
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 767042, 10 pages
http://dx.doi.org/10.1155/2013/767042

Research Article
Parallel RFSAI-BFGS Preconditioners for
Large Symmetric Eigenproblems

L. Bergamaschi1 and A. Martínez2

1 Department of Civil, Environmental, and Architectural Engineering, University of Padua, Via Trieste 63, 35100 Padova, Italy
2 Department of Mathematics, University of Padua, Via Trieste 63, 35100 Padova, Italy

Correspondence should be addressed to L. Bergamaschi; berga@dmsa.unipd.it

Received 9 April 2013; Revised 18 July 2013; Accepted 1 August 2013

Academic Editor: D. R. Sahu

Copyright © 2013 L. Bergamaschi and A. Mart́ınez. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We propose a parallel preconditioner for the Newton method in the computation of the leftmost eigenpairs of large and sparse
symmetric positive definite matrices. A sequence of preconditioners starting from an enhanced approximate inverse RFSAI
(Bergamaschi and Mart́ınez, 2012) and enriched by a BFGS-like update formula is proposed to accelerate the preconditioned
conjugate gradient solution of the linearized Newton system to solve 𝐴u = 𝑞(u)u, 𝑞(u) being the Rayleigh quotient. In a previous
work (Bergamaschi and Mart́ınez, 2013) the sequence of preconditioned Jacobians is proven to remain close to the identity matrix
if the initial preconditioned Jacobian is so. Numerical results onto matrices arising from various realistic problems with size up to
1.5 million unknowns account for the efficiency and the scalability of the proposed low rank update of the RFSAI preconditioner.
The overall RFSAI-BFGS preconditioned Newton algorithm has shown comparable efficiencies with a well-established eigenvalue
solver on all the test problems.

1. Introduction

The computation of the 𝑝 ≪ 𝑛 leftmost eigenpairs of a
symmetric positive definite (SPD) matrix 𝐴 is a common
task in many scientific applications. Typical examples are
offered by the vibrational analysis of mechanical structures
[1]: the spectral superposition approach for the solution of
large sets of 1st order linear differential equations [2] and
the approximation of the generalized inverse of the graph
Laplacian [3], to mention a few.

We denote

𝜆
1
< 𝜆
2
< ⋅ ⋅ ⋅ < 𝜆

𝑝
< ⋅ ⋅ ⋅ < 𝜆

𝑛 (1)

as the eigenvalues of 𝐴 and

k
1
, k
2
, . . . , k

𝑝
, . . . , k

𝑛 (2)

as the corresponding (normalized) eigenvectors.
In this paper, we propose to use the Newton method in

the unit sphere [4, 5] or Newton-Grassman method, which

constructs a sequence of vectors {u
𝑘
} by solving the linear

systems

(𝐼 − u
𝑘
u⊤
𝑘
) (𝐴 − 𝜃

𝑘
𝐼) (𝐼 − u

𝑘
u⊤
𝑘
) s = − (𝐴u

𝑘
− 𝜃
𝑘
u
𝑘
) ,

𝜃
𝑘
=
u⊤
𝑘
𝐴u
𝑘

u⊤
𝑘
u
𝑘

(3)

ensuring that the correction s be orthogonal to u
𝑘
. Then the

next approximation is set as u
𝑘+1

= t‖t‖−1, where t = u
𝑘
+ s.

Linear system (3) is shown to be better conditioned than the
one with 𝐴 − 𝜃

𝑘
𝐼. For SPD matrices, this scheme is shown

to converge cubically to the wanted eigenvector, provided
that the system (3) is solved exactly. The same linear system
represents the correction equation in the well-known Jacobi-
Davidson method [6], which in its turn can be viewed as an
accelerated inexact Newton method [7]. When 𝐴 is SPD and
the leftmost eigenpairs are being sought, it has been proved
in [8] that the preconditioned conjugate gradient (PCG)
method can be employed in the solution of the correction
equation.

2 Journal of Applied Mathematics

Starting from the findings in [9–11] themain contribution
of this paper is the development of a sequence of precondi-
tioners {𝑃

𝑘
} for the PCG solution of the Newton correction

equation (3), based on the BFGS update of a given parallel
initial preconditioner for the coefficient matrix 𝐴. A similar
approach has been used in [12] where a rank-two modifica-
tion of a given preconditioner is used to acceleratedMINRES
in the framework of the inexact Rayleigh quotient iteration.
Updating (cheaply) a given preconditioner to obtain a new
preconditioner for a slightly changed linear system is also
common in optimization problems. See for example, [13–15].

The initial Newton vector is obtained after a small
number of iterations of a conjugate gradient procedure for the
minimization of the Rayleigh quotient (DACG, [16]). As the
initial preconditioner we choose RFSAI [17], which is built
by recursively applying the (factorized sparse approximate
inverse) FSAI preconditioner developed in [18]. We elected
a factorized approximate inverse preconditioner (AIP) since
it is more naturally parallelizable than preconditioners based
on ILU factorizations. Moreover, factorized variants of AIP
provide better approximations to 𝐴

−1 for the same amount
of storage than nonfactorized ones, because they can express
denser matrices than the total number of nonzeros in their
factors [19]. The RFSAI formulation enhances this charac-
teristic, since the final preconditioner is implicitly built by a
product of four or more triangular factors.

The combined DACG-Newton algorithm is used in the
approximation of 𝑝 = 10 eigenpairs of a number of matrices
arising from various realistic applications of size up to 1.5 ×

10
6 and number of nonzeros up to 6 × 10

7. Numerical results
show that, in the solution of the correction equation, the
PCG method preconditioned by BFGS displays much faster
convergence than the same method when the preconditioner
is kept fixed during the Newton process, in every test case.
Moreover, the proposed approach is shown to outperform the
pure DACG method.

2. BFGS Sequence of Preconditioners

2.1. Choice of the Initial Preconditioner. Following the deve-
lopments in [17], we propose an implicit enlargement of the
sparsity pattern using a banded target matrix 𝐵; the lower
factor of the FSAI preconditioner is obtained by minimizing
‖𝐵 − 𝐺𝐿‖

𝐹
over the set of matrices 𝐺 having a fixed sparsity

pattern. Denoting with 𝐺out the result of this minimiza-
tion, we compute explicitly the preconditioned matrix 𝑆 =

𝐺out𝐴𝐺
𝑇

out and then evaluate a second FSAI factor 𝐺in for 𝑆.
Thus, the final preconditioner can be written as the product
𝐺
𝑇

out𝐺
𝑇

in𝐺in𝐺out. This RFSAI—recursive FSAI—procedure
can be iterated a number of times to yield a preconditioner
written as a product of several triangular factors. This pre-
conditioner has shown its efficiency in the acceleration of the
PCG onto realistic geomechanical problems of very large size
[17].

We denote FSAIout as the procedure which computes the
𝐺out factor by minimizing ‖𝐵 − 𝐺𝐿‖, where 𝐵 is an arbitrary
banded matrix. FSAIout depends on the nband parameter
in addition to the usual FSAI parameters: 𝛿out prefiltration

threshold, 𝑑out power of 𝐴 defining the sparsity pattern, and
𝜀out postfiltration parameter.

The second preconditioner factor, 𝐺in, is the result of
the FSAI procedure applied to the whole product matrix
𝐺out𝐴𝐺

𝑇

out, with parameters 𝛿in, 𝑑in, and 𝜀in. The steps to
obtain the final RFSAI preconditioner are summarized in
Algorithm 1.

Following the idea described in [10], we propose a
sequence of preconditioners for the Newton systems using
the BFGS rank-two update. To precondition the initial New-
ton system as follows:

𝐽
0
s
0
= −r, (4)

where

𝐽
0
= (𝐼 − u

0
u⊤
0
) (𝐴 − 𝜃

0
𝐼) (𝐼 − u

0
u⊤
0
) ,

r = − (𝐴u
0
− 𝜃
0
u
0
) ,

𝜃
0
= u⊤
0
𝐴u
0
.

(5)

We choose to use a projected RFSAI preconditioner,𝑃
0
= (𝐼−

u
0
u⊤
0
)𝑃̂
0
(𝐼 − u

0
u⊤
0
) with 𝑃̂

0
= 𝑊
𝑇
𝑊 and𝑊 = 𝐺in𝐺out.

2.2. Update of Initial Preconditioner by BFGS-Like Rank-Two
Corrections. A sequence of projected preconditioners for the
subsequent linear systems 𝐽

𝑘+1
s
𝑘+1

= −r
𝑘+1

may be defined
by

𝑃̂
𝑘+1

= −
ss⊤

s⊤r
+ (𝐼 −

sr⊤

s⊤r
) 𝑃̂
𝑘
(𝐼 −

rs⊤

s⊤r
) , (6)

where s ≡ s
𝑘
the solution of the previous correction equation

and r ≡ r
𝑘
. In view of the cubic convergence of the Newton

process, we used the residual −r
𝑘
instead of y

𝑘
= r
𝑘+1

− r
𝑘
.

Theorem 3 of Section 3 will state that the preconditioner
defined in (6) is SPD if 𝑃̂

𝑘
is so.

3. Theoretical Analysis of the Preconditioner

3.1. Finding the Smallest Eigenpair. We recall in this section
the main theoretical results regarding the sequence of pre-
conditioners previously defined.Differently from the classical
papers which study BFGS convergence properties, here our
Jacobian matrix 𝐽(u) = (𝐼 − uu⊤)(𝐴 − 𝑞(u)𝐼)(𝐼 − uu⊤)
is singular whatever u, in particular it is singular when u
is equal to the exact eigenvector. The theoretical analysis
of the “goodness” of the preconditioner will be, therefore,
completely different, though obtaining similar results, than
that proposed, for example, in [10, 20]. In the following
developments we will indicate as k

1
the exact eigenvector

corresponding to the smallest exact eigenvalue 𝜆
1
. The error

vector at step 𝑘 is denoted by e
𝑘
= u
𝑘
− k
1
, while the error in

the eigenvalue approximation is 𝜀
𝑘
= 𝜃
𝑘
− 𝜆
1
(>0). It is easily

proved that there is a constant𝑀 independent of 𝑘 such that

𝜀
𝑘
≤ 𝑀

󵄩󵄩󵄩󵄩e𝑘
󵄩󵄩󵄩󵄩

2

. (7)

Remark 1. At first sight the Jacobian matrix in the correction
equation is singular, but this does not matter since the PCG

Journal of Applied Mathematics 3

INPUT: nband, 𝛿out , 𝑑out , 𝜀out , 𝛿in , 𝑑in , 𝜀in
Compute the first lower triangular factor: 𝐺out = FSAIout (𝐴, nband, 𝛿out , 𝑑out , 𝜀out)

Compute the product: 𝐴(1) = 𝐺out𝐴𝐺
𝑇

out
Compute the second lower triangular factor: 𝐺in = FSAI (𝐴(1), 𝛿in , 𝑑in , 𝜀in)

Algorithm 1: RFSAI computation.

algorithm is run within the subspace of vectors orthogonal to
u
𝑘
(in fact also r⊤u

𝑘
= 0). Thus, notion of positive definite-

ness, eigenvalue distribution, condition number, norms, and
so forth, apply as usual but with respect to matrices restricted
to this subspace.

The following lemmawill bound the extremal eigenvalues
of 𝐽
𝑘
in the subspace orthogonal to u

𝑘
.

Lemma 2. There is a positive number 𝛿 such that if ‖e
𝑘
‖ < 𝛿

then

𝐽
𝑘
= (𝐼 − u

𝑘
u⊤
𝑘
) (𝐴 − 𝜃

𝑘
𝐼) (𝐼 − u

𝑘
u⊤
𝑘
) (8)

is SPD in the subspace orthogonal to u
𝑘
. Moreover the following

bounds hold:

𝜆
2
− 𝜆
1

2
< z⊤𝐽
𝑘
z < 𝜆
𝑛

(9)

for every unit norm vector z orthogonal to u
𝑘
.

Proof. See [21].

The previous lemma allows us to prove that the precon-
ditioner defined in (6) is SPD, as stated in the following
theorem.

Theorem 3. If the correction equation is solved exactly, then
any matrix 𝑃̂

𝑘
defined by (6) is SPD and hence 𝑃

𝑘
is SPD in the

subspace orthogonal to u
𝑘
.

Proof. See [21].

Let us define the difference between the preconditioned
Jacobian and the identity matrix as

𝐸
𝑘
= 𝐼 − 𝐽

1/2

𝑘
𝑃
𝑘
𝐽
1/2

𝑘
. (10)

Since by definitionwehave 𝐽
𝑘
u
𝑘
= 0 thenu

𝑘
is the eigenvector

of 𝐽
𝑘
corresponding to the zero eigenvalue. Hence, since also

𝐽
1/2

𝑘
u
𝑘
= 0 the error 𝐸

𝑘
can also be defined as

𝐸
𝑘
= 𝐼 − 𝐽

1/2

𝑘
𝑃
𝑘
𝐽
1/2

𝑘

= 𝐼 − 𝐽
1/2

𝑘
(𝐼 − u

𝑘
u⊤
𝑘
)

× 𝑃̂
𝑘
(𝐼 − u

𝑘
u⊤
𝑘
) 𝐽
1/2

𝑘

= 𝐼 − 𝐽
1/2

𝑘
𝑃̂
𝑘
𝐽
1/2

𝑘
.

(11)

The following technical lemma will bound the norm of 𝑃̂
𝑘
in

terms of that of 𝐸
𝑘
. Being 𝑃̂

𝑘
SPD we can define its norm in

the space orthogonal to u
𝑘
as

󵄩󵄩󵄩󵄩󵄩
𝑃̂
𝑘

󵄩󵄩󵄩󵄩󵄩
= sup

w⊥u𝑘,w ̸= 0

w⊤𝑃̂
𝑘
w

w⊤w
. (12)

Lemma 4. There is a positive number 𝛿 such that if ‖e
𝑘
‖ < 𝛿

then
󵄩󵄩󵄩󵄩󵄩
𝑃̂
𝑘

󵄩󵄩󵄩󵄩󵄩
≤

2

𝜆
2
− 𝜆
1

(1 +
󵄩󵄩󵄩󵄩𝐸𝑘

󵄩󵄩󵄩󵄩) . (13)

Proof. See [21].

The next lemma will relate the norms of the difference s
and of the error vector e

𝑘
.

Lemma 5. There exists a positive number 𝛿 s.t. if ‖e
𝑘
‖ < 𝛿

then
‖s‖ ≤ 3

󵄩󵄩󵄩󵄩e𝑘
󵄩󵄩󵄩󵄩 . (14)

Proof. See [21].

Before statingTheorem 7we need to state as a last prelim-
inary result that also the difference between the square root
of two consecutive Jacobians is bounded in terms of the norm
of the error vector.

Lemma6. Let 𝑆
𝑘
= 𝐽
1/2

𝑘+1
−𝐽
1/2

𝑘
.Then there is a positive number

𝛿 s.t. if ‖e
𝑘
‖ < 𝛿 then

󵄩󵄩󵄩󵄩𝑆𝑘
󵄩󵄩󵄩󵄩 ≤ 𝑐
3
√
󵄩󵄩󵄩󵄩e𝑘

󵄩󵄩󵄩󵄩.
(15)

for a suitable constant 𝑐
3
.

Proof. See [21].

The following theorem will state the main theoretical
result of this Section: the so called bounded deterioration [22]
of the preconditioner at step 𝑘 + 1 with respect to that of step
𝑘. In other words it can be proved that the distance of the
preconditioned matrix from the identity matrix at step 𝑘 + 1

is less or equal than that at step 𝑘 plus a constant that may be
small as desired, depending on the closeness of u

0
to the exact

eigenvector. We report also the proof of this theorem, which
is taken from [21].

Theorem 7. Let 𝛿
0
be such that ‖𝐸

0
‖ < 𝛿
0
, there is a positive

number 𝛿 s.t. if ‖e
0
‖ < 𝛿 then
󵄩󵄩󵄩󵄩𝐸𝑘+1

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝐸𝑘

󵄩󵄩󵄩󵄩 + 𝐾√
󵄩󵄩󵄩󵄩e𝑘

󵄩󵄩󵄩󵄩
(16)

for a suitable constant 𝐾.

4 Journal of Applied Mathematics

Proof. After defining𝑁 = 𝑆
𝑘
𝑃̂
𝑘+1

𝐽
1/2

𝑘+1
+𝐽
1/2

𝑘+1
𝑃̂
𝑘+1

𝑆
𝑘
+𝑆
𝑘
𝑃̂
𝑘+1

𝑆
𝑘
,

we can write

𝐸
𝑘+1

= 𝐼 − 𝐽
1/2

𝑘+1
𝑃̂
𝑘+1

𝐽
1/2

𝑘+1

= 𝐼 − (𝐽
1/2

𝑘
+ 𝑆
𝑘
) 𝑃̂
𝑘+1

(𝐽
1/2

𝑘
+ 𝑆
𝑘
)

= 𝐼 − 𝐽
1/2

𝑘
𝑃̂
𝑘+1

𝐽
1/2

𝑘
− 𝑁

= 𝐼 − 𝐽
1/2

𝑘

ss⊤

s⊤𝐽
𝑘
s
𝐽
1/2

𝑘

− 𝐽
1/2

𝑘
(𝐼 −

ss⊤𝐽
𝑘

s⊤𝐽
𝑘
s
) 𝑃̂
𝑘
(𝐼 −

𝐽
𝑘
ss⊤

s⊤𝐽
𝑘
s
)

× 𝐽
1/2

𝑘
− 𝑁

= 𝐼 −
𝐽
1/2

𝑘
ss⊤𝐽1/2
𝑘

s⊤𝐽
𝑘
s

− (𝐼 −
𝐽
1/2

𝑘
ss⊤𝐽1/2
𝑘

s⊤𝐽
𝑘
s

)𝐽
1/2

𝑘
𝑃̂
𝑘
𝐽
1/2

𝑘

× (𝐼 −
𝐽
1/2

𝑘
ss⊤𝐽1/2
𝑘

s⊤𝐽
𝑘
s

) − 𝑁

= 𝑊 + 𝑊(𝐸
𝑘
− 𝐼)𝑊 + 𝑁 = 𝑊𝐸

𝑘
𝑊 − 𝑁,

(17)

where we set w = 𝐽
1/2

𝑘
s/‖𝐽1/2
𝑘

s‖ and 𝑊 = 𝐼 − ww⊤; 𝑊 is an
orthogonal projector since ‖w‖ = 1. To bound ‖𝑁‖, we will
use Lemmas 4 and 6 as follows:

‖𝑁‖ ≤
2

𝜆
2
− 𝜆
1

(1 +
󵄩󵄩󵄩󵄩𝐸𝑘+1

󵄩󵄩󵄩󵄩)

× (2𝑐
3
√
󵄩󵄩󵄩󵄩e𝑘

󵄩󵄩󵄩󵄩
√𝜆
𝑛
+ 𝑐
2

3
√𝛿√

󵄩󵄩󵄩󵄩e𝑘
󵄩󵄩󵄩󵄩)

= 𝑐
4
(1 +

󵄩󵄩󵄩󵄩𝐸𝑘+1
󵄩󵄩󵄩󵄩)

√
󵄩󵄩󵄩󵄩e𝑘

󵄩󵄩󵄩󵄩.

(18)

Now taking norms in (17) yields

󵄩󵄩󵄩󵄩𝐸𝑘+1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩 + 𝑐
4
(1 +

󵄩󵄩󵄩󵄩𝐸𝑘+1
󵄩󵄩󵄩󵄩)

√
󵄩󵄩󵄩󵄩e𝑘

󵄩󵄩󵄩󵄩,
(19)

which can be rewritten as

󵄩󵄩󵄩󵄩𝐸𝑘+1
󵄩󵄩󵄩󵄩 (1 − 𝑐

4
√
󵄩󵄩󵄩󵄩e𝑘

󵄩󵄩󵄩󵄩) ≤
󵄩󵄩󵄩󵄩𝐸𝑘

󵄩󵄩󵄩󵄩 + 𝑐
4
√
󵄩󵄩󵄩󵄩e𝑘

󵄩󵄩󵄩󵄩. (20)

From (20), we derive a bound for ‖𝐸
𝑘
‖. If √𝛿 < 1/2𝑐

4
then

󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩 ≤ 2

󵄩󵄩󵄩󵄩𝐸𝑘−1
󵄩󵄩󵄩󵄩 + 1

≤ ⋅ ⋅ ⋅ ≤ 2
𝑘 󵄩󵄩󵄩󵄩𝐸0

󵄩󵄩󵄩󵄩 + 2
𝑘
− 1

≤ 2
𝑘
(𝛿
0
+ 1) = 𝑐

5
.

(21)

Again from (20) and using the bound (21) we finally have

󵄩󵄩󵄩󵄩𝐸𝑘−1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩 + 𝑐
4
√
󵄩󵄩󵄩󵄩e𝑘

󵄩󵄩󵄩󵄩

1 − 𝑐
4
√
󵄩󵄩󵄩󵄩e𝑘

󵄩󵄩󵄩󵄩

≤ (
󵄩󵄩󵄩󵄩𝐸𝑘

󵄩󵄩󵄩󵄩 + 𝑐
4
√
󵄩󵄩󵄩󵄩e𝑘

󵄩󵄩󵄩󵄩) ⋅ (1 + 2𝑐
4
√
󵄩󵄩󵄩󵄩e𝑘

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝐸𝑘

󵄩󵄩󵄩󵄩 + 2𝑐
4
√
󵄩󵄩󵄩󵄩e𝑘

󵄩󵄩󵄩󵄩𝑐5 + 𝑐
4
(1 + 2𝑐

4
𝛿)√

󵄩󵄩󵄩󵄩e𝑘
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝐸𝑘

󵄩󵄩󵄩󵄩 + 𝑐
4
(2𝑐
5
+ 1 + 2𝑐

4
𝛿)√

󵄩󵄩󵄩󵄩e𝑘
󵄩󵄩󵄩󵄩.

(22)

Setting𝐾 = 𝑐
4
(2𝑐
5
+ 1 + 2𝑐

4
𝛿) completes the proof.

3.2. Computing Several Eigenpairs. When seeking an eigen-
value different from 𝜆

1
, say 𝜆

𝑗
, the Jacobian matrix changes

as

𝐽
𝑘
= (𝐼 − 𝑄𝑄

⊤
) (𝐴 − 𝜃

𝑘
𝐼) (𝐼 − 𝑄𝑄

⊤
) , (23)

where 𝑄 = [k1 k
2

⋅ ⋅ ⋅ k
𝑗
u
𝑘] is the matrix whose first 𝑗

columns are the previously computed eigenvectors. Analo-
gously, also the preconditioner must be chosen orthogonal to
𝑄 as

𝑃
𝑘+1

= (𝐼 − 𝑄𝑄
⊤
) 𝑃̂
𝑘+1

(𝐼 − 𝑄𝑄
⊤
) . (24)

The theoretical analysis developed in Section 3.1 applies with
small technical variants also in this case since it is readily
proved that 𝐽1/2

𝑘+1
𝑃
𝑘+1

𝐽
1/2

𝑘+1
= 𝐽
1/2

𝑘+1
𝑃̂
𝑘+1

𝐽
1/2

𝑘+1
. The most significant

changes regard the definition of 𝜀
𝑘
= 𝜃
𝑘
−𝜆
𝑗
, e
𝑘
= u
𝑘
−k
𝑗
, and

the statement of Lemma 2 (and the proof of Lemma 4 that
uses its results); namely, the bound for the smallest eigenvalue
of 𝐽
𝑘
which in the general case becomes

z⊤𝐽
𝑘
z >

𝜆
𝑗+1

− 𝜆
𝑗

2

(25)

for every unit norm vector z such that 𝑄⊤z = 0.

4. Implementation

4.1. Choosing an Initial Eigenvector Guess. As mentioned in
Section 1, another important issue in the efficiency of the
Newton approach for eigenvalue computation is represented
by the appropriate choice of the initial guess. We propose
here to perform some preliminary iterations using the DACG
eigensolver [16, 23, 24], which is based on the preconditioned
conjugate gradient (nonlinear) minimization of the Rayleigh
quotient. This method has proven very robust, and not
particularly sensitive to the initial vector, in the computation
of a few eigenpairs of large SPD matrices. Recently in [25],
the DACG method has been compared with the Jacobi-
Davidson method in parallel environments, showing similar
performances when seeking a small number of eigenpairs
(1 ÷ 5).

Journal of Applied Mathematics 5

INPUT: Vector g
𝑙
, scalar products 𝛼

𝑠
= s⊤
𝑠
r
𝑠
, 𝑠 = 0, . . . , 𝑘 − 1.

w = g
𝑙

for 𝑠 := 𝑘 − 1 to 0

(1) 𝑎
𝑠
:= s⊤
𝑠
w/𝛼
𝑠

(2) w := w − 𝑎
𝑠
r
𝑠

end for
𝑐 = 𝑃̂
0
w

for 𝑠 := 0 to 𝑘 − 1

(1) 𝑏 := r⊤
𝑠
c/𝛼
𝑠

(2) c := c − (𝑎
𝑠
+ 𝑏) s

𝑠

end for
z := 𝑄

⊤c
c := c − 𝑄z

Algorithm 2: Computation of c = 𝑃
𝑘
g
𝑙
for the BFGS preconditioner.

4.2. Implementation of the BFGS Preconditioner Update. At a
certain nonlinear iteration level, 𝑘, we need to compute c =

𝑃
𝑘
g
𝑙
, where g

𝑙
is the residual of the linear system at iteration

𝑙. Let us suppose we compute an initial preconditioner 𝑃
0
.

Then, at the initial nonlinear iteration 𝑘 = 0, we simply have
c = 𝑃

0
z
𝑙
. At step 𝑘 + 1 the preconditioner 𝑃̂

𝑘+1
is defined

recursively by (6) while 𝑃
𝑘+1

using (24) can be written as

𝑃
𝑘+1

= (𝐼 − 𝑄𝑄
⊤
) 𝑃̂
𝑘+1

(𝐼 − 𝑄𝑄
⊤
)

= (𝐼 − 𝑄𝑄
⊤
) {(𝐼 −

sr⊤

s⊤r
) 𝑃̂
𝑘

× (𝐼 −
rs⊤

s⊤r
) −

ss⊤

s⊤r
}

× (𝐼 − 𝑄𝑄
⊤
) .

(26)

To compute vector c first we observe that g
𝑙
is orthogonal

to 𝑄 so there is no need to apply matrix 𝐼 − 𝑄𝑄
⊤ on the

right of (26). Application of preconditioner 𝑃̂
𝑘+1

to the vector
g
𝑙
can be performed at the price of 2𝑘 dot products and

2𝑘 daxpys as described in Algorithm 2. The scalar products
𝛼
𝑘
= s⊤
𝑘
r
𝑘
, which appear at the denominator of 𝑃̂

𝑘+1
, can be

computed once and for all before starting the solution of the
(𝑘 + 1)th linear system. Last, the obtained vector c must be
orthogonalized against the columns of𝑄 by a classical Gram-
Schimdt procedure.

4.3. PCG Solution of the Correction Equation. As a Krylov
subspace solver for the correction equation, we chose the
preconditioned conjugate gradient (PCG) method since the
Jacobian 𝐽

𝑘
has been shown to be SPD in the subspace

orthogonal to u
𝑘
. Regarding the implementation of PCG,

we mainly refer to the work [8], where the author shows
that it is possible to solve the linear system in the subspace
orthogonal to u

𝑘
and hence, the projection step needed in the

application of 𝐽
𝑘
can be skipped. Moreover, we adopted the

exit strategy for the linear system solution described in the
previous paper, which allows for stopping the PCG iteration,
in addition to the classical exit test based on a tolerance on the

relative residual and on the maximum number of iterations,
whenever the current solution x

𝑙
satisfies

󵄩󵄩󵄩󵄩r𝑘,𝑙
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴x
𝑙
−
x⊤
𝑙
𝐴x
𝑙

x⊤
𝑙
x
𝑙

x
𝑙

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

< 𝜏 (x⊤
𝑙
𝐴x
𝑙
) , (27)

or when the decrease of ‖r
𝑘,𝑙
‖ is slower than the decrease of

‖g
𝑙
‖, because in this case further iterating does not improve

the accuracy of the eigenvector. Note that this dynamic exit
strategy implicitly defines an inexact Newton method since
the correction equation is not solved “exactly”, that is, up to
machine precision.

We have implemented the PCG method as described
in Algorithm 5.1 of [8] with the obvious difference in
the application of the preconditioner which in this case is
accomplished as described in Algorithm 2.

4.4. Implementation of theDACG-NewtonMethod. TheBFGS
preconditioner defined in Algorithm 2 suffers from twomain
drawbacks, namely, increasing costs of memory for storing
s and r and the increasing cost of preconditioner application
with the iteration index 𝑘. Note that these drawbacks are
common to many iterative schemes, such as sparse (Limited
Memory) Broyden implementations [26], GMRES [27], and
Arnoldi method for eigenvalue problems [28]. If the number
of nonlinear iterations is high the application of BFGS update
may be too costly as compared with the expected reduction
in the iteration number. To this aim we define 𝑘max the
maximum number of rank-two corrections we allow. When
the nonlinear iteration counter 𝑘 is larger than 𝑘max, the
vectors s

𝑖
, r
𝑖
, 𝑖 = 𝑘 − 𝑘max are substituted with the last

computed s
𝑘
, r
𝑘
. Vectors {s

𝑖
, r
𝑖
} are stored in a matrix 𝑉 with

𝑛 rows and 2 × 𝑘max columns.
The implementation of our DACG-Newton method for

computing the leftmost eigenpairs of large SPD matrices is
described in Algorithm 3.

4.5. Parallel Implementation. We have developed a parallel
code which implements the construction and application
inside parallel PCG, of the RFSAI algorithm along with the
BFGS updates.The resulting program is written in Fortran 90

6 Journal of Applied Mathematics

INPUT: Matrix 𝐴;
number of sought eigenpairs 𝑛eig;
tolerance and maximum number of its for the outer iteration: 𝜏, ITMAX;
tolerance for the initial eigenvector guess 𝜏DACG;
tolerance and maximum number of its for the inner iteration: 𝜏PCG.

ITMAXPCG;
parameters for the RFSAI preconditioner,

𝛿out , 𝑑out , 𝜀out, nband, for the 1st FSAI factor and,
𝛿in , 𝑑in , 𝜀in for the 2nd factor;

maximum allowed rank-two update in the BFGS preconditioner: 𝑘max.
𝑄 := [].
Compute 𝑃̂

0
, an RFSAI preconditioner for 𝐴,

for 𝑗 := 1 to 𝑛eig
(1) Choose x

0
such that 𝑄⊤x

0
= 0;

(2) Compute u
0
, an approximation to v

𝑗
by the DACG procedure with initial

vector x
0
, preconditioner 𝑃̂

0
and tolerance 𝜏DACG;

(3) 𝑘 := 0, 𝜃
𝑘
:= u⊤
𝑘
𝐴u
𝑘
;

(4) while 󵄩󵄩󵄩󵄩𝐴u𝑘 − 𝜃
𝑘
u
𝑘

󵄩󵄩󵄩󵄩 > 𝜏𝜃
𝑘
and 𝑘 < IMAX do

(1) 𝑄 := [𝑄 u
𝑘
].

(2) Solve 𝐽
𝑘
s
𝑘
= −r
𝑘
for s
𝑘
⊥ 𝑄 by the PCG method with preconditioner 𝑃

𝑘
and tolerance 𝜏PCG.

(3) u
𝑘+1

:= (u
𝑘
+ s
𝑘
)/

󵄩󵄩󵄩󵄩u𝑘 + s
𝑘

󵄩󵄩󵄩󵄩, 𝜃𝑘+1 = u⊤
𝑘+1

𝐴u
𝑘+1

.
(4) 𝑘
1
= 𝑘MOD 𝑘max; 𝑉 (∗, 2𝑘

1
+ 1) := 𝑠

𝑘
, 𝑉(∗, 2𝑘

1
+ 2) := r

𝑘
.

(5) 𝑘 := 𝑘 + 1

(6) end while
(7) Assume v

𝑗
= u
𝑘
and 𝜆

𝑗
= 𝜃
𝑘
. Set 𝑄 := [𝑄 v

𝑗
]

end for

Algorithm 3: DACG-Newton algorithm.

and exploits the MPI library for exchanging data among the
processors. We use a block row distribution of all matrices,
that is, with complete rows assigned to different processors.
All the matrices are stored in static data structures in CSR
format.

Parallelization of the FSAI preconditioner, which is the
basis of the parallel RFSAI construction, has been performed
and tested for example, in [29–31] where prefiltration and
postfiltration have been implemented together with a priori
sparsity pattern based on nonzeros of 𝐴𝑑 with 𝑑 ≤ 4.

The code makes also use of an optimized parallel matrix-
vector product which has been developed in [32] showing its
effectiveness up to 1024 processors.

5. Numerical Results

5.1. Test Problems. We report the results of our experiments
with the RFSAI preconditioner in the solution of a set of
problems of large size.

The test matrices are realistic examples arising from 3D
FE discretization of fluid flow and geomechanical models.
Described in detail as follows:

(1) FLOW3D-663 arises from tetrahedral FE discretiza-
tion of an elliptic PDE describing fluid flow in porous
media.

(2) EMILIA-923 arises from the regional geomechanical
model of a deep hydrocarbon reservoir. It is obtained

discretizing the structural problem with tetrahedral
finite elements. Due to the complex geometry of the
geological formation, it was not possible to obtain a
computational grid characterized by regularly shaped
elements.

(3) LONG-1103 is the structural SPDblock obtained from
a 3D coupled consolidation problem of a geological
formation, discretized with tetrahedral finite ele-
ments on a higly irregular computational grid.

(4) GEO-1438 arises from a regional geomechanical
model of the sedimentary basin underlying theVenice
lagoon discretized by a linear FE with randomly
heterogeneous properties.The computational domain
is a box with an areal extent of 50 × 50 km and 10 km
deep consisting of regularly shaped tetrahedral finite
elements.

Matrices 2 to 4 are publicly available in the University of
Florida Sparse Matrix Collection at http://www.cise.ufl.edu/
research/sparse/matrices/. The size and number of nonzero
elements for each matrix is provided in Table 1.

All tests are performed on the IBMBlueGene\Q cluster at
the CINECA Centre for HPC, equipped with IBM PowerA2
processors at 1.6 GHz with 10240 nodes, 163 840 computing
cores, and 164 Tbytes of internal network RAM.The Fortran
90 code is compiled with the native IBM xlf compiler using
the -O3 -qarch=qp -qtune=qp options.

Journal of Applied Mathematics 7

Table 1: Size 𝑛 and number of nonzeros (nnz) of the test matrices.

Name 𝑛 nnz

FLOW3D-663 663 390 9 762 648
EMILIA-923 923 136 41 005 206
LONG-1103 1 102 614 48 987 558
GEO-1438 1 437 960 63 156 690

Table 2: Default values of parameters.

Number of eigenpairs to compute 𝑛eig = 10

Parameters for the outer iteration 𝜏 = 10
−8, ITMAX = 50

Tolerance for the initial
eigenvector guess 𝜏DACG = 10

−2

Parameters for the PCG iteration 𝜏PCG = 10
−2, ITMAXPCG = 50

5.2. Results on a Fixed Number of Processors. We now com-
pare the performance of the DACG-Newton algorithm for
various 𝑘max values. We tested the proposed algorithm
in the computation of the 10 smallest eigenpairs of the
afore mentioned large matrices arising from various realistic
applications. In all the runs, unless differently specified, we
selected the values of the parameters as reported in Table 2.

We will also compute the fill-in 𝜌 of the initial precondi-
tioner defined as

𝜌 =
nnz (𝐺out) + nnz (𝐺in)

nnz (lower triangular part of 𝐴)
. (28)

In Table 3, we report the parameters for the RFSAI precondi-
tioner which we selected for the four-test problems.

We first analyze the influence of parameter 𝑘max in the
convergence of the Newton-DACG method. To this aim we
provide, in Table 4 the values of outer iteration number, total
matrix-vector products (MVP) and CPU time in evaluating
10 eigenpairs of matrix EMILIA-923 for different values of
𝑘max. From the table, we notice how iteration number and
CPU time monotonically decreases with increasing 𝑘max.
Moreover, for 𝑘max ≤ 2, the iterative process reached the
maximum number of iterations before fulfilling the exit test
on the relative residual. Another evidence of the efficiency
of the BFGS update is given in Figure 1, where we plot the
relative residual norm ‖r

𝑘,𝑙
‖/(x𝑇
𝑙
𝐴x
𝑙
) versus number of linear

iterations in converging to eigenpair number 3 of matrix
FLOW3D-663. Note that, with 𝑘max = 0, that is, using the
constant RFSAI preconditioner, the Newton phase could not
reach the 10

−8 accuracy within the prescribed ITMAX = 50

maximum number of outer iterations.
In Table 5, we report the number of matrix vector prod-

ucts and CPU times for Newton-DACG as compared with
“pure”DACG, that is, withDACGrunwith a final tolerance of
10
−8. In every test problem DACG-Newton reveals superior

to DACG.
In particular, for problem FLOW3D-663, the improve-

ment provided by DACG-Newton is impressive. The DACG
method, if run until the final tolerance 𝜏 = 10

−8, is very slow
due to the very small relative separation between consecutive
eigenvalues 𝜉

𝑗
= (𝜆
𝑗+1

− 𝜆
𝑗
)/𝜆
𝑗
, which drives convergence of

0 1000 2000 3000
Cumulative linear iteration number

1e−08

1e−06

1e−04

1e−02

Re
lat

iv
e n

on
lin

ea
r r

es
id

ua
l n

or
m

kmax = 1

kmax = 5

kmax = 10

Figure 1: Convergence profile of the relative residual norm ver-
sus cumulative inner iterations for eigenvalue number 3, matrix
FLOW3D-663.

this PCG-like solver [16, 25]. In fact the ratio 𝜉
𝑗
also influences

the convergence of Newton’s method being related to the
condition number of the Jacobian. However, the (RFSAI-
BFGS preconditioned) DACG-Newton algorithm seems less
sensitive to this ill-conditioning.

5.3. Parallel Results and Scalability. We now analyze the
parallel efficiency of the previously described eigensolver
preconditioned by RFSAI-BFGS. We will use a strong scaling
measure to see how CPU times vary with the number of
processors for a fixed total problem size. Denotingwith𝑇

𝑝
the

total CPU elapsed times expressed in seconds on 𝑝 proces-
sors, we define relative measures of the parallel efficiency and
speedup of our code. We define 𝑆

(𝑝)

𝑝 as the pseudo speedup
computed with respect to the smallest number of processors
(𝑝) used to solve a given problem and 𝐸

(𝑝)

𝑝 the corresponding
efficiency:

𝑆
(𝑝)

𝑝
=

𝑇
𝑝
𝑝

𝑇
𝑝

, 𝐸
(𝑝)

𝑝
=

𝑆
(𝑝)

𝑝

𝑝
=

𝑇
𝑝
𝑝

𝑇
𝑝
𝑝
. (29)

The results obtained with the four test matrices are pre-
sented in Tables 6, 7, 8, and 9. As a general comment, we may
observe that the overall code scales well for the three largest
matrices, up to 256 processors (512 for problem GEO-1438).
The parallel pseudo efficiency, as expected, decreases with
growing number of processors but it is roughly 50% for the
largest number of processors employed.

Regarding the FLOW3D-663 problem, which is character-
ized by a relatively small dimension and high sparsity (≈15
nonzeros per row), the parallel efficiency starts to worsen
with 𝑝 = 128 processors.

8 Journal of Applied Mathematics

Table 3: RFSAI parameters used for the eigensolution of the four test problems.

Matrix name 𝐺out nband
𝐺in

𝜌
𝛿 𝑑 𝜀 𝛿 𝑑 𝜀

FLOW3D-663 0.01 4 0.05 1 0.01 2 0.05 1.16
EMILIA-923 0.1 4 0.05 1 0.05 2 0.01 0.74
LONG-1103 0.15 4 0.1 1 0.1 4 0.1 0.29
GEO-1438 0.15 4 0.1 1 0.1 2 0.05 0.34

Table 4: Influence of parameter 𝑘max in the number of iterations of the Newton phase. Problem EMILIA-923 with 𝑝 = 64 processors.

𝑘max
Outer
its MVP CPU Comments

0 431 15035 421.25
ITMAXPCG = 100. No convergence within
ITMAX = 50. Final (average) residual norm
of 10−6

1 438 10899 336.74 No convergence within ITMAX = 50. Final
(average) residual norm of 10−6

2 343 8329 258.22 No convergence within ITMAX = 50. Final
(average) residual norm of 10−7

5 267 6839 198.19
10 204 5629 178.04
20 185 5616 164.18

Table 5: Comparison between DACG and Newton-DACG for the four test problems on 𝑝 = 64 processors. Results on problem LONG-1103
are obtained using 𝜏DACG = 0.5.

Matrix name DACG Newton-DACG
MVP CPU time 𝑘max MVP CPU time

FLOW3D-663 51427 658.55 10 15833 229.33
EMILIA-923 13404 410.93 20 10649 346.83
LONG-1103 15222 390.05 20 8857 256.59
GEO-1438 12667 354.63 20 10441 326.99

Table 6: Iterations, timings, and pseudo efficiencies for problem FLOW3D-663.

𝑝
precond DACG Newton Total

𝐸
(8)

𝑝CPU CPU MVP CPU MVP CPU MVP
8 42.43 238.34 4291 704.78 11112 985.55 15403
16 27.00 131.29 4291 408.05 11681 566.33 15972 0.87
32 18.17 79.85 4292 241.79 11275 339.81 15567 0.73
64 89.32 54.57 4291 166.77 11542 230.67 15833 0.53
128 84.89 40.68 4292 119.82 11177 165.39 15469 0.37

Table 7: Iterations, timings, and pseudo efficiencies for problem EMILIA-923.

𝑝
precond DACG Newton Total

𝐸
(16)

𝑝CPU CPU MVP CPU MVP CPU MVP
16 85.91 478.29 5379 527.05 5616 1091.24 10995
32 55.44 254.57 5377 286.06 5620 596.07 10997 0.92
64 35.47 149.71 5378 164.18 5616 349.36 10994 0.78
128 22.30 88.96 5378 98.61 5618 209.87 10996 0.65
256 13.53 58.98 5378 66.68 5616 139.19 10994 0.49

Journal of Applied Mathematics 9

Table 8: Iterations, timings, and pseudo efficiencies for problem LONG-1103.

𝑝
precond DACG Newton Total

𝐸
(32)

𝑝CPU CPU MVP CPU MVP CPU MVP
32 24.87 127.47 2734 346.87 5972 499.20 8706
64 15.16 68.12 2734 172.24 5823 255.52 8557 0.97
128 8.57 42.90 2734 109.31 5928 160.78 8662 0.78
256 5.12 31.10 2734 77.41 5806 113.63 8540 0.55

Table 9: Iterations, timings, and pseudo efficiencies for problem GEO-1438.

𝑝
precond DACG Newton Total

𝐸
(32)

𝑝CPU CPU MVP CPU MVP CPU MVP
32 23.87 289.92 5002 358.20 5432 671.99 10434
64 13.16 139.61 5002 172.14 5439 324.91 10441 1.03
128 7.66 80.15 5002 97.98 5427 185.79 10429 0.90
256 5.38 49.86 5002 61.66 5431 116.90 10433 0.72
512 6.82 37.78 5002 47.31 5429 91.91 10431 0.46

6. Conclusion

We have proposed a parallel RFSAI-BFGS preconditioner
for the acceleration of the PCG method in the approximate
solution of the linearized Newton systems in the evaluation
of a number of the leftmost eigenpairs of large SPD matrices.
We have shown that updating an initial preconditioner
(here RFSAI) by a low-rank correction using the BFGS
formula, produces significant savings in the total number of
iterations of the inner solver (the PCGmethod).TheNewton’s
algorithm, preconditioner by RFSAI-BFGS, with the aid of
a number of initial iterations of DACG to obtain a good
initial eigenvector guess, has been completely parallelized
and run on the new IBM BlueGene\Q, located at CINECA,
Bologna, Italy. The scalability results are very satisfactory, as
compared to the size and nonzeros of the problems selected.
In particular, for the largest problem, an efficiency of 72%
is obtained with 256 processors. Future research is aimed at
investigating the relations between the proposed accelerated
Newton method and the well-established Jacobi-Davidson
method.

Acknowledgments

The work of the first author has been partially supported
by the Spanish Grant MTM2010-18674. The authors also
acknowledge the CINECA Iscra Award SPREAD (2012) for
the availability of HPC resources and support.

References

[1] K. J. Bathe, Finite Element Procedures in Engineering Analysis,
Prentice-Hall, Englewood Cliffs, NJ, USA, 1982.

[2] G. Gambolati, “On time integration of groundwater flow equa-
tions by spectral methods,” Water Resources Research, vol. 29,
no. 4, pp. 1257–1267, 1993.

[3] E. Bozzo and M. Franceschet, “Approximations of the general-
ized inverse of the graph Laplacian matrix,” Internet Mathemat-
ics, vol. 8, no. 4, pp. 456–481, 2012.

[4] V. Simoncini and L. Eldén, “Inexact Rayleigh quotient-type
methods for eigenvalue computations,” BIT Numerical Mathe-
matics, vol. 42, no. 1, pp. 159–182, 2002.

[5] M. A. Freitag and A. Spence, “Rayleigh quotient iteration
and simplified Jacobi-Davidson method with preconditioned
iterative solves,” Linear Algebra and Its Applications, vol. 428, no.
8-9, pp. 2049–2060, 2008.

[6] G. L. G. Sleijpen and H. A. Van der Vorst, “Jacobi-Davidson
iterationmethod for linear eigenvalue problems,” SIAMReview,
vol. 42, no. 2, pp. 267–293, 2000.

[7] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst,
“Accelerated inexact Newton schemes for large systems of
nonlinear equations,” SIAM Journal on Scientific Computing,
vol. 19, no. 2, pp. 657–674, 1998.

[8] Y. Notay, “Combination of Jacobi-Davidson and conjugate
gradients for the partial symmetric eigenproblem,” Numerical
Linear Algebra with Applications, vol. 9, no. 1, pp. 21–44, 2002.

[9] L. Bergamaschi, R. Bru, A. Mart́ınez, and M. Putti, “Quasi-
newton preconditioners for the inexact Newton method,” Elec-
tronic Transactions on Numerical Analysis, vol. 23, pp. 76–87,
2006.

[10] L. Bergamaschi, R. Bru, and A. Mart́ınez, “Low-rank update
of preconditioners for the inexact Newton method with SPD
Jacobian,” Mathematical and Computer Modelling, vol. 54, no.
7-8, pp. 1863–1873, 2011.

[11] L. Bergamaschi, R. Bru, A. Mart́ınez, and M. Putti, “Quasi-
Newton acceleration of ILU preconditioners for nonlinear two-
phase flow equations in porousmedia,”Advances in Engineering
Software, vol. 46, no. 1, pp. 63–68, 2012.

[12] F. Xue and H. C. Elman, “Convergence analysis of iterative
solvers in inexact Rayleigh Quotient iteration,” SIAM Journal
on Matrix Analysis and Applications, vol. 31, no. 3, pp. 877–899,
2009.

[13] S. Bellavia, V. De Simone, D. di Serafino, and B. Morini,
“Efficient preconditioner updates for shifted linear systems,”
SIAM Journal on Scientific Computing, vol. 33, no. 4, pp. 1785–
1809, 2011.

[14] S. Bellavia, D. Bertaccini, and B. Morini, “Nonsymmetric pre-
conditioner updates in newton-krylov methods for nonlinear

10 Journal of Applied Mathematics

systems,” SIAM Journal on Scientific Computing, vol. 33, no. 5,
pp. 2595–2619, 2011.

[15] S. Bellavia, V. De Simone, D. Di Serafino, and B. Morini,
“A preconditioning framework for sequences of diagonally
modified linear systems arising in optimization,” SIAM Journal
on Numerical Analysis, vol. 50, no. 6, pp. 3280–3302, 2012.

[16] L. Bergamaschi, G.Gambolati, andG. Pini, “Asymptotic conver-
gence of conjugate gradient methods for the partial symmetric
eigenproblem,”Numerical Linear Algebra with Applications, vol.
4, no. 2, pp. 69–84, 1997.

[17] L. Bergamaschi and A. Mart́ınez, “Banded target matrices
and recursive FSAI for parallel preconditioning,” Numerical
Algorithms, vol. 61, no. 2, pp. 223–241, 2012.

[18] L. Yu. Kolotilina andA. Yu. Yeremin, “Factorized sparse approx-
imate inverse preconditionings. I. Theory,” SIAM Journal on
Matrix Analysis and Applications, vol. 14, no. 1, pp. 45–58, 1993.

[19] M. Benzi andM. Tůma, “A comparative study of sparse approxi-
mate inverse preconditioners,” Applied Numerical Mathematics,
vol. 30, no. 2, pp. 305–340, 1999.

[20] L. Bergamaschi, R. Bru, A.Mart́ınez, J.Mas, andM. Putti, “Low-
rank update of preconditioners for the nonlinear Richards
equation,” Mathematical and Computer Modelling, vol. 57, no.
7-8, pp. 1933–1941, 2013.

[21] L. Bergamaschi and A. Mart́ınez, “Efficiently preconditioned
inexact newton methods for large symmetric eigenvalue prob-
lems,” submitted.

[22] C. T. Kelley, Iterative Methods for Optimization, vol. 18 of
Frontiers in Applied Mathematics, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, Pa, USA, 1999.

[23] L. Bergamaschi, G. Pini, and F. Sartoretto, “Approximate inverse
preconditioning in the parallel solution of sparse eigenprob-
lems,” Numerical Linear Algebra with Applications, vol. 7, no. 3,
pp. 99–116, 2000.

[24] L. Bergamaschi and M. Putti, “Numerical comparison of iter-
ative eigensolvers for large sparse symmetric positive definite
matrices,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 191, no. 45, pp. 5233–5247, 2002.

[25] L. Bergamaschi, A. Mart́ınez, and G. Pini, “Parallel Rayleigh
quotient optimization with FSAI-based preconditioning,” Jour-
nal of Applied Mathematics, vol. 2012, Article ID 872901, 14
pages, 2012.

[26] S. G. Nash and J. Nocedal, “A numerical study of the limited
memory BFGS method and the truncated-Newton method for
large scale optimization,” SIAM Journal on Optimization, vol. 1,
no. 3, pp. 358–372, 1991.

[27] Y. Saad and M. H. Schultz, “GMRES: a generalized minimal
residual algorithm for solving nonsymmetric linear systems,”
Journal on Scientific and Statistical Computing, vol. 7, no. 3, pp.
856–869, 1986.

[28] R. B. Lehoucq and D. C. Sorensen, “Deflation techniques for an
implicitly restarted Arnoldi iteration,” SIAM Journal on Matrix
Analysis and Applications, vol. 17, no. 4, pp. 789–821, 1996.

[29] L. Bergamaschi and Á. Mart́ınez, “Parallel acceleration of
Krylov solvers by factorized approximate inverse precondition-
ers,” in Proceedings of the 6th International Conference High Per-
formance Computing for Computational Science (VECPAR ’05),
M. Daydè, Ed., vol. 3402 of Lecture Notes in Computer Sciences,
pp. 623–636, Springer, Heidelberg, Germany, 2005.

[30] L. Bergamaschi, Á. Mart́ınez, and G. Pini, “An efficient parallel
MLPG method for poroelastic models,” Computer Modeling in
Engineering & Sciences, vol. 49, no. 3, pp. 191–216, 2009.

[31] L. Bergamaschi and A. Mart́ınez, “Parallel inexact constraint
preconditioners for saddle point problems,” in Proceedings of
the 17th International Conference on Parallel Processing, R. N.
E. Jeannot and J. Roman, Eds., vol. 6853 of Lecture Notes in
Computer Sciences, pp. 78–89, Springer, Bordeaux, France, 2011.

[32] A. Mart́ınez, L. Bergamaschi, M. Caliari, and M. Vianello, “A
massively parallel exponential integrator for advection-diff-
usion models,” Journal of Computational and Applied Mathe-
matics, vol. 231, no. 1, pp. 82–91, 2009.

