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Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex
method and dual simplexmethod. But their computational complexities are exponential, which is not satisfactory for solving large-
scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy
number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar
to that of interior pointmethod used for solving linear programming problems in crisp environment before, but its feasible direction
and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end
condition is involved in linear ranking function.Their correctness and rationality are proved.Moreover, choice of the initial interior
point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and
example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce
iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative
method for solving fuzzy number linear programming problems.

1. Introduction

Linear programming is one of themost widely used decision-
making tools for solving real-word problems. However, real
word situations are characterized by imprecision rather than
exactness. Then, fuzzy linear programming (FLP) has been
developed to treat uncertainty of optimization problems,
such as fuzzy data envelopment analysis and fuzzy network
optimization [1–3]. Since 1970, various attempts have been
made to study FLP problem [4–32]. The concept of FLP
was first proposed by Tanaka et al. [4] in the framework of
the fuzzy decision of Bellman and Zadeh [5]. For solving
FLP, defuzzification methods have been widely studied for
some years and applied to fuzzy control and fuzzy expert
systems. The most common transforming method is ranking
fuzzy numbers method, which is to establish a one-to-one
correspondence between fuzzy numbers and real numbers
according to the definite rule. Then, every fuzzy number
is mapped to a point on the real line. Ranking is a viable

approach for ordering fuzzy numbers. A special version of
ranking function was first proposed by Yager [33].

Then, many researchers have considered various kinds
of FLP problems and have proposed some approaches for
solving these problems [8–28]. Maleki et al., Ganesan and
Veeramani, and Nasseri et al. [8–12] presented simplex meth-
ods for solving fuzzy number linear programming (FNLP)
and linear programming with fuzzy variables (FVLP) using
the concept of comparison of fuzzy numbers and linear
ranking function. This method is similar to the simplex
method that was used for solving linear programming
problems in crisp environment. Nasseri and Khabiri [13]
proposed a revised simplex algorithm for FVLP, which is
useful for sensitivity analysis on FVLP. Furthermore, there is
a revised simplex algorithm for FNLP problems using linear
ranking function proposed [14], which is useful for sensitivity
analysis on FNLP. Nasseri et al. [15] considered a kind of
linear programming which includes the triangular fuzzy
numbers in its parameters and proposed a revised simplex
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algorithm for an extended linear programming problem
which is equivalent to the original fuzzy linear programming
problem. Ebrahimnejad [16] obtained some new results in
FLP and gave a new method to obtain an initial fuzzy
basic feasible solution for solving FLP problems. Nasseri and
Alizadeh [17] thought that finding a basic feasible solution
(BFS) is not straightforward and some works to make the
simplex algorithm start might be needed, so they proposed
a penalty method to solve FVLP problems in which the BFS
is not readily available. Ebrahimnejad et al. [18] proposed
a new method for bounded linear programming with fuzzy
cost coefficients called the bounded fuzzy primal simplex
algorithm. Some scholars [19–25] studied duality in FLP.
Mahdavi-Amiri, Nasseri and Ebrahimnejad presented the
dual simplex algorithm for solving FNLP problem [19, 20]
and the dual simplex algorithm for FVLP problem [21].
Ebrahimnejad et al. [22] introduced another efficientmethod,
primal-dual simplex algorithm, to obtain a fuzzy solution of
FVLP problem. Ebrahimnejad and Nasseri [23] studied dual
simplex algorithm for bounded linear programming with
fuzzy numbers. Ebrahimnejad and Nasseri [24] defined a
new dual problem for the linear programming problem with
trapezoidal fuzzy variables as a linear programming problem
with trapezoidal fuzzy variables and deduced the duality
results such as weak duality, strong duality, and complemen-
tary slackness theorems. Nasseri et al. [25] established the
dual of a linear programming problemwith symmetric trape-
zoidal fuzzy numbers, where the coefficients and variables are
symmetric trapezoidal fuzzy numbers, and developed some
duality results for the fuzzy primal and fuzzy dual problems.
Ebrahimnejad and Nasseri [26] used the complementary
slackness to solve FNLP and FVLP problems without the
need of a simplex tableau. Sigarpich et al. [27] gave a new
method for solving the degeneracy in linear programming
problems with fuzzy variables by a definite linear function for
ranking symmetric triangular fuzzy numbers. Chanas [28]
presented the possibility of the identification of a complete
fuzzy decision in fuzzy linear programming by use of the
parametric programming technique.

Sensitivity analysis is a basic tool for studying per-
turbations in optimization problems. There is considerable
research on sensitivity analysis for somemodels of operations
research and management science such as linear program-
ming and investment analysis. So, many scholars studied the
sensitivity analysis for FVLP [29–31] and FNLP [32]. They
considered the following variations: change in the cost vector,
change in the right-hand side vector, change in the constraint
matrix, addition of a new activity (trapezoidal fuzzy variable),
and addition of a new constraint.

In a word, existing methods solving FNLP problems are
mainly using the concept of comparison of fuzzy numbers
and linear ranking function to change the fuzzy number into
crisp number, using simplex method and its revised method
to solve these FNLPproblems. Because the time complexity of
simplex methods [10, 11] or revised simplex algorithm [14] is
exponential, its iterationswill increase rapidlywith increasing
the number of decision-making variables and constraint
conditions. This paper wants to propose a new interior point
method to improve the efficiency of solving large-scale FNLP

problems, which will revise the feasible direction and step
size as well as terminate condition in common interior point
method by using trapezoidal fuzzy numbers, linear ranking
function, fuzzy vector, and their operations.

This paper is organized as follows. We demonstrate some
preliminaries of fuzzy set theory and the concept of ranking
functions in Section 2.The simplexmethod for solving FNLP
will be reviewed in Section 3. A new interior pointmethod for
solving FNLP will be proposed in Section 4. Example study
and algorithm analysis will be shown in Section 5. Finally, we
will allocate the Section 6 to conclusions.

2. Preliminaries

In this section, we review some necessary concepts of fuzzy
set theory and the ranking function and then present some
definition about fuzzy vectors.

Definition 1 (see [5, 19]). A convex fuzzy set ̃𝐴 on 𝑅 is a fuzzy
number if the following conditions hold.

(i) Its membership function is piecewise continuous.

(ii) There exist three intervals [𝑎, 𝑏], [𝑏, 𝑐], and [𝑐, 𝑑] such
that 𝜇

̃

𝐴

is increasing on [𝑎, 𝑏], equal to 1 on [𝑏, 𝑐],
decreasing on [𝑐, 𝑑], and equal to 0 elsewhere.

Definition 2 (see [5, 19]). Let ̃𝐴 = (𝑎𝐿, 𝑎𝑈, 𝛼, 𝛽) denote the
trapezoidal fuzzy number, where (𝑎𝐿−𝛼, 𝑎𝑈+𝛽) is the support
of ̃𝐴 and [𝑎𝐿, 𝑎𝑈] is its core.

Remark 3. Wedenote the set of all trapezoidal fuzzy numbers
by 𝐹(𝑅).

Theorem 4 (see [5, 19]). If 𝑎 = (𝑎𝐿, 𝑎𝑈, 𝛼, 𝛽) and ̃𝑏 =
(𝑏

𝐿

, 𝑏

𝑈

, 𝛾, 𝜃) are two trapezoidal fuzzy numbers, then

(i) for any 𝑥 > 0, 𝑥 ∈ 𝑅, 𝑥𝑎 = (𝑥𝑎𝐿, 𝑥𝑎𝑈, 𝑥𝛼, 𝑥𝛽),

(ii) for any 𝑥 < 0, 𝑥 ∈ 𝑅, 𝑥𝑎 = (𝑥𝑎𝑈, 𝑥𝑎𝐿, −𝑥𝛽, −𝑥𝛼),

(iii) 𝑎 + ̃𝑏 = (𝑎𝐿 + 𝑏𝐿, 𝑎𝑈 + 𝑏𝑈, 𝛼 + 𝛾, 𝛽 + 𝜃).

Definition 5 (see [34]). The function R : 𝐹(𝑅) → 𝑅 which
maps each fuzzy number into the real line is called a ranking
function, where a natural order exists.

Theorem 6 (see [34]). If 𝑎, ̃𝑏 ∈ 𝐹(𝑅), then

(i) 𝑎 ≥R ̃𝑏 if and only ifR(𝑎) ≥R(̃𝑏);

(ii) 𝑎 >R ̃𝑏 if and only ifR(𝑎) >R(̃𝑏);
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(iii) 𝑎 =R ̃𝑏 if and only ifR(𝑎) =R(̃𝑏);

(iv) 𝑎 ≤R ̃𝑏 if and only ifR(𝑎) ≤R(̃𝑏).

Definition 7 (see [34]). If a ranking functionR such that

R (𝑘𝑎 + ̃𝑏) = 𝑘R (𝑎) +R (̃𝑏) (1)

for any 𝑎, ̃𝑏 ∈ 𝐹(𝑅), 𝑘 ∈ 𝑅, thenR is a linear ranking function
on 𝐹(𝑅).

Theorem 8 (see [33]). The forms of linear ranking functions
on 𝐹(𝑅) are often given as follows:

(i) R(𝑎) = 𝑐
𝐿

𝑎

𝐿

+𝑐

𝑈

𝑎

𝑈

+𝑐

𝛼

𝛼+𝑐

𝛽

𝛽, where 𝑎 = (𝑎𝐿, 𝑎𝑈, 𝛼, 𝛽)
and 𝑐
𝐿

, 𝑐
𝑈

, 𝑐
𝛼

, 𝑐
𝛽

are constants, at least one of which is
nonzero;

(ii) R(𝑎) = (1/2) ∫1
0

(inf 𝑎
𝜆

+ sup 𝑎
𝜆

)𝑑𝜆, that is, reduced to

R (𝑎) =
𝑎

𝐿

+ 𝑎

𝑈

2

+

1

4

(𝛽 − 𝛼) .

(2)

Corollary 9 (see [34]). For any trapezoidal fuzzy number 𝑎,
the relation 𝑎 ≥ ̃0 holds if there exist 𝜀 ≥ 0 and 𝛼 ≥ 0 such that
𝑎 ≥R (−𝜀, 𝜀, 𝛼, 𝛼). One realizes thatR(−𝜀, 𝜀, 𝛼, 𝛼) = 0 (one also
consider that 𝑎 =R ̃0 if and only if R(𝑎) = 0). Thus, without
loss of generality, throughout the paper one lets ̃0 = (0, 0, 0, 0)
as the zero trapezoidal fuzzy number.

Corollary 10 (see [34]). For any two trapezoidal fuzzy num-
bers 𝑎 = (𝑎𝐿, 𝑎𝑈, 𝛼, 𝛽) and ̃𝑏 = (𝑏𝐿, 𝑏𝑈, 𝛾, 𝜃), 𝑎 ≥R ̃𝑏 if and only
if 𝑎𝐿 + 𝑎𝑈 + (1/2)(𝛽 − 𝛼) ≥ 𝑏𝐿 + 𝑏𝑈 + (1/2)(𝜃 − 𝛾).

Definition 11. A fuzzy vector of 𝑛 dimension on 𝐹(𝑅) is an 𝑛-
tuple on 𝐹(𝑅): 𝑐 = (𝑐

1

, 𝑐

2

, . . . , 𝑐

𝑛

), where the fuzzy number 𝑐
𝑖

is called the 𝑖th component of it, 1 ≤ 𝑖 ≤ 𝑛.

Definition 12. Let 𝑐 = (𝑐
1

, 𝑐

2

, . . . , 𝑐

𝑛

) and ̃𝑑 = ( ̃𝑑
1

,

̃

𝑑

2

, . . . ,

̃

𝑑

𝑛

)

be two fuzzy vectors whose sum is defined as

𝑐 +

̃

𝑑 = (𝑐

1

+

̃

𝑑

1

, 𝑐

2

+

̃

𝑑

2

, . . . , 𝑐

𝑛

+

̃

𝑑

𝑛

) . (3)

Remark 13. It is quite easy to get the following rules:

(i) commutativity: 𝑐 + ̃𝑑 = ̃𝑑 + 𝑐;

(ii) associativity: (𝑐 + ̃𝑑) + 𝑒 = 𝑐 + ( ̃𝑑 + 𝑒);

(iii) neutral Element: ̃0 + 𝑐 = 𝑐 + ̃0 = 𝑐.

Definition 14. Let 𝑎 ∈ 𝑅, 𝑐 = (𝑐
1

, 𝑐

2

, . . . , 𝑐

𝑛

) be a fuzzy vector;
scalar multiplication of 𝑐 by 𝑎 is defined as

𝑎𝑐 = (𝑎𝑐

1

, 𝑎𝑐

2

, . . . , 𝑎𝑐

𝑛

) . (4)

Remark 15. It is quite easy to get the following rules:

(i) distributivity over fuzzy vectors: 𝑎(𝑐 + ̃𝑑) = 𝑎𝑐 + 𝑎 ̃𝑑;
(ii) distributivity over number: (𝑎 + 𝑏)𝑐 =R 𝑎𝑐 + 𝑏𝑐.

Definition 16. Let 𝑐 = (𝑐

1

, 𝑐

2

, . . . , 𝑐

𝑛

); ranking function
operation of 𝑐 is defined as

R (𝑐) = (R (𝑐
1

) ,R (𝑐
2

) , . . . ,R (𝑐
𝑛

)) . (5)

Remark 17. It is quite easy to obtain

R (𝑘𝑐 + ̃𝑑) = 𝑘R (𝑐) +R ( ̃𝑑) , (6)

where 𝑐, ̃𝑑 ∈ (𝐹(𝑅))𝑛 and 𝑘 ∈ 𝑅.

Definition 18. Let 𝑎 = (𝑎
1

, 𝑎

2

, . . . , 𝑎

𝑛

), 𝑐 = (𝑐
1

, 𝑐

2

, . . . , 𝑐

𝑛

);
vector multiplication of 𝑐 by 𝑎 is defined as

𝑎𝑐

𝑇

= (𝑎

1

, 𝑎

2

, . . . , 𝑎

𝑛

) (𝑐

1

, 𝑐

2

, . . . , 𝑐

𝑛

)

𝑇

=

𝑛

∑

𝑖=1

𝑎

𝑖

𝑐

𝑖

. (7)

3. Simplex Method for Solving Fuzzy Number
Linear Programming

In this section, we recall the definition of FNLP and the fuzzy
primal simplex algorithm to FNLP.

Definition 19 (see [11, 19]). An FNLP problem is defined as
follows

max 𝑧̃ =R 𝑐
𝑇

𝑥

s.t. 𝐴𝑥 ≤ 𝑏,

𝑥 ≥ 0,

(8)

where 𝑏 ∈ 𝑅𝑚, 𝑥 ∈ 𝑅𝑛, 𝐴 ∈ 𝑅𝑚×𝑛, 𝑐 ∈ (𝐹(𝑅))𝑛, and R is a
linear ranking function.

Remark 20. There is another equivalent form of (8) as
follows:

max 𝑧̃ =R 𝑐
𝑇

𝑥

s.t. 𝐴𝑥 ≤ 𝑏,
(9)

where 𝐴 ∈ 𝑅(𝑚+𝑛)×𝑛 and the other symbols are the same as in
(8).

Algorithm 21 (see [11]). The fuzzy primal simplex algorithm.

Assumption. A basic feasible solution with basis 𝐵 and the
corresponding simplex tableau is at hand.

(i) The basic feasible solution is given by 𝑥
𝐵

= 𝐵

−1

𝑏 and
𝑥

𝑁

= 0. The fuzzy objective value is 𝑧̃ =R (𝑐𝐵𝑥𝐵).
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(ii) Let 𝑧̃
𝑘

− 𝑐

𝑘

= min
𝑗

{𝑧̃

𝑗

− 𝑐

𝑗

}, 𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝐵
𝑖

, 𝑖 =
1, . . . 𝑚. If 𝑧̃

𝑘

−𝑐

𝑘

≥R 0; then stop.The current solution
is optimal; else go to step (iii).

(iii) If 𝑦
𝑘

≤ 0, then stop; the problem is unbounded.
Otherwise determine the index of the variable 𝑥

𝐵

𝑟

leaving the basis as follows:

𝑏

𝑟

𝑦

𝑟𝑘

= min
1≤𝑖≤𝑚

{

𝑏

𝑖

𝑦

𝑖𝑘

| 𝑦

𝑖𝑘

> 0} . (10)

(iv) Pivot on 𝑦
𝑟𝑘

and update the simplex tableau. Go to
step (ii).

Remark 22. Theidea of this algorithm is to start froma vertex;
each step of its iteration is moving to a better vertex until the
optimal solution is found or infeasible solution is proved.

In Algorithm 21, searching adjacent vertexes is just only
along the edge, and each iteration calculation is very small.
But simplex method should go a long way to reach the
optimal solution along the feasible region boundary through
almost each vertex. For the feasible region of the large-
scale application, a problem may have a lot of vertexes, this
“boundary method” will encounter the problem of huge
calculation generating by iteration. In order to reduce the
iterations, alternative method is moving along the “short
path” in internal of the feasible region. However, the usual
interior pointmethod always needs to consider all the feasible
directions in each step of iteration in order to find the best
one.

Fortunately, we know that Karmarkar’s interior point
method [35] is not searching forward along the surface of
the feasible region but directly approaching to the optimal
solution along search directions in the internal of the feasible
region. But thismethod cannot be used directly to solve FNLP
problems. So, in the next section, we will propose a revised
interior point method, which can be used directly to solve
FNLP problem.

4. A Revised Interior Point Method for Solving
Fuzzy Number Linear Programming

In this section, we propose a revised interior-pointmethod to
solve FNLP problem.

4.1. The Idea of Revised Interior Point Method. The basic idea
of revised interior point is first starting from an interior
point 𝑥0 and getting a subsequent point to increase objective
function value along the feasible direction, then starting
from this interior point, and getting a new subsequent
point to make objective function value increase along other
feasible direction. Repeating the previous steps will produce
a sequence of point {𝑥𝑘} which is subject to 𝑐𝑇𝑥𝑘+1 ≥R 𝑐

𝑇

𝑥

𝑘,
where 𝑐𝑇𝑥𝑘+1 ≥R 𝑐

𝑇

𝑥

𝑘 are the operations of ranking function
and fuzzy vector. When the iteration is subjected to termina-
tion criterion, it will stop.The key of this method is choosing
a feasible direction to improve objective function value.

4.2. The Derivation of Computational Formula. Combined
with the slack variable V, the problem (9) is converted into
the following form:

max 𝑧̃ =R 𝑐
𝑇

𝑥

s.t. 𝐴𝑥 + V = 𝑏,

V ≥ 0.

(11)

In the 𝑘th iteration, define V𝑘 ≥ 0, V𝑘 ∈ 𝑅𝑚, subject
to V𝑘 = 𝑏 − 𝐴𝑥𝑘. Then, define the diagonal matrix 𝐷

𝑘

=

diag(1/𝑉𝑘
1

, 1/𝑉

𝑘

2

, . . . , 1/𝑉

𝑘

𝑚

).
Let 𝑤 = 𝐷

𝑘

V, problem (11) is changed as follows:

max 𝑧̃ =R 𝑐
𝑇

𝑥

s.t. 𝐴𝑥 + 𝐷−1
𝑘

𝑤 = 𝑏,

𝑤 ≥ 0.

(12)

Choose the search direction 𝑑 = [𝑑
𝑥

𝑑

𝑤

]

𝑇; then it must be
one solution of the following equation:

𝐷

𝑘

𝐴𝑑

𝑥

+ 𝑑

𝑤

= 0, (13)

𝐴

𝑇

𝐷

𝑘

(𝐷

𝑘

𝐴𝑑

𝑥

+ 𝑑

𝑤

) = 0,

𝑑

𝑥

= −(𝐴

𝑇

𝐷

2

𝑘

𝐴)

−1

𝐴

𝑇

𝐷

𝑘

𝑑

𝑤

.

(14)

Then,

𝑐

𝑇

𝑑

𝑥

=R𝑐
𝑇

[−(𝐴

𝑇

𝐷

2

𝑘

𝐴)

−1

𝐴

𝑇

𝐷

𝑘

𝑑

𝑤

]

=R − [𝐷𝑘𝐴(𝐴
𝑇

𝐷

2

𝑘

𝐴)

−1

𝑐]

𝑇

𝑑

𝑤

.

(15)

To maximize 𝑐𝑇𝑑
𝑥

, that is to say, maximize R(𝑐𝑇𝑑
𝑥

), com-
bined with (6) and (7), then

𝑑

𝑤

= −R (𝐷
𝑘

𝐴(𝐴

𝑇

𝐷

2

𝑘

𝐴)

−1

𝑐) = −𝐷

𝑘

𝐴(𝐴

𝑇

𝐷

2

𝑘

𝐴)

−1

R (𝑐) .

(16)

From (13) and (16), we get

𝑑

𝑥

= (𝐴

𝑇

𝐷

2

𝑘

𝐴)

−1

R (𝑐) . (17)

From 𝑤 = 𝐷
𝑘

V,

𝑑V = 𝐷
−1

𝑘

𝑑

𝑤

= −𝐴(𝐴

𝑇

𝐷

2

𝑘

𝐴)

−1

R (𝑐) = −𝐴𝑑
𝑥

.
(18)
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After getting the search direction 𝑑
𝑥

, we need to determine
the step size. Let

𝑥

𝑘+1

= 𝑥

𝑘

+ 𝜆𝑑

𝑥

,
(19)

where the step size 𝜆 should guarantee that point𝑥𝑘+1 is in the
feasible region; it should satisfy the following inequalities:

𝐴(𝑥

𝑘

+ 𝜆𝑑

𝑥

) < 𝑏,

𝜆𝐴𝑑

𝑥

< 𝑏 − 𝐴𝑥

𝑘

,

−𝜆𝑑V < V
𝑘

.

(20)

Let

𝛼 = min{
𝑉

𝑘

𝑖

−(𝑑V)
𝑖

| (𝑑V)
𝑖

< 0, 𝑖 ∈ (1, 2, . . . , 𝑚)} . (21)

Take

𝜆 = 𝛾𝛼, (22)

where 𝛾 ∈ (0, 1). Then, we can get 𝑥𝑘+1 from 𝑥𝑘 along the
direction 𝑑

𝑥

, where 𝑐𝑇𝑥𝑘+1 >R 𝑐
𝑇

𝑥

𝑘.

4.3. Steps of the Revised Interior Point Algorithm. From the
idea of revised interior point method and the derivation
of calculation formula, steps of the revised interior point
algorithm to solve model (9) are shown as follows.

Step 1. Give an initial interior point 𝑥0, a safety factor
parameter 𝛾 ∈ (0, 1), accuracy parameter 𝜖 > 0, and iteration
𝑘 = 0.

Step 2. Compute

𝑉

𝑘

= 𝑏 − 𝐴𝑥

𝑘

.
(23)

Step 3. Set the diagonal matrix

𝐷

𝑘

= diag( 1
𝑉

𝑘

1

,

1

𝑉

𝑘

2

, . . . ,

1

𝑉

𝑘

𝑚

) . (24)

Step 4. Using the vector multiplication of fuzzy vectors (7),
compute

̃

𝑑

𝑥

= (𝐴

𝑇

𝐷

2

𝑘

𝐴)

−1

⋅ 𝑐;
(25)

then combined with (6), (5) and (2), the feasible direction is

R ( ̃𝑑
𝑥

) = (𝐴

𝑇

𝐷

2

𝑘

𝐴)

−1

R (𝑐) . (26)

Step 5. Compute the vector

𝑑

𝑉

= −𝐴 ⋅R ( ̃𝑑
𝑥

) . (27)

Step 6. Let

𝜆 = 𝛾 ⋅min{
𝑉

𝑘

𝑖

−(𝑑

𝑉

)

𝑖

| (𝑑

𝑉

)

𝑖

< 0, 𝑖 ∈ (1, 2, . . . , 𝑚)} . (28)

Step 7. Compute the next point:

𝑥

𝑘+1

= 𝑥

𝑘

+ 𝜆 ⋅R ( ̃𝑑
𝑥

) . (29)

Step 8. Using the vector multiplication of fuzzy vec-
tors (7) and ranking function (2), compare R(𝑐𝑇𝑥𝑘+1 −

𝑐

𝑇

𝑥

𝑘

)/R(𝑐𝑇𝑥𝑘) with 𝜖. If R(𝑐𝑇𝑥𝑘+1 − 𝑐𝑇𝑥𝑘)/R(𝑐𝑇𝑥𝑘) < 𝜖,
then algorithm terminates and 𝑥𝑘+1 is the optimal solution;
else 𝑘 := 𝑘 + 1, and go to Step 2.

4.4. Choice of the Initial Interior Point. Generally, set 𝑥0 =
(‖𝑏‖/‖𝑅(𝐴𝑐)‖) ⋅ 𝑅(𝑐) to be the initial interior point. And if
𝑉

0

= 𝑏 − 𝐴𝑥

0

> 0, then go to Step 2 in Section 4.3; other-
wise formulate a new fuzzy number linear programming as
follows:

max 𝑧̃ =R 𝑐
𝑇

𝑥 +

̃

𝑀𝑥

𝑎

s.t. 𝐴𝑥 − 𝑥
𝑎

𝑒 ≤ 𝑏,

(30)

where ̃𝑀>R ̃0 is a big fuzzy number, 𝑒 = (1, 1, . . . , 1)𝑇 and 𝑥
𝑎

is artificial variable.
And if 𝑥

𝑎

0

> |min{(V
𝑖

0

) | 𝑖 = 1, . . . , 𝑚}|, then (𝑥0, 𝑥0
𝑎

)

must be the interior point of (30). Now, the problem (30) can
be solved by the revised interior point method.

If 𝑥𝑘
𝑎

< 0 in the 𝑘th iteration, stop solving the problem
(30) and set 𝑥𝑘 to be the initial interior point of the problem
(9).

If there is the optimal solution of problem (30), and 𝑥𝑘
𝑎

>

0, then the problem (9) is not feasible.

5. Algorithm Analysis and Example Study

In this section, first we analyze the algorithm. Then, an
example in the practical production is given. At last, we
analyze some factors influencing the results of this method
through the given example.

5.1. Algorithm Analysis. The time complexity of simplex
methods [10, 11] or revised simplex algorithm [14] is expo-
nential. Generally speaking, the simplex method has the
following shortcomings.

(i) Iterations are rising rapidly as the number of planning
variables and constraints increasing.

(ii) The simplex method is terminated in optimal basis of
original and dual programs. Although it has reached
optimal solution in the degenerate case, it often needs
to iterate the basis many times in order to prove that
it is optimal.

As we know, interior point methods (IPMs) are the most
effectivemethods for solving a large-scale linear optimization
problem. Since the creative work of Karmarkar [35], many
researchers have proposed and analyzed various IPMs for
LP and a large amount of results have been reported.
And Karmarkar’s IPM has a polynomial time complexity
and it approaches directly the optimal solution from the
feasible region through the internal. Because the iteration of
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Table 1: The relationship among product demand, production capacity, and pure profit.

Product Daily demand
Manual system Machine system

Production capacity Pure profit Production capacity Pure profit
Shift 1 Shift 2 Shift 1 Shift 2

1 5 3 (8, 10, 2, 6) (10, 12, 1, 17) 4 (6, 8, 1, 5) (9, 11, 1, 5)

2 10 5 (3, 5, 1, 5) (4, 6, 2, 6) 7.5 (2, 4, 2, 6) (4, 7, 1, 3)

Table 2: The interior point value and the corresponding objective function value of each iteration.

Interior point value Objective function value
1 [1.7867 2.9185 1.8563 0.0866 0.2020 0.0878 0.7999 7.24]

𝑇 (81.9560 119.1517 17.6510 98.1049)
2 [1.8604 2.9674 1.8674 0.0432 0.1220 0.0463 0.6698 7.4085]

𝑇 (82.4542 119.8362 17.5584 98.2900)
3 [1.9628 2.9964 1.7165 0.0023 0.0369 0.0023 0.7878 7.4918]

𝑇 (82.6160 120.0960 17.7497 98.7180)
4 [1.9975 2.9984 1.6701 0.0019 0.0022 0.0019 0.8322 7.4949]

𝑇 (82.6559 120.1490 17.8308 98.8179)
5 [1.9980 2.9995 1.6694 0.0007 0.0017 0.0008 0.8314 7.4984]

𝑇 (82.6633 120.1615 17.8300 98.8263)

Karmarkar’s interior point algorithm is less changing as the
number of planning variables and constraints increases, it
is more outstanding to solve the large-scale FNLP problem
by using the revised interior point method proposed in this
paper.

5.2. Example Study

Question. Suppose a factory produces two products rep-
resenting with 1 and 2; they are made by manual system
and machine system in two shift works a day. The detailed
relationship between production capacity and pure profit
is shown in Table 1. The daily demand of users for the
products 1 and 2 is 5 and 10, respectively. So, how to arrange
production to get the maximum pure profit and meet users’
requirements?

Remark 23. In Table 1, the measure unit of daily demand is
ton, the measure unit of production capacity is tons per shift,
and the measure unit of pure profit is thousand dollars per
ton.

Remark 24. In Table 1, the pure profit of each product in each
shift is fuzzy. If its pure profit is about 10 after investigation,
then it may be presented as a trapezoidal fuzzy number, that
is (8, 10, 2, 6).

Solution. (i) Let

𝑥

1

: the output of product 1 in shift 1 produced bymanual
system;

𝑥

2

: the output of product 1 in shift 2 produced bymanual
system;

𝑥

3

: the output of product 2 in shift 1 produced bymanual
system;

𝑥

4

: the output of product 2 in shift 2 produced bymanual
system;

𝑥

5

: the output of product 1 in shift 1 produced by
machine system;

𝑥

6

: the output of product 1 in shift 2 produced by
machine system;

𝑥

7

: the output of product 2 in shift 1 produced by
machine system;

𝑥

8

: the output of product 2 in shift 2 produced by
machine system.

(ii) Now an FNLP model is established as follows:

max 𝑧̃ =R (8, 10, 2, 6) 𝑥1 + (10, 12, 1, 17) 𝑥2 + (3, 5, 1, 5) 𝑥3

+ (4, 6, 2, 6) 𝑥

4

+ (6, 8, 1, 5) 𝑥

5

+ (9, 11, 1, 5) 𝑥

6

+ (2, 4, 2, 6) 𝑥

7

+ (4, 7, 1, 3) 𝑥

8

s.t. 𝑥
1

+ 𝑥

2

+ 𝑥

5

+ 𝑥

6

≤ 5

𝑥

3

+ 𝑥

4

+ 𝑥

7

+ 𝑥

8

≤ 10

𝑥

1

≤ 3

𝑥

2

≤ 3

𝑥

3

≤ 5

𝑥

4

≤ 5

𝑥

5

≤ 4

𝑥

6

≤ 4

𝑥

7

≤ 7.5

𝑥

8

≤ 7.5

5𝑥

1

+ 3𝑥

3

≤ 15

5𝑥

2

+ 3𝑥

4

≤ 15

15𝑥

5

+ 8𝑥

7

≤ 60

15𝑥

6

+ 8𝑥

8

≤ 60

𝑥

𝑖

≥ 0, 𝑖 = 1, 2, . . . , 8.

(31)
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Table 3:The influence of the safety factor parameter 𝛾 on iterations
(𝜖 = 0.1, 𝑥0 = [1 1 1 1 1 1 1 5]𝑇).

Parameter 𝛾 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
Iterations 𝐾 75 40 27 20 16 13 11 10 9 9

Table 4:The influence of the accuracy parameter 𝜖 on iterations (𝛾 =
0.5, 𝑥0 = [1 1 1 1 1 1 1 5]𝑇).

Parameter 𝜖 0.9 0.5 0.1 0.01 0.005 0.001
Iterations 𝐾 9 10 13 16 17 19

Remark 25. These inequalities 5𝑥
1

+ 3𝑥

3

≤ 15, 5𝑥
2

+ 3𝑥

4

≤

15, 15𝑥
5

+8𝑥

7

≤ 60, and 15𝑥
6

+8𝑥

8

≤ 60 are simplified from

𝑥

1

/3 + 𝑥

3

/5 ≤ 1, 𝑥
2

/3 + 𝑥

4

/5 ≤ 1, 𝑥
5

/4 + 𝑥

7

/7.5 ≤ 1, and
𝑥

6

/4 + 𝑥

8

/7.5 ≤ 1, respectively, which is convenient for the
following computation.

(iii) Then, solve the FNLP problem (31). If using simple
method, it is complicated. So, we adopt the revised interior
point method proposed in Section 4.3.

Step 1. Given 𝜖 = 0.1, 𝑥0 = [1.7 2.9 1.9 0.1 0.2 0.1 0.7
7.1]

𝑇 and 𝛾 = 0.95, 𝑘 = 0.

Step 2. Compute 𝑉𝑘 = 𝑏 − 𝐴𝑥𝑘, 𝑘 = 0, then

𝑉

0

= [0.1 0.2 1.3 0.1 3.1 4.9 3.8 3.9 74.3 67.9 0.8 0.2 51.4 1.7 1.7 2.9 1.9 0.1 0.2 0.1 0.7 7.1]

𝑇

.
(32)

Step 3. Set the diagonal matrix 𝐷
𝑘

= diag(1/𝑉𝑘
1

, 1/𝑉

𝑘

2

, . . . ,

1/𝑉

𝑘

𝑚

), 𝑘 = 0, then

𝐷

0

= diag [ 10 5 0.7692 10 0.3226 0.2041 0.2632 0.2564 0.0135 0.0147 1.25 5 0.0195 0.5882

0.5882 0.3448 0.5263 10 5 10 1.4286 0.1408 ] .

(33)

Step 4. Compute ̃𝑑
𝑥

= (𝐴

𝑇

𝐷

2

𝑘

𝐴)

−1

⋅ 𝑐, 𝑘 = 0, then

̃

𝑑

𝑥

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

(0.9980 1.3532 0.2363 1.1384)

(0.0016 0.0021 0.0004 0.0018)

(−2.4963 − 1.8227 2.1001 0.4359)

(−0.0158 − 0.0116 0.0133 0.0028)

(−0.1704 − 0.1244 0.1433 0.0297)

(−1.1411 − 0.8332 0.9600 0.1992)

(−2.0983 − 1.5321 1.7652 0.3664)

(3.4931 4.7841 0.8353 4.0247)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (34)

Then combined with (5) and (2), the feasible direction is

R ( ̃𝑑
𝑥

) = [1.40113 0.0022 − 2.57555 − 0.01633

−0.1758 − 1.17735 − 2.1649 4.93595]

𝑇

.

(35)

Step 5. Compute the vector 𝑑
𝑉

= −𝐴 ⋅R( ̃𝑑
𝑥

), 𝑘 = 0; then

𝑑

𝑉

= [−0.0726 −0.1531 −0.0726 −0.0155 0.0366 0.0112 −0.0017 0.0102 −0.0837 −0.1172 −0.2532

−0.0439 −0.6945 −0.7841 0.0726 0.0155 −0.0366 −0.0112 0.0017 −0.0102 0.0837 0.1172 ]

𝑇

.

(36)

Step 6. Let 𝜆 = 𝛾 ⋅ min{𝑉𝑘
𝑖

/[−(𝑑

𝑉

)

𝑖

] | (𝑑

𝑉

)

𝑖

< 0, 𝑖 ∈

(1, 2, . . . , 𝑚)}, 𝑘 = 0; then step size 𝜆 = 1.1944.

Step 7. Compute 𝑥𝑘+1 = 𝑥𝑘 + 𝜆 ⋅R( ̃𝑑
𝑥

), 𝑘 = 0; then

𝑥

1

=
[1.7867 2.9185 1.8563 0.0866 0.2020 0.0878 0.7999 7.24]

𝑇

.

(37)

Step 8. ComputeR(𝑐𝑇𝑥𝑘+1 − 𝑐𝑇𝑥𝑘)/R(𝑐𝑇𝑥𝑘) = 4.2345 > 𝜖 =
0.1; then 𝑘 = 0 + 1 = 1 and go to Step 2. Repeat the similar
calculation until R(𝑐𝑇𝑥𝑘+1 − 𝑐𝑇𝑥𝑘)/R(𝑐𝑇𝑥𝑘) < 𝜖 = 0.1, and
get the results.

Above all, the number of iteration is 5 and the results are
listed in Table 2.

The optimal solution is [1.9980 2.9995 1.6694 0.0007
0.0017 0.0008 0.8314 7.4984]𝑇 and the optimal fuzzy value
of the objective function is (82.6633 120.1615 17.8300
98.8263). Then, the maximum pure profit is about
R(82.6633 120.1615 17.8300 98.8263) = 121.661475 tho-
usand dollars.

5.3. Analysis of Factors Influencing This Method Results.
Factors influencing the results of this method are mainly
safety factor parameter 𝛾, accuracy parameter 𝜖, and initial
interior point 𝑥0. Take model (31) as an example.

(i) Table 3 focuses on the safety factor parameter 𝛾,
where the values of accuracy parameter 𝜖 and initial



8 Journal of Applied Mathematics

Table 5: The influence of the initial interior point 𝑥0 on iterations (𝛾 = 0.5, 𝜖 = 0.01).

Initial interior point Iterations 𝐾 Initial interior point Iterations𝐾
[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

𝑇 33 [1 1 1 1 1 1 1 4]

𝑇 16
[1 0.5 0.1 0.1 0.1 0.1 0.1 0.1]

𝑇 31 [1 1.9 2 1 0.7 1.1 1.9 4]

𝑇 15
[1 1 0.1 0.1 0.1 0.1 0.1 1]

𝑇 26 [1.1 2.5 2.2 0.4 0.5 0.6 1.1 5]

𝑇 14
[1 0.5 0.5 0.5 0.5 0.5 0.5 0.5]

𝑇 21 [1.4 2.7 2.2 0.2 0.3 0.3 0.8 6.6]

𝑇 13
[1 1 0.5 0.5 0.5 0.5 0.5 0.5]

𝑇 20 [1.5 2.7 2 0.1 0.3 0.2 0.8 6.7]

𝑇 13
[1 1 0.5 0.5 0.5 0.5 1 1]

𝑇 19 [1.6 2.8 2.1 0.1 0.2 0.2 0.6 7]

𝑇 12
[1 1 1 1 1 1 1 1]

𝑇 18 [1.6 2.8 2 0.1 0.2 0.2 0.7 6.9]

𝑇 12
[1 1 1 1 1 1 1 2]

𝑇 17 [1.7 2.9 1.9 0.1 0.2 0.1 0.7 7.1]

𝑇 11
[1 1 1 1 1 1 1 3]

𝑇 16

Table 6:The influence of the accuracy parameter 𝜖 and safety factor
parameter 𝛾 on iterations (𝑥0 = [1 1 1 1 1 1 1 5]𝑇).

Parameter 𝛾 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Iterations 𝐾
𝜖 = 0.1 52 29 20 16 13 11 9 8 8 7
𝜖 = 0.01 75 40 27 20 16 13 11 10 9 9
𝜖 = 0.001 97 50 33 25 19 16 13 12 11 11

interior point 𝑥0 are fixed. All test problems show
that the selection of a safety factor parameter plays
a significant role in the fast convergence. We can
see that the algorithm converges to the near-optimal
solutions quickly as the safety factor parameter is
increasing.

(ii) Table 4 focuses on the accuracy parameter 𝜖, where
the values of safety factor parameter 𝛾 and initial
interior point 𝑥0 are fixed. All test problems show
that the selection of accuracy parameter plays a
critical role in the fast convergence. We can see that
the algorithm converges slowly to the near-optimal
solutions as the safety factor parameter is decreasing.
Even so, the final result is more accurate. The value of
𝜖 generally depends on the actual need.Therefore, this
method can adjust precision to meet the requirement
according to the actual need.

(iii) Table 5 focuses on the initial interior point 𝑥0, where
the values of safety factor parameter 𝛾 and accuracy
parameter 𝜖 are fixed. All test problems show that
the selection of an initial interior solution plays a
significant role in the fast convergence. We can see
that the algorithm converges to the near-optimal
solutions quickly as the initial interior point is more
and more close to the optimal solution. That is to say,
the iteration is more and more small and tends to be
a constant.

(iv) Table 6 focuses on the safety factor parameter 𝛾 and
accuracy parameter 𝜖, where the values of initial inte-
rior point 𝑥0 is fixed.We can see that the iterations are
smaller as the values of the accuracy parameter and
safety factor parameter are increasing; the influence of
safety factor parameter ismore obvious than accuracy
parameter to the iterations.

6. Conclusions

A new interior point method is presented to solve FNLP
problems using linear ranking function in this paper. Com-
pared with simplex method or revised simplex algorithm,
this method is more outstanding in solving the large scale of
the FNLP problem, for it has a polynomial time complexity.
And some factors influencing the results of this method
are analyzed. The result shows that proper safety factor
parameter, accuracy parameter, and initial interior point of
this method may reduce iterations and they can be selected
easily according to the actual needs. Although a general
method to select the initial point has been given in this
paper, it is not feasible in some cases. For example, under
the condition 𝑉0 = 𝑏 − 𝐴𝑥0 > 0, the matrix 𝐴𝑇𝐷2

𝑘

𝐴

may be singular and not reversible, then the search direction
cannot be obtained, thus the algorithm cannot be performed.
Therefore, futureworkmayput forward an applicable broader
method for the revised initial interior point.
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