𝑡
𝑖−1

𝛼

𝑓
𝑖
(𝑡
𝑖−1
, 𝑡
𝑖
) 𝑢 (𝑡
𝑖
) 𝑑𝑡
𝑖
) ⋅ ⋅ ⋅ ) 𝑑𝑡

1
.

(3)
Kim [8] considered analogous Gronwall-type integral
inequalities involving iterated integrals,
𝑢 (𝑡)

≤ 𝑎 + 𝑏 (𝑡) (∫

𝑡

𝛼

𝑓
1
(𝑡
1
) 𝑢 (𝑡
1
) log 𝑢 (𝑡

1
) 𝑑𝑡
1

+

𝑛

∑

𝑖=2

∫

𝑡

𝛼

𝑔
1
(𝑡
1
) (∫

𝑡
1

𝛼

𝑔
2
(𝑡
2
)

× ( ⋅ ⋅ ⋅ (∫

𝑡
𝑖−2

𝛼

𝑔
𝑖−1
(𝑡
𝑖−1
)
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× (∫

𝑡
𝑖−1

𝛼

𝑓
𝑖
(𝑡
𝑖
) 𝑢 (𝑡
𝑖
)

× log (𝑢 (𝑡
𝑖
)) 𝑑𝑡
𝑖
)𝑑𝑡
𝑖−1
)

⋅ ⋅ ⋅ ) 𝑑𝑡
2
)𝑑𝑡
1
) .

(4)

In 2011, Abdeldaim and Yakout [12] studied some new
integral inequalities of Gronwall-Bellman-Pachpatte type
such as

𝑢 (𝑡)

≤ 𝑢
0
+ ∫

𝑡

0

𝑓 (𝑠) 𝑢 (𝑠)

× [𝑢 (𝑠) + ∫

𝑠

0

ℎ (𝜏) [𝑢 (𝜏)

+∫

𝜏

0

𝑔 (𝜉) 𝑢 (𝜉) 𝑑𝜉] 𝑑𝜏] 𝑑𝑠,

𝑢 (𝑡) ≤ 𝑢
0
+ ∫

𝑡

0

[𝑓 (𝑠) 𝑢 (𝑠) + 𝑞 (𝑠)] 𝑑𝑠

+ ∫

𝑡

0

𝑓 (𝑠) 𝑢 (𝑠) [𝑢 (𝑠) + ∫

𝑠

0

𝑔 (𝜏) 𝑢 (𝜏) 𝑑𝜏] 𝑑𝑠.

(5)

Along with the development of the theory of integral
inequalities and the theory of difference equations, more and
more attentions are paid to discrete versions of Gronwall-
type inequalities; for detailed information, please refer to the
literatures [15–35]. For instance, Pachpatte [19] considered
the following discrete inequality:

𝑢 (𝑛) ≤ 𝑢
0
+

𝑛−1

∑

𝑠=𝑛
0

𝑓 (𝑠) 𝑢 (𝑠) +

𝑛−1

∑

𝑠=𝑛
0

𝑔 (𝑠)

× (

𝑠−1

∑

𝑡=𝑛
0

ℎ (𝑡) (

𝑡−1

∑

𝜏=𝑛
0

𝑘 (𝜏) 𝑢
𝑝
(𝜏))) .

(6)

In 2006, Cheung and Ren [24] studied

𝑢
𝑝
(𝑚, 𝑛) ≤ 𝑐 +

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑎 (𝑠, 𝑡) 𝑢
𝑞
(𝑠, 𝑡)

+

𝑚−1

∑

𝑠=𝑚
0

𝑛−1

∑

𝑡=𝑛
0

𝑏 (𝑠, 𝑡) 𝑢
𝑞
(𝑠, 𝑡) 𝑤 (𝑢 (𝑠, 𝑡)) .

(7)

Later, Zheng et al. [31] discussed the following discrete
inequality:

𝑢 (𝑛) ≤ 𝑎 (𝑛) +

𝑘

∑

𝑖=1

𝑛−1

∑

𝑠=0

𝑓
𝑖
(𝑛, 𝑠) 𝑤

𝑖
(𝑢 (𝑠)) . (8)

In 2012, Zhou et al. [33] studied the following inequalities:

𝑢 (𝑛) ≤ 𝑎 (𝑛) +

𝑛−1

∑

𝑠=𝑛
0

𝑓
1
(𝑛, 𝑠) 𝑤 (𝑢 (𝑠))

+

𝑛−1

∑

𝑠=𝑛
0

𝑓
1
(𝑛, 𝑠) 𝑤 (𝑢 (𝑠))

𝑠−1

∑

𝜏=𝑛
0

𝑓
2
(𝑠, 𝜏) 𝑤 (𝑢 (𝜏))

+

𝑛−1

∑

𝑠=𝑛
0

𝑓
1
(𝑛, 𝑠) 𝑤 (𝑢 (𝑠))

×

𝑠−1

∑

𝜏=𝑛
0

𝑓
2
(𝑠, 𝜏)

𝜏−1

∑

𝜉=𝑛
0

𝑓
3
(𝜏, 𝜉) 𝑤 (𝑢 (𝜉)) ,

𝑢 (𝑛) ≤ 𝑎 (𝑛) +

𝑛−1

∑

𝑠=𝑛
0

𝑓
1
(𝑛, 𝑠) 𝑤

1
(𝑢 (𝑠))

+

𝑛−1

∑

𝑠=𝑛
0

𝑓
1
(𝑛, 𝑠) 𝑤

1
(𝑢 (𝑠))

𝑠−1

∑

𝜏=𝑛
0

𝑓
2
(𝑠, 𝜏) 𝑤

2
(𝑢 (𝜏))

+

𝑛−1

∑

𝑠=𝑛
0

𝑓
1
(𝑛, 𝑠) 𝑤

1
(𝑢 (𝑠))

×

𝑠−1

∑

𝜏=𝑛
0

𝑓
2
(𝑠, 𝜏) 𝑤

2
(𝑢 (𝜏))

𝜏−1

∑

𝜉=𝑛
0

𝑓
3
(𝜏, 𝜉) 𝑤

3
(𝑢 (𝜉)) .

(9)

However, the above results are not applicable to some
certain inequalities with multiple iterated sums. Hence, it is
desirable to consider more general difference inequalities of
these extended types.They can be used in the study of certain
classes of difference equations or applied in many practical
engineering problems.

Motivated by the results given in [7, 8, 12, 19, 24, 25,
29, 33], in this paper we discuss the following two types of
inequalities:

𝑢 (𝑛) ≤ 𝑎 (𝑛) +

𝑛−1

∑

𝑡
1
=𝑛
0

𝑓
1
(𝑛, 𝑡
1
)

× (

𝑡
1
−1

∑

𝑡
2
=𝑛
0

𝑓
2
(𝑡
1
, 𝑡
2
) ⋅ ⋅ ⋅ (

𝑡
𝑘−1

∑

𝑡
𝑘
=𝑛
0

𝑓
𝑘
(𝑡
𝑘−1
, 𝑡
𝑘
) 𝑢
𝑝
(𝑡
𝑘
)) ⋅ ⋅ ⋅) ,

(10)
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𝑢 (𝑛) ≤ 𝑎 (𝑛)

+ 𝑐 (𝑛) [

𝑛−1

∑

𝑡
1
=𝑛
0

𝑓
1
(𝑛, 𝑡
1
) 𝑔 (𝑢 (𝑡

1
)) +

𝑘

∑

𝑖=2

𝑛−1

∑

𝑡
1
=𝑛
0

𝑓
1
(𝑛, 𝑡
1
)

× (

𝑡
1
−1

∑

𝑡
2
=𝑛
0

𝑓
2
(𝑡
1
, 𝑡
2
) ⋅ ⋅ ⋅ × (

𝑡
𝑖−1

∑

𝑡
𝑖
=𝑛
0

𝑓
𝑖
(𝑡
𝑖−1
, 𝑡
𝑖
)

×𝑔 (𝑢 (𝑡
𝑖
))) ⋅ ⋅ ⋅ )] .

(11)

All the assumptions on (10) and (11) are given in the
next sections. The inequalities (10) and (11) consist of mul-
tiple iterated sums. Under several practical assumptions, the
inequalities are solved through rigorous analysis, and explicit
bounds for the unknown functions are given clearly. Further,
the derived results are applied to study the estimation of
solutions of difference equations.

2. Main Results

Throughout this paper, let N
𝑛
0

:= {𝑛
0
, 𝑛
0
+ 1, 𝑛
0
+ 2, . . .} and

N𝑏
𝑛
0

:= {𝑛
0
, 𝑛
0
+ 1, 𝑛

0
+ 2, . . . , 𝑛

0
+ 𝑛 = 𝑏} (𝑛

0
∈ N
0
, 𝑛, 𝑏 ∈

N). For function 𝑢(𝑛), its difference is defined by Δ𝑢(𝑛) =
𝑢(𝑛 + 1) − 𝑢(𝑛). Obviously, the linear difference equation
Δ𝑢(𝑛) = 𝑓(𝑛) with the initial condition 𝑢(𝑛

0
) = 0 has the

solution 𝑢(𝑛) = ∑𝑛−1
𝑠=𝑛
0

𝑓(𝑠). For convenience, in the sequel we
complementarily define that ∑𝑛0−1

𝑠=𝑛
0

𝑓(𝑠) = 0.

Lemma 1. Let 𝑢(𝑛), 𝑎(𝑛) and 𝑐(𝑛) be real-valued nonnegative
functions defined on N

0
and satisfy the inequality

Δ𝑢 (𝑛) ≤ 𝑎 (𝑛) 𝑢 (𝑛) + 𝑐 (𝑛) , ∀𝑛 ∈ N
𝑛
0

, (12)

where 𝑢
𝑛
0

is a nonnegative constant. Then,

𝑢 (𝑛) ≤ (𝑢
𝑛
0

+

𝑛−1

∑

𝑠=𝑛
0

𝑐 (𝑠)

𝑠

∏

𝑡=𝑛
0

(1 + 𝑎 (𝑡))
−1
)

×

𝑛−1

∏

𝑠=𝑛
0

(1 + 𝑎 (𝑠)) , ∀𝑛 ∈ N
𝑛
0

.

(13)

Proof. From (12), we have

𝑢 (𝑛 + 1) − (1 + 𝑎 (𝑛)) 𝑢 (𝑛) ≤ 𝑐 (𝑛) , ∀𝑛 ∈ N
𝑛
0

. (14)

Multiplying by∏𝑛−1
𝑠=𝑛
0

(1+𝑎(𝑠))
−1 onboth sides of the above

inequality (14) and summing up both sides from 𝑛
0
to 𝑛 − 1,

we obtain

𝑢 (𝑛)

𝑛−1

∏

𝑠=𝑛
0

(1 + 𝑎 (𝑠))
−1
− 𝑢
𝑛
0

≤

𝑛−1

∑

𝑠=𝑛
0

𝑐 (𝑠)

𝑠

∏

𝑡=𝑛
0

(1 + 𝑎 (𝑡))
−1
, ∀𝑛 ∈ N

𝑛
0

.

(15)

From (15), we obtain the desired estimate (13).

Theorem 2. Let 𝑢(𝑛) and 𝑎(𝑛) be nonnegative functions
defined on N

𝑛
0

with 𝑎(𝑛) nondecreasing on N
𝑛
0

. Moreover, let
𝑓
𝑖
(𝑛, 𝑠), 𝑖 = 1, 2, . . . , 𝑘, be nonnegative functions for 𝑛

0
≤ 𝑠 ≤

𝑛 (𝑛
0
, 𝑛, 𝑠 ∈ N

𝑛
0

) and nondecreasing in 𝑛 for fixed 𝑠 ∈ N
𝑛
0

. If
𝑝 ≥ 0 and 𝑝 is not equal to 1, then the discrete inequality (10)
gives

𝑢 (𝑛) ≤ 𝑉
1
(𝑛, 𝑛) , ∀𝑛 ∈ N

𝑏
1

𝑛
0

, (16)

where 𝑉
1
(𝑛, 𝑛) can be successively determined from the formu-

las

𝑉
𝑘
(𝑀, 𝑛)

= exp(𝑊−1
1
(𝑊
1
(ln (𝑎 (𝑀)) +

𝑀−1

∑

𝑠=𝑛
0

(

𝑘−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑠)))

+

𝑛−1

∑

𝑠=𝑛
0

𝑓
𝑘
(𝑀, 𝑠))) ,

(17)

𝑉
𝑗
(𝑀, 𝑛)

≤ (𝑎 (𝑀) +

𝑛−1

∑

𝑠=𝑛
0

𝑓
𝑗
(𝑀, 𝑠) 𝑉

𝑗+1
(𝑀, 𝑠)

×

𝑠

∏

𝑡=𝑛
0

(1 + (

𝑗−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑡) − 𝑓

𝑗
(𝑀, 𝑡)))

−1

)

×

𝑛−1

∏

𝑠=𝑛
0

(1 + (

𝑗−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑠) − 𝑓

𝑗
(𝑀, 𝑠))) = 𝑉

𝑗
(𝑀, 𝑛) ,

(18)

for 𝑗 = 𝑘 − 1, . . . , 2, 1, 𝑛 ∈ N𝑀
𝑛
0

,

𝑊
1
(𝑥) = ∫

𝑥

𝑥
0

𝑑𝑠

exp ((𝑝 − 1) 𝑠)
, 𝑥
0
> 0, (19)

where𝑊−1
1

is the inverse functions of𝑊
1
,𝑀 ∈ N

𝑛
0

,𝑀 ≤ 𝑏
1

is chosen arbitrarily, and 𝑏
1
is the largest natural number such

that

𝑊
1
(ln (𝑎 (𝑏

1
)) +

𝑏
1
−1

∑

𝑠=𝑛
0

(

𝑘−1

∑

𝑖=1

𝑓
𝑖
(𝑏
1
, 𝑠)))

+

𝑏
1
−1

∑

𝑠=𝑛
0

𝑓
𝑘
(𝑏
1
, 𝑠) ∈ Dom (𝑊−1

1
) .

(20)

Remark 3. Firstly, from (17) and (18), we obtain 𝑉
1
(𝑀, 𝑛);

then let 𝑀 = 𝑛, and we get 𝑉
1
(𝑛, 𝑛) since 𝑀 is chosen

arbitrarily.

Remark 4. We can obtain 𝑏
1
using MATLAB program: firstly

let 𝑏
1
= 𝑛
0
, when 𝑊

1
(ln (𝑎(𝑏

1
)) + ∑

𝑏
1
−1

𝑠=𝑛
0

(∑
𝑘−1

𝑖=1
𝑓
𝑖
(𝑏
1
, 𝑠))) +
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∑
𝑏
1
−1

𝑠=𝑛
0

𝑓
𝑘
(𝑏
1
, 𝑠) < 𝑊

1
(∞); let 𝑏

1
= 𝑏
1
+ 1, when𝑊

1
(ln(𝑎(𝑏

1
))+

∑
𝑏
1
−1

𝑠=𝑛
0

(∑
𝑘−1

𝑖=1
𝑓
𝑖
(𝑏
1
, 𝑠))) + ∑

𝑏
1
−1

𝑠=𝑛
0

𝑓
𝑘
(𝑏
1
, 𝑠) < 𝑊

1
(∞);

let 𝑏
1

= 𝑏
1
+ 1, and so on until 𝑊

1
(ln(𝑎(𝑏

1
)) +

∑
𝑏
1
−1

𝑠=𝑛
0

(∑
𝑘−1

𝑖=1
𝑓
𝑖
(𝑏
1
, 𝑠))) + ∑

𝑏
1
−1

𝑠=𝑛
0

𝑓
𝑘
(𝑏
1
, 𝑠) ≥ 𝑊

1
(∞). If

𝑊
1
(ln(𝑎(𝑏

1
)) + ∑

𝑏
1
−1

𝑠=𝑛
0

(∑
𝑘−1

𝑖=1
𝑓
𝑖
(𝑏
1
, 𝑠))) + ∑

𝑏
1
−1

𝑠=𝑛
0

𝑓
𝑘
(𝑏
1
, 𝑠) <

𝑊
1
(∞), for all 𝑏

1
∈ N
𝑛
0

, then 𝑏
1
= ∞.

Proof. Fix𝑀 ∈ N𝑏1
𝑛
0

, where𝑀 is chosen arbitrarily and 𝑏
1
is

defined by (20). For 𝑛 ∈ N𝑀
𝑛
0

, from (10) we have

𝑢 (𝑛) ≤ 𝑎 (𝑀) +

𝑛−1

∑

𝑡
1
=𝑛
0

𝑓
1
(𝑀, 𝑡
1
)

× (

𝑡
1
−1

∑

𝑡
2
=𝑛
0

𝑓
2
(𝑀, 𝑡
2
) ⋅ ⋅ ⋅ (

𝑡
𝑘−1

∑

𝑡
𝑘
=𝑛
0

𝑓
𝑘
(𝑀, 𝑡
𝑘
) 𝑢
𝑝
(𝑡
𝑘
)) ⋅ ⋅ ⋅ ) .

(21)

Now we introduce the functions

V
1
(𝑛) = 𝑎 (𝑀) +

𝑛−1

∑

𝑡
1
=𝑛
0

𝑓
1
(𝑀, 𝑡
1
)

× (

𝑡
1
−1

∑

𝑡
2
=𝑛
0

𝑓
2
(𝑀, 𝑡
2
) ⋅ ⋅ ⋅ (

𝑡
𝑘−1

∑

𝑡
𝑘
=𝑛
0

𝑓
𝑘
(𝑀, 𝑡
𝑘
) 𝑢
𝑝
(𝑡
𝑘
)) ⋅ ⋅ ⋅),

(22)

V
𝑗
(𝑛) = V

𝑗−1
(𝑛) +

𝑛−1

∑

𝑡
𝑗
=𝑛
0

𝑓
𝑗
(𝑀, 𝑡
𝑗
)

× (

𝑡
𝑗
−1

∑

𝑡
𝑗+1
=𝑛
0

𝑓
𝑗+1
(𝑀, 𝑡
𝑗+1
) ⋅ ⋅ ⋅

×(

𝑡
𝑘−1

∑

𝑡
𝑘
=𝑛
0

𝑓
𝑘
(𝑀, 𝑡
𝑘
) 𝑢
𝑝
(𝑡
𝑘
)) ⋅ ⋅ ⋅ ) .

(23)

For 𝑛 ∈ N𝑀
𝑛
0

and 𝑗 = 2, 3, . . . , 𝑘, then V
𝑗
, 𝑗 = 1, 2, . . . , 𝑘, are

all positive and nondecreasing functions onN𝑀
𝑛
0

with V
𝑗
(𝑛
0
) =

𝑎(𝑀), 𝑗 = 1, 2, . . . , 𝑘, and the inequalities (22) and (23) imply
that

𝑢 (𝑛) ≤ V
1
(𝑛) ≤ V

2
(𝑛) ≤ ⋅ ⋅ ⋅ ≤ V

𝑘
(𝑛) , ∀𝑛 ∈ N

𝑀

𝑛
0

. (24)

From (22), we observe that

ΔV
1
(𝑛) = V

1
(𝑛 + 1) − V

1
(𝑛)

= 𝑓
1
(𝑀, 𝑛)

× (

𝑛−1

∑

𝑡
2
=𝑛
0

𝑓
2
(𝑀, 𝑡
2
) ⋅ ⋅ ⋅ (

𝑡
𝑘−1

∑

𝑡
𝑘
=𝑛
0

𝑓
𝑘
(𝑀, 𝑡
𝑘
) 𝑢
𝑝
(𝑡
𝑘
)) ⋅ ⋅ ⋅)

≤ 𝑓
1
(𝑀, 𝑛) (V

2
(𝑛) − V

1
(𝑛))

= −𝑓
1
(𝑀, 𝑛) V

1
(𝑛) + 𝑓

1
(𝑀, 𝑛) V

2
(𝑛) , ∀𝑛 ∈ N

𝑀

𝑛
0

.

(25)

We claim that

ΔV
𝑗
(𝑛) ≤ (

𝑗−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑛) − 𝑓

𝑗
(𝑀, 𝑛)) V

𝑗
(𝑛)

+ 𝑓
𝑗
(𝑀, 𝑛) V

𝑗+1
(𝑛) ,

(26)

ΔV
𝑘
(𝑛) ≤ (

𝑘−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑛)) V

𝑘
(𝑛) + 𝑓

𝑘
(𝑀, 𝑛) V

𝑝

𝑘
(𝑛) , (27)

for 𝑛 ∈ N𝑀
𝑛
0

, 𝑗 = 2, 3, . . . , 𝑘 − 1.
Nowwe prove (26) and (27) by induction. Obviously, (26)

is true for 𝑗 = 1 by (26). We make the inductive assumption
that (26) is true for 𝑗 − 1. By the inductive assumption and
(24), from (23) we obtain

ΔV
𝑗
(𝑛) ≤ ΔV

𝑗−1
(𝑛) + 𝑓

𝑗
(𝑀, 𝑛)

× (

𝑡
𝑗
−1

∑

𝑡
𝑗+1
=𝑛
0

𝑓
𝑗+1
(𝑀, 𝑡
𝑗+1
) ⋅ ⋅ ⋅

× (

𝑡
𝑘−1

∑

𝑡
𝑘
=𝑛
0

𝑓
𝑘
(𝑀, 𝑡
𝑘
) 𝑢
𝑝
(𝑡
𝑘
)) ⋅ ⋅ ⋅ )

≤ (

𝑗−2

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑛) − 𝑓

𝑗−1
(𝑀, 𝑛)) V

𝑗−1
(𝑛)

+ 𝑓
𝑗−1
(𝑀, 𝑛) V

𝑗
(𝑛) + 𝑓

𝑗
(𝑀, 𝑛) (V

𝑗+1
(𝑛) − V

𝑗
(𝑛))

≤ (

𝑗−2

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑛)) V

𝑗
(𝑛) + 𝑓

𝑗−1
(𝑀, 𝑛) V

𝑗
(𝑛)

+ 𝑓
𝑗
(𝑀, 𝑛) V

𝑗+1
(𝑛) − 𝑓

𝑗
(𝑀, 𝑛) V

𝑗
(𝑛)

= (

𝑗−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑛) − 𝑓

𝑗
(𝑀, 𝑛)) V

𝑗
(𝑛)

+ 𝑓
𝑗
(𝑀, 𝑛) V

𝑗+1
(𝑛) , ∀𝑛 ∈ N

𝑀

𝑛
0

.

(28)
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It actually proves (26) by induction. From (23) and (26),
we have

ΔV
𝑘
(𝑛) = ΔV

𝑘−1
(𝑛) + 𝑓

𝑘
(𝑀, 𝑛) 𝑢

𝑝
(𝑛)

≤ (

𝑘−2

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑛) − 𝑓

𝑘−1
(𝑀, 𝑛)) V

𝑘−1
(𝑛)

+ 𝑓
𝑘−1
(𝑀, 𝑛) V

𝑘
(𝑛) + 𝑓

𝑘
(𝑀, 𝑛) V

𝑝

𝑘
(𝑛)

≤ (

𝑘−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑛)) V

𝑘
(𝑛) + 𝑓

𝑘
(𝑀, 𝑛) V

𝑝

𝑘
(𝑛) ,

∀𝑛 ∈ N
𝑀

𝑛
0

.

(29)

It proves (27). From (27), we have

ΔV
𝑘
(𝑛)

V
𝑘
(𝑛)

≤ (

𝑘−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑛)) + 𝑓

𝑘
(𝑀, 𝑛) V

𝑝−1

𝑘
(𝑛) ,

∀𝑛 ∈ N
𝑀

𝑛
0

.

(30)

On the other hand, by the mean-value theorem for
integrals, for arbitrarily given integers 𝑛, 𝑛 + 1 ∈ N𝑀

𝑛
0

, there
exists 𝜉 in the open interval (V

𝑘
(𝑛), V
𝑘
(𝑛 + 1)) such that

ln (V
𝑘
(𝑛 + 1)) − ln (V

𝑘
(𝑛)) = ∫

V
𝑘
(𝑛+1)

V
𝑘(𝑛)

𝑑𝑠

𝑠

=

ΔV
𝑘
(𝑛)

𝜉

≤

ΔV
𝑘
(𝑛)

V
𝑘
(𝑛)

,

∀𝑛 ∈ N
𝑀

𝑛
0

.

(31)

By setting 𝑛 = 𝑠 in (31) and substituting 𝑠 = 𝑛
0
, 𝑛
0
+1, 𝑛
0
+

2, . . . , 𝑛 − 1, successively, we obtain

ln (V
𝑘
(𝑛)) ≤ ln (V

𝑘
(𝑛
0
)) +

𝑛−1

∑

𝑠=𝑛
0

(

𝑘−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑠))

+

𝑛−1

∑

𝑠=𝑛
0

𝑓
𝑘
(𝑀, 𝑠) V

𝑝−1

𝑘
(𝑠)

≤ ln (V
𝑘
(𝑛
0
)) +

𝑀−1

∑

𝑠=𝑛
0

(

𝑘−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑠))

+

𝑛−1

∑

𝑠=𝑛
0

𝑓
𝑘
(𝑀, 𝑠) V

𝑝−1

𝑘
(𝑠) , ∀𝑛 ∈ N

𝑀

𝑛
0

.

(32)

Let 𝑤
1
(𝑛) denote the right-hand side of (32), which is a

positive and nondecreasing function on N𝑀
𝑛
0

with

𝑤
1
(𝑛
0
) = ln (V

𝑘
(𝑛
0
)) +

𝑀−1

∑

𝑠=𝑛
0

(

𝑘−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑠)) . (33)

Then, (32) is equivalent to

V
𝑘
(𝑛) ≤ exp (𝑤

1
(𝑛)) , ∀𝑛 ∈ N

𝑀

𝑛
0

. (34)

By the definition of 𝑤
1
, we obtain

Δ𝑤
1
(𝑛) = 𝑓

𝑘
(𝑀, 𝑛) V

𝑝−1

𝑘
(𝑛)

≤ 𝑓
𝑘
(𝑀, 𝑛) exp ((𝑝 − 1)𝑤

1
(𝑛)) ,

∀𝑛 ∈ N
𝑀

𝑛
0

.

(35)

From (34) and (35), we get

Δ𝑤
1
(𝑛)

exp ((𝑝 − 1)𝑤
1
(𝑛))

≤ 𝑓
𝑘
(𝑀, 𝑛) , ∀𝑛 ∈ N

𝑀

𝑛
0

. (36)

Once again, performing the similar procedure from (30)
to (32), (36) gives

𝑊
1
(𝑤
1
(𝑛)) ≤ 𝑊

1
(𝑤
1
(𝑛
0
)) +

𝑛−1

∑

𝑠=𝑛
0

𝑓
𝑘
(𝑀, 𝑠) ,

∀𝑛 ∈ N
𝑀

𝑛
0

,

(37)

where𝑊
1
is defined by (19). By combining (33), (34), and (37),

we can obtain that

V
𝑘
(𝑛) ≤ exp (𝑤

1
(𝑛))

≤ exp(𝑊−1
1
(𝑊
1
(𝑤
1
(𝑛
0
)) +

𝑛−1

∑

𝑠=𝑛
0

𝑓
𝑘
(𝑀, 𝑠)))

≤ exp(𝑊−1
1
(𝑊
1
( ln (𝑎 (𝑀))

+

𝑀−1

∑

𝑠=𝑛
0

(

𝑘−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑠)))

+

𝑛−1

∑

𝑠=𝑛
0

𝑓
𝑘
(𝑀, 𝑠)))

= 𝑉
𝑘
(𝑀, 𝑛) , ∀𝑛 ∈ N

𝑀

𝑛
0

,

(38)

where 𝑉
𝑘
(𝑀, 𝑛) is defined by (17). Applying Lemma 1 to (26)

for 𝑗 = 𝑘 − 1, . . . , 2, 1, we have

V
𝑗
(𝑛) ≤ (𝑎 (𝑀) +

𝑛−1

∑

𝑠=𝑛
0

𝑓
𝑗
(𝑀, 𝑠) 𝑉

𝑗+1
(𝑀, 𝑠)

×

𝑠

∏

𝑡=𝑛
0

(1 + (

𝑗−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑡) − 𝑓

𝑗
(𝑀, 𝑡)))

−1

)

×

𝑛−1

∏

𝑠=𝑛
0

(1 + (

𝑗−1

∑

𝑖=1

𝑓
𝑖
(𝑀, 𝑠) − 𝑓

𝑗
(𝑀, 𝑠)))

= 𝑉
𝑗
(𝑀, 𝑛) , ∀𝑛 ∈ N

𝑀

𝑛
0

,

(39)

where𝑉
𝑗
(𝑀, 𝑛) is defined by (18). From (24) and (39), we have

𝑢 (𝑛) ≤ V
1
(𝑛) ≤ 𝑉

1
(𝑀, 𝑛) , ∀𝑛 ∈ N

𝑀

𝑛
0

. (40)
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Since𝑀 ∈ N
𝑛
0

is arbitrary, from (40), we get the required
estimate

𝑢 (𝑛) ≤ 𝑉
1
(𝑛, 𝑛) , ∀𝑛 ∈ N

𝑏
1

𝑛
0

, (41)

where 𝑏
1
is defined by (20). Theorem 2 is proved.

Theorem 5. Let 𝑢(𝑛), 𝑎(𝑛), and 𝑐(𝑛) be nonnegative functions
defined on N

𝑛
0

with 𝑎(𝑛) and 𝑐(𝑛) nondecreasing on N
𝑛
0

, and
let 𝑓
𝑖
(𝑛, 𝑠), 𝑖 = 1, 2, . . . , 𝑘, be nonnegative functions for 𝑛, 𝑠 ∈

N
𝑛
0

, 𝑛
0
≤ 𝑠 ≤ 𝑛, which are nondecreasing in 𝑛 for fixed 𝑠 ∈ N

𝑛
0

.
Suppose that 𝑔(𝑢) is a nondecreasing continuous function on
[0,∞) with 𝑔(𝑢) > 0 for 𝑢 > 0. The inequality (11) implies that

𝑢 (𝑛) ≤ 𝐺
−1
(𝐺 (𝑎 (𝑛)) + 𝑐 (𝑛)

𝑛−1

∑

𝑠=𝑛
0

𝑓
1
(𝑛, 𝑠) 𝐸 (𝑛, 𝑠)) ,

∀𝑛 ∈ N
𝑏
2

𝑛
0

,

(42)

where 𝐺−1 is the inverse function of 𝐺,

𝐺 (𝑢) = ∫

𝑢

𝑢
0

𝑑𝑠

𝑔 (𝑠)

, 𝑢
0
> 0, (43)

𝐸 (𝑛, 𝑠)

:= {1 + 𝑓
2
(𝑛, 𝑠) [1 + 𝑓

3
(𝑛, 𝑠)

× (⋅ ⋅ ⋅ (1 + 𝑓
𝑘−1
(𝑛, 𝑠) ⋅ ⋅ ⋅

× (1 + 𝑓
𝑘
(𝑛, 𝑠))) ⋅ ⋅ ⋅ )]} ,

(44)

and 𝑏
2
is the largest natural number such that

𝐺 (𝑎 (𝑏
2
)) + 𝑐 (𝑏

2
)

𝑏
2
−1

∑

𝑠=𝑛
0

𝑓
1
(𝑏
2
, 𝑠) 𝐸 (𝑏

2
, 𝑠) ∈ Dom (𝐺−1) .

(45)

Remark 6. We can obtain 𝑏
2
usingMatlab program similar to

Remark 4.

Proof. Let the function 𝑎(𝑛) be positive. Fix𝑀 ∈ N𝑏2
𝑛
0

, where
𝑀 is chosen arbitrarily and 𝑏

2
is defined by (45). For 𝑛 ∈ N𝑀

𝑛
0

,
from (11) we have

𝑢 (𝑛)

≤ 𝑎 (𝑀) + 𝑐 (𝑀)[

𝑛−1

∑

𝑡
1
=𝑛
0

𝑓
1
(𝑀, 𝑡
1
) 𝑔 (𝑢 (𝑡

1
))

+

𝑘

∑

𝑖=2

𝑛−1

∑

𝑡
1
=𝑛
0

𝑓
1
(𝑀, 𝑡
1
)

× (

𝑡
1
−1

∑

𝑡
2
=𝑛
0

𝑓
2
(𝑀, 𝑡
2
) ⋅ ⋅ ⋅

×(

𝑡
𝑖−1

∑

𝑡
𝑖
=𝑛
0

𝑓
𝑖
(𝑀, 𝑡
𝑖
) 𝑔 (𝑢 (𝑡

𝑖
))) ⋅ ⋅ ⋅ )] .

(46)

We denote the right-hand side of (46) by 𝑦(𝑛) for 𝑛 ∈
N𝑀
𝑛
0

. Then 𝑦(𝑛
0
) = 𝑎(𝑀), the function 𝑦(𝑛) is positive and

nondecreasing in 𝑛 ∈ N𝑀
𝑛
0

, 𝑢(𝑛) ≤ 𝑦(𝑛), and

Δ𝑦 (𝑛)

= 𝑐 (𝑀)[𝑓
1
(𝑀, 𝑛) 𝑔 (𝑢 (𝑛)) + 𝑓

1
(𝑀, 𝑛)

× (

𝑛−1

∑

𝑡
2
=𝑛
0

𝑓
2
(𝑀, 𝑡
2
) 𝑔 (𝑢 (𝑡

2
))) +

𝑘

∑

𝑖=3

𝑓
1
(𝑀, 𝑛)

× (

𝑛−1

∑

𝑡
2
=𝑛
0

𝑓
2
(𝑀, 𝑡
2
) ⋅ ⋅ ⋅

×(

𝑡
𝑖−1

∑

𝑡
𝑖
=𝑛
0

𝑓
𝑖
(𝑀, 𝑡
𝑖
) 𝑔 (𝑢 (𝑡

𝑖
))) ⋅ ⋅ ⋅ )]

= 𝑐 (𝑀)𝑓
1
(𝑀, 𝑛) [𝑔 (𝑢 (𝑛)) +

𝑛−1

∑

𝑡
2
=𝑛
0

𝑓
2
(𝑀, 𝑡
2
) 𝑔 (𝑢 (𝑡

2
))

+

𝑘

∑

𝑖=3

(

𝑛−1

∑

𝑡
2
=𝑛
0

𝑓
2
(𝑀, 𝑡
2
) ⋅ ⋅ ⋅

×(

𝑡
𝑖−1

∑

𝑡
𝑖
=𝑛
0

𝑓
𝑖
(𝑀, 𝑡
𝑖
) 𝑔 (𝑢 (𝑡

𝑖
))) ⋅ ⋅ ⋅)] ,

∀𝑛 ∈ N
𝑀

𝑛
0

.

(47)

Define a function 𝑦
1
(𝑛) by

𝑦
1
(𝑛) =

𝑛−1

∑

𝑡
2
=𝑛
0

𝑓
2
(𝑀, 𝑡
2
) 𝑔 (𝑢 (𝑡

2
))

+

𝑘

∑

𝑖=3

(

𝑛−1

∑

𝑡
2
=𝑛
0

𝑓
2
(𝑀, 𝑡
2
) ⋅ ⋅ ⋅

× (

𝑡
𝑖−1

∑

𝑡
𝑖
=𝑛
0

𝑓
𝑖
(𝑀, 𝑡
𝑖
) 𝑔 (𝑢 (𝑡

𝑖
))) ⋅ ⋅ ⋅ ) ,

(48)

for all 𝑛 ∈ N𝑀
𝑛
0

. From (47) and (48), we have

Δ𝑦 (𝑛) = 𝑐 (𝑀)𝑓
1
(𝑀, 𝑛) [𝑔 (𝑢 (𝑛)) + 𝑦

1
(𝑛)] , ∀𝑛 ∈ N

𝑀

𝑛
0

.

(49)
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From (48), we have
Δ𝑦
1
(𝑛)

= 𝑓
2
(𝑀, 𝑛) [𝑔 (𝑢 (𝑛)) +

𝑛−1

∑

𝑡
3
=𝑛
0

𝑓
3
(𝑀, 𝑡
3
) 𝑔 (𝑢 (𝑡

3
))

+

𝑘

∑

𝑖=4

(

𝑛−1

∑

𝑡
3
=𝑛
0

𝑓
3
(𝑀, 𝑡
3
) ⋅ ⋅ ⋅

×(

𝑡
𝑖−1

∑

𝑡
𝑖
=𝑛
0

𝑓
𝑖
(𝑀, 𝑡
𝑖
) 𝑔 (𝑢 (𝑡

𝑖
))) ⋅ ⋅ ⋅ )] ,

∀𝑛 ∈ N
𝑀

𝑛
0

.

(50)
From (50), we get

Δ𝑦
1
(𝑛) = 𝑓

2
(𝑀, 𝑛) [𝑔 (𝑢 (𝑛)) + 𝑦

2
(𝑛)] , ∀𝑛 ∈ N

𝑀

𝑛
0

, (51)

where
𝑦
2
(𝑛)

=

𝑛−1

∑

𝑡
3
=𝑛
0

𝑓
3
(𝑀, 𝑡
3
) 𝑔 (𝑢 (𝑡

3
))

+

𝑘

∑

𝑖=4

(

𝑛−1

∑

𝑡
2
=𝑛
0

𝑓
3
(𝑀, 𝑡
3
) ⋅ ⋅ ⋅ (

𝑡
𝑖−1

∑

𝑡
𝑖
=𝑛
0

𝑓
𝑖
(𝑀, 𝑡
𝑖
) 𝑔 (𝑢 (𝑡

𝑖
))) ⋅ ⋅ ⋅) ,

(52)

for all 𝑛 ∈ N𝑀
𝑛
0

.
Continuing in this way, we obtain

Δ𝑦
𝑘−2
(𝑛) = 𝑓

𝑘−1
(𝑀, 𝑛) [𝑔 (𝑢 (𝑛)) + 𝑦

𝑘−1
(𝑛)] , ∀𝑛 ∈ N

𝑀

𝑛
0

,

(53)
where

𝑦
𝑘−1
(𝑛) =

𝑛−1

∑

𝑡
𝑛
=𝑛
0

𝑓
𝑘
(𝑀, 𝑡
𝑘
) 𝑔 (𝑢 (𝑡

𝑘
)) , ∀𝑛 ∈ N

𝑀

𝑛
0

. (54)

From (54) and the inequality 𝑢(𝑛) ≤ 𝑦(𝑛), we have
Δ𝑦
𝑘−1
(𝑛)

𝑔 (𝑦 (𝑛))

≤ 𝑓
𝑘
(𝑀, 𝑛) , ∀𝑛 ∈ N

𝑀

𝑛
0

. (55)

We define the functions 𝑦(𝑠), 𝑦
𝑖
(𝑠) (𝑖 = 1, 2 . . . , 𝑘 − 1),

which are nondecreasing and continuously differentiable on
[𝑛
0
,∞) with 𝑦(𝑛) = 𝑦(𝑛), 𝑦

𝑖
(𝑛) = 𝑦

𝑖
(𝑛) (𝑖 = 1, 2 . . . , 𝑘 − 1) on

N𝑀
𝑛
0

.
On the other hand, by the formula of partial integration,

we have

∫

𝑛+1

𝑛

𝑦


𝑘−1
(𝑠)

𝑔 (𝑦 (𝑠))

𝑑𝑠

=

𝑦
𝑘−1
(𝑛)

𝑔 (𝑦 (𝑛))

+ ∫

𝑛+1

𝑛

𝑦
𝑘−1
(𝑠) 𝑔

(𝑦 (𝑠)) 𝑦


(𝑠)

𝑔
2
(𝑦 (𝑠))

𝑑𝑠, ∀𝑛 ∈ N
𝑀

𝑛
0

.

(56)

By the monotonicity of 𝑔, 𝑦, from (56) we have

∫

𝑛+1

𝑛

𝑦


𝑘−1
(𝑠)

𝑔 (𝑦 (𝑠))

𝑑𝑠 ≥

𝑦
𝑘−1
(𝑛)

𝑔 (𝑦 (𝑛))

, ∀𝑛 ∈ N
𝑀

𝑛
0

. (57)

By the mean-value theorem for integrals, for arbitrarily
given integers 𝑛, 𝑛+1 ∈ N𝑀

𝑛
0

, there exists 𝜉 in the open interval
(𝑛, 𝑛 + 1) such that

∫

𝑛+1

𝑛

𝑦


𝑘−1
(𝑠)

𝑔 (𝑦 (𝑠))

𝑑𝑠 = ∫

𝑛+1

𝑛

𝑑 (𝑦
𝑘−1
(𝑠))

𝑔 (𝑦 (𝑠))

=

1

𝑔 (𝑦 (𝜉))

∫

𝑛+1

𝑛

𝑑 (𝑦
𝑘−1
(𝑠))

≤

Δ𝑦
𝑘−1
(𝑛)

𝑔 (𝑦 (𝑛))

, ∀𝑛 ∈ N𝑀
𝑛
0

.

(58)

From (55), (57), and (58), we have

𝑦
𝑘−1
(𝑛)

𝑔 (𝑦 (𝑛))

≤

Δ𝑦
𝑘−1
(𝑛)

𝑔 (𝑦 (𝑛))

≤ 𝑓
𝑘
(𝑀, 𝑛) , ∀𝑛 ∈ N

𝑀

𝑛
0

. (59)

Next, from the inequalities (53) and (59), we have

Δ𝑦
𝑘−2
(𝑛)

𝑔 (𝑦 (𝑛))

≤ 𝑓
𝑘−1
(𝑀, 𝑛) [1 + 𝑓

𝑘
(𝑀, 𝑛)] , ∀𝑛 ∈ N

𝑀

𝑛
0

.

(60)

Once again, applying the same procedure from (56) to
(59) to the inequality (60), we get

𝑦
𝑘−2
(𝑛)

𝑔 (𝑦 (𝑛))

≤

Δ𝑦
𝑘−2
(𝑛)

𝑔 (𝑦 (𝑛))

≤ 𝑓
𝑘−1
(𝑀, 𝑛) [1 + 𝑓

𝑘
(𝑀, 𝑛)] ,

∀𝑛 ∈ N𝑀
𝑛
0

.

(61)

Proceeding in this way, we obtain

𝑦
1
(𝑛)

𝑔 (𝑦 (𝑛))

≤

Δ𝑦
1
(𝑛)

𝑔 (𝑦 (𝑛))

≤ 𝑓
2
(𝑀, 𝑛)

× {1 + 𝑓
3
(𝑀, 𝑛)

× [1 + 𝑓
4
(𝑀, 𝑛)

× (⋅ ⋅ ⋅ (1 + 𝑓
𝑘−1
(𝑀, 𝑛)

× (1 + 𝑓
𝑘
(𝑀, 𝑛))) ⋅ ⋅ ⋅ )]} ,

∀𝑛 ∈ N
𝑀

𝑛
0

.

(62)
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Using the inequalities (49) and (62), we have

Δ𝑦 (𝑛)

𝑔 (𝑦 (𝑛))

≤ 𝑐 (𝑀)𝑓
1
(𝑀, 𝑛)

× {1 + 𝑓
2
(𝑀, 𝑛) [1 + 𝑓

3
(𝑀, 𝑛)

× (⋅ ⋅ ⋅ (1+𝑓
𝑘−1
(𝑀, 𝑛)

× 1 + 𝑓
𝑘
(𝑀, 𝑛)) ⋅ ⋅ ⋅ )]}

= 𝑐 (𝑀)𝑓
1
(𝑀, 𝑛) 𝐸 (𝑀, 𝑛) , ∀𝑛 ∈ N

𝑀

𝑛
0

,

(63)

where 𝐸(𝑀, 𝑛) is defined by (44).
Once again, using the mean-value theorem for integrals,

for arbitrarily given integers 𝑛, 𝑛 + 1 ∈ N𝑀
𝑛
0

, there exists 𝜉 in
the open interval (𝑦(𝑛), 𝑦(𝑛 + 1)) such that

𝐺 (𝑦 (𝑛 + 1)) − 𝐺 (𝑦 (𝑛)) = ∫

𝑦(𝑛+1)

𝑦(𝑛)

𝑑𝑠

𝑔 (𝑠)

=

Δ𝑦 (𝑛)

𝑔 (𝜉)

≤

Δ𝑦 (𝑛)

𝑔 (𝑦 (𝑛))

,

∀𝑛 ∈ N
𝑀

𝑛
0

,

(64)

where 𝐺 is defined by (43). Using (63), (64), and 𝑦(𝑛
0
) =

𝑎(𝑀), we obtain

𝑢 (𝑛) ≤ 𝑦 (𝑛) ≤ 𝐺
−1
(𝐺 (𝑎 (𝑀))

+ 𝑐 (𝑀)

𝑛−1

∑

𝑠=𝑛
0

𝑓
1
(𝑀, 𝑠) 𝐸 (𝑀, 𝑠)) ,

∀𝑛 ∈ N
𝑀

𝑛
0

.

(65)

In (65), let 𝑛 = 𝑀; we have

𝑢 (𝑀)

≤ 𝐺
−1
(𝐺 (𝑎 (𝑀)) + 𝑐 (𝑀)

𝑀−1

∑

𝑠=𝑛
0

𝑓
1
(𝑀, 𝑠) 𝐸 (𝑀, 𝑠)) ,

∀𝑛 ∈ N
𝑀

𝑛
0

.

(66)

Due to the randomness of𝑇, (42) is achieved immediately
from (66).

3. Application

In this section, we apply Theorem 5 to the following differ-
ence equation:

Δ𝑥 (𝑛) = 𝐹(𝑛, 𝑥 (𝑛) ,

𝑛−1

∑

𝑠=𝑛
0

𝑧 (𝑠, 𝑥 (𝑠))) , ∀𝑛 ∈ N
𝑛
0

. (67)

Corollary 7. Assume that𝐹 is defined onN
𝑛
0

×[0,∞)×[0,∞),
and there exist nonnegative functions 𝑑

𝑖
(𝑛), 𝑖 = 1, 2, such that





𝐹 (𝑛, 𝑥, 𝑦)





≤ 𝑑
1
(𝑛) 𝑔 (|𝑥|) + 𝑑

1
(𝑛) 𝑦,

|𝑧 (𝑠, 𝑥)| ≤ 𝑑
2
(𝑛) 𝑔 (|𝑥|) ,

(68)

where the function 𝑔 is as in Theorem 5. If 𝑥(𝑛) is any solution
of the problem (67), then

|𝑥 (𝑛)| ≤ 𝐺
−1
(𝐺 (





𝑥 (𝑛
0
)




) +

𝑛−1

∑

𝑠=𝑛
0

𝑑
1
(𝑠) 𝐸 (𝑠)) , ∀𝑛 ∈ N

𝑏
3

𝑛
0

,

(69)

where the functions 𝐺, 𝐺−1 are as in Theorem 5,

𝐸 (𝑛) = 1 + 𝑑
1
(𝑛) (1 + 𝑑

2
(𝑛)) , (70)

and 𝑏
3
is the largest natural number such that

𝐺 (




𝑥 (𝑛
0
)




) +

𝑏
3
−1

∑

𝑠=𝑛
0

𝑑
1
(𝑠) 𝐸 (𝑠) ∈ Dom (𝐺−1) . (71)

Proof. The difference equation (67) is equivalent to

𝑥 (𝑛) = 𝑥 (𝑛
0
) +

𝑛−1

∑

𝑠=𝑛
0

𝐹(𝑠, 𝑥 (𝑠) ,

𝑠−1

∑

𝑡=𝑛
0

𝑧 (𝑡, 𝑥 (𝑡))) ,

∀𝑛 ∈ N
𝑛
0

.

(72)

Using (68), from (72), we have

|𝑥 (𝑛)| ≤




𝑥 (𝑛
0
)




+

𝑛−1

∑

𝑠=𝑛
0

𝑑
1
(𝑠) 𝑔 (|𝑥 (𝑠)|)

+

𝑛−1

∑

𝑠=𝑛
0

𝑑
1
(𝑠) (

𝑠−1

∑

𝑡=𝑛
0

𝑑
2
(𝑡) 𝑔 (|𝑥 (𝑠)|)) ,

∀𝑛 ∈ N
𝑛
0

.

(73)

Notice that, by the assumption, all functions in (73) satisfy
the conditions of Theorem 5. Applying Theorem 5 to the
inequality (73), (69) is immediately derived. This completes
the proof of Corollary 7.
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[4] D. Băınov and P. Simeonov, Integral Inequalities and Appli-
cations, vol. 57 of Mathematics and Its Applications, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1992.

[5] B. G. Pachpatte, Inequalities for Differential and Integral Equa-
tions, vol. 197 of Mathematics in Science and Engineering,
Academic Press, San Diego, Calif, USA, 1998.

[6] O. Lipovan, “A retarded Gronwall-like inequality and its appli-
cations,” Journal of Mathematical Analysis and Applications, vol.
252, no. 1, pp. 389–401, 2000.

[7] W. Zhang and S. Deng, “Projected Gronwall-Bellman’s inequal-
ity for integrable functions,”Mathematical and Computer Mod-
elling, vol. 34, no. 3-4, pp. 393–402, 2001.

[8] B.-I. Kim, “On some Gronwall type inequalities for a system
integral equation,” Bulletin of the Korean Mathematical Society,
vol. 42, no. 4, pp. 789–805, 2005.

[9] B. G. Pachpatte, “On certain nonlinear integral inequalities
involving iterated integrals,” Tamkang Journal of Mathematics,
vol. 37, no. 3, pp. 261–271, 2006.

[10] W.-S. Cheung, “Some new nonlinear inequalities and applica-
tions to boundary value problems,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 64, no. 9, pp. 2112–2128, 2006.

[11] W.-S. Wang, “A generalized retarded Gronwall-like inequality
in two variables and applications to BVP,” Applied Mathematics
and Computation, vol. 191, no. 1, pp. 144–154, 2007.

[12] A. Abdeldaim and M. Yakout, “On some new integral inequali-
ties of Gronwall-Bellman-Pachpatte type,”AppliedMathematics
and Computation, vol. 217, no. 20, pp. 7887–7899, 2011.

[13] Z. Guo, X. Zhou, and W.-S. Wang, “Interval oscillation cri-
teria of second order mixed nonlinear impulsive differential
equations with delay,” Abstract and Applied Analysis, vol. 2012,
Article ID 351709, 23 pages, 2012.

[14] W. S. Wang, D. Huang, and X. Li, “Generalized retarded
nonlinear integral inequalities involving iterated integrals and
an application,” Journal of Inequalities and Applications, vol.
2013, article 376, 2013.

[15] T. E. Hull and W. A. J. Luxemburg, “Numerical methods
and existence theorems for ordinary differential equations,”
Numerische Mathematik, vol. 2, no. 1, pp. 30–41, 1960.

[16] D. Willett and J. S. W. Wong, “On the discrete analogues of
some generalizations of Gronwall’s inequality,” Monatshefte für
Mathematik, vol. 69, pp. 362–367, 1965.

[17] S. Sugiyama, “On the stability problems of difference equations,”
Bulletin of Science and Engineering Research Laboratory.Waseda
University, vol. 45, pp. 140–144, 1969.

[18] B.G. Pachpatte and S.G.Deo, “Stability of discrete-time systems
with retarded argument,”UtilitasMathematica, vol. 4, pp. 15–33,
1973.

[19] B. G. Pachpatte, “On discrete inequalities related to Gronwall’s
inequality,” Proceedings of the Indian Academy of Sciences A, vol.
85, no. 1, pp. 26–40, 1977.

[20] B. G. Pachpatte, “Finite difference inequalities and discrete
time control systems,” Indian Journal of Pure and Applied
Mathematics, vol. 9, no. 12, pp. 1282–1290, 1978.

[21] E. Yang, “A new nonlinear discrete inequality and its applica-
tion,” Annals of Differential Equations, vol. 17, no. 3, pp. 261–267,
2001.

[22] B. G. Pachpatte, “On some fundamental integral inequalities
and their discrete analogues,” Journal of Inequalities in Pure and
Applied Mathematics, vol. 2, no. 2, article 15, 2001.

[23] F. W. Meng and W. N. Li, “On some new nonlinear discrete
inequalities and their applications,” Journal of Computational
and Applied Mathematics, vol. 158, no. 2, pp. 407–417, 2003.

[24] W.-S. Cheung and J. Ren, “Discrete non-linear inequalities and
applications to boundary value problems,” Journal ofMathemat-
ical Analysis and Applications, vol. 319, no. 2, pp. 708–724, 2006.

[25] B. G. Pachpatte, Integral and Finite Difference Inequalities and
Applications, vol. 205 of North-Holland Mathematics Studies,
Elsevier Science, Amsterdam, The Netherlands, 2006.

[26] W. Sheng and W. N. Li, “Bounds on certain nonlinear discrete
inequalities,” Journal of Mathematical Inequalities, vol. 2, no. 2,
pp. 279–286, 2008.

[27] Q.-H. Ma and W.-S. Cheung, “Some new nonlinear difference
inequalities and their applications,” Journal of Computational
and Applied Mathematics, vol. 202, no. 2, pp. 339–351, 2007.

[28] Y. J. Cho, S. S. Dragomir, and Y.-H. Kim, “On some integral
inequalities with iterated integrals,” Journal of the Korean
Mathematical Society, vol. 43, no. 3, pp. 563–578, 2006.

[29] W.-S. Wang, “A generalized sum-difference inequality and
applications to partial difference equations,” Advances in Differ-
ence Equations, vol. 2008, Article ID 695495, 12 pages, 2008.

[30] W.-S. Wang, “Estimation on certain nonlinear discrete inequal-
ity and applications to boundary value problem,” Advances in
Difference Equations, vol. 2009, Article ID 708587, 8 pages, 2009.

[31] K.-L. Zheng, S.-M. Zhong, and M. Ye, “Discrete nonlinear
inequalities in time control systems,” in Proceedings of the Inter-
national Conference on Apperceiving Computing and Intelligence
Analysis (ICACIA ’09), pp. 403–406, October 2009.

[32] W.-S. Wang, Z. Li, and W.-S. Cheung, “Some new nonlin-
ear retarded sum-difference inequalities with applications,”
Advances in Difference Equations, vol. 2011, no. 1, article 41, 2011.

[33] H. Zhou, D. Huang, W.-S. Wang, and J.-X. Xu, “Some new dif-
ference inequalities and an application to discrete-time control
systems,” Journal of Applied Mathematics, vol. 2012, Article ID
214609, 14 pages, 2012.

[34] Q. He, T. Sun, and H. Xi, “Dynamics of a family of nonlinear
delay difference equations,” Abstract and Applied Analysis, vol.
2013, Article ID 456530, 4 pages, 2013.

[35] Z.-X. Chen and K. H. Shon, “Fixed points of meromorphic
solutions for some difference equations,” Abstract and Applied
Analysis, vol. 2013, Article ID 496096, 7 pages, 2013.


