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The series solution is widely applied to differential equations onR but is not found in 𝑞-differential equations. Applying the Taylor
andmultiplication rule of two generalized polynomials, we develop a series solution of linear homogeneous 𝑞-difference equations.
As an example, the series solution method is used to find a series solution of the second-order 𝑞-difference equation of Hermite’s
type.

1. Introduction

Several works have been done recently for series solutions on
certain time scales. One of the difficulties for developing a
theory of series solutions for linear homogeneous equations
on time scales is that the formula for multiplication by two
generalized polynomials is not easily found. If the time scale
has constant graininess, Haile and Hall [1] provided an exact
formula for the multiplicity of two generalized polynomials.
Using the obtained results, the series solutions for linear
dynamic equations are proposed on the time scalesR and T =
ℎZ (difference equations with step size ℎ). On generalized
time scales, Mozyrska and Pawłuszewicz [2] presented the
formula for the multiplicity of the generalized polynomials
of degree one and degree 𝑛 ∈ N.

Let 0 < 𝑞 < 1 and use the notations

𝑞
N
= {𝑞
𝑛

| 𝑛 ∈ N} , 𝑞N = 𝑞
N
∪ {0} , (1)

whereN denotes the set of positive integers. Liu [3] presented
a formula for the multiplication of two 𝑞-polynomials. The
obtained results are used to develop a series solution method
of the second-order difference equations on 𝑞N. Precisely, the
second-order 𝑞-difference equation is described as

𝑢
ΔΔ

(𝑡) + 𝑔 (𝑡) 𝑢
Δ

(𝑡) + 𝑓 (𝑡) 𝑢 (𝑡) = 0, 𝑡 ∈ 𝑞N, (2)

where 𝑓 and 𝑔 are both 𝑞-analytic functions at 0 in the
interval (𝑐, 𝑑). As an example, the series solution method is
applied to consider the 𝑞-Hermite’s equation of the form

𝑢
ΔΔ

(𝑡) − 𝑡𝑢
Δ

(𝑡) + 𝜆𝑢 (𝑡) = 0, 𝑡 ∈ 𝑞N (3)

with initial condition 𝑢(0) = 𝑎 and 𝑢Δ(0) = 𝑏.
This paper is organized as follows: in Section 2, basic ideas

on 𝑞-calculus are introduced. The series solution method
is developed in Section 3 and is applied to consider the 𝑞-
Hermite’s equation in Section 4. Finally, a concise conclusion
is provided in Section 5.

2. A Basic Introduction to Time Scales

A time scale means an arbitrary nonempty closed subset of
the real numbers. The calculus of time scales was initiated by
Liu [3] in order to create a theory that can unify discrete and
continuous analysis.

Then, we introduce the delta derivative by starting to
define the forward and backward jump operators.

Definition 1. Let T be a time scale. For 𝑡 ∈ T , we define the
forward jump operator 𝜎 : T → T by

𝜎 (𝑡) := inf {𝑠 > 𝑡 | 𝑠 ∈ T} , (4)

while the backward jump operator 𝜌 : T → T by

𝜌 (𝑡) := sup {𝑠 < 𝑡 | 𝑠 ∈ T} . (5)
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Definition 2. The graininess function 𝜇 : T → [0,∞) is
defined by

𝜇 (𝑡) := 𝜎 (𝑡) − 𝑡. (6)

According to the basic definitions, we can give some
useful relationships concerning the delta derivative.

Let 𝑎 and 𝑞 be real numbers such that 0 < 𝑞 < 1. The
𝑞-shift factorial [4] is defined by

(𝑎; 𝑞)
0
= 1, (𝑎; 𝑞)

𝑛
=

𝑛−1

∏

𝑘=0

(1 − 𝑎𝑞
𝑘

) , 𝑛 = 1, 2, . . . , 𝑛.

(7)

Assume 𝑓 : T → R is a function and 𝑡 ∈ T . The 𝑞-
derivative [5] at 𝑡 is defined by

𝑓
Δ

(𝑡) =
𝑓 (𝑞𝑡) − 𝑓 (𝑡)

(𝑞 − 1) 𝑡
. (8)

A 𝑞-difference equation is an equation that contains 𝑞-
derivatives of a function defined on 𝑞N.

Definition 3. On the time scale T , the 𝑞-polynomials ℎ
𝑘
(⋅, 𝑡
0
) :

T → R are defined recursively as follows:

ℎ
0
(𝑡, 𝑠) = 1, ℎ

𝑘+1
= ∫

𝑡

𝑠

ℎ
𝑘
(𝜏, 𝑠) Δ𝜏. (9)

Hence, for each fixed 𝑠, the delta derivative of ℎ
𝑘
with

respect to 𝑡 satisfies

ℎ
Δ

𝑘
(𝑡, 𝑠) = ℎ

𝑘−1
(𝑡, 𝑠) , 𝑘 ≥ 1. (10)

By computing the recurrence relation, the 𝑞-polynomials can
be represented as

ℎ
𝑘
(𝑡, 𝑠) =

𝑘−1

∏

]=0

𝑡 − 𝑠𝑞
]

∑
]
𝑗=0

𝑞𝑗
(11)

on 𝑞N [5].
Agarwal and Bohner [6] give a Taylor’s formula for

functions on a general time scale. On 𝑞N, the Taylor’s formula
can be rewritten as the following form.

Theorem 4. Let 𝑛 ∈ N. Suppose 𝑓 is 𝑛 times differentiable on
𝑞N. Let 𝛼, 𝑡 ∈ 𝑞N. One has

𝑓 (𝑡) =

𝑛−1

∑

𝑘=0

ℎ
𝑘
𝑓
Δ
𝑘

(𝛼) + ∫

𝜌
𝑛−1
(𝑡)

𝛼

ℎ
𝑛−1

(𝑡, 𝜎 (𝜏)) 𝑓
Δ
𝑛

(𝜏) Δ𝜏.

(12)

Before developing the series solution method, we intro-
duce the 𝑞-analytic function on 𝑞N.

Definition 5. A real-valued function𝑓 : 𝑞N → R is said to be
𝑞-analytic at 𝑡

0
if and only if there is a power series centered

at 𝑡
0
that converges to𝑓 near 𝑡

0
; that is, there exist coefficients

{𝑎
𝑘
}
∞

𝑘=0
and points 𝑐, 𝑑 ∈ 𝑞N such that 𝑐 < 𝑡

0
< 𝑑 and

𝑓 (𝑡) =

∞

∑

𝑘=0

𝑎
𝑘
ℎ
𝑘
(𝑡, 𝑡
0
) (13)

for all 𝑡 ∈ (𝑐, 𝑑) ∩ 𝑞N.

The production rule of two 𝑞-polynomials at 0 which will
be used to derive the series solution in following sections [3].

Theorem 6. Let ℎ
𝑖
(𝑡, 0) and ℎ

𝑗
(𝑡, 0) be two 𝑞-polynomials at

zero. One has

ℎ
𝑖
(𝑡, 0) ℎ

𝑗
(𝑡, 0) =

(𝑞
𝑖+1

; 𝑞)
𝑗

(𝑞; 𝑞)
𝑗

ℎ
𝑖+𝑗
(𝑡, 0) . (14)

Proof. Since

ℎ
𝑖+𝑗
(𝑡, 0) =

𝑖+𝑗−1

∏

]=0

𝑡

∑
]
𝜇=0

𝑞𝜇
, (15)

we have

ℎ
𝑖+𝑗
(𝑡, 0)

= (

𝑖−1

∏

]=0

𝑡

∑
]
𝜇=0

𝑞𝜇
)(

𝑖+𝑗−1

∏

]=𝑖

𝑡

∑
]
𝜇=0

𝑞𝜇
)

= ℎ
𝑖
(𝑡, 0)(

∏
𝑗−1

]=0∑
]
𝜇=0

𝑞
𝜇

∏
𝑗−1

]=0∑
]
𝜇=0

𝑞𝜇
)𝑡
𝑗

(

𝑖+𝑗−1

∏

]=𝑖

1

∑
]
𝜇=0

𝑞𝜇
)

= ℎ
𝑖
(𝑡, 0) (

𝑗−1

∏

]=0

𝑡

∑
]
𝜇=0

𝑞𝜇
)(

𝑗−1

∏

]=0

]

∑

𝜇=0

𝑞
𝜇

)(

𝑖+𝑗−1

∏

]=𝑖

1

∑
]
𝜇=0

𝑞𝜇
)

= ℎ
𝑖
(𝑡, 0) ℎ

𝑗
(𝑡, 0)(

𝑗−1

∏

]=0

∑
]
𝜇=0

𝑞
𝜇

∑
]+𝑖
𝜇=0

𝑞𝜇
) .

(16)

This implies that

ℎ
𝑖
(𝑡, 0) ℎ

𝑗
(𝑡, 0) = (

𝑗−1

∏

]=0

∑
]+𝑖
𝜇=0

𝑞
𝜇

∑
]
𝜇=0

𝑞𝜇
)ℎ
𝑖+𝑗
(𝑡, 0)

=

𝑗−1

∏

]=0

(1 − 𝑞
𝜐+𝑖+1

)

(1 − 𝑞𝜐+1)
ℎ
𝑖+𝑗
(𝑡, 0)

=

(𝑞
𝑖+1

; 𝑞)
𝑗

(𝑞; 𝑞)
𝑗

ℎ
𝑖+𝑗
(𝑡, 0) .

(17)

Proposition 7. Let ℎ
𝑖
(𝑡) and ℎ

𝑗
(𝑡) be any two 𝑞-polynomials.

One has

ℎ
𝑖
(𝑡, 0) ℎ

𝑗
(𝑡, 0) = ℎ

𝑗
(𝑡, 0) ℎ

𝑖
(𝑡, 0) . (18)
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Proof. Without loss of generality, we suppose 𝑖 > 𝑗 and have

(𝑞
𝑖+1

; 𝑞)
𝑗

(𝑞, 𝑞)
𝑗

−

(𝑞
𝑗+1

; 𝑞)
𝑖

(𝑞, 𝑞)
𝑖

=
(1 − 𝑞

𝑗+1

) ⋅ ⋅ ⋅ (1 − 𝑞
𝑖+𝑗

)

(1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞𝑖)
−
(1 − 𝑞

𝑖+1

) ⋅ ⋅ ⋅ (1 − 𝑞
𝑖+𝑗

)

(1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞𝑗)

=
(1 − 𝑞

𝑗+1

) ⋅ ⋅ ⋅ (1 − 𝑞
𝑖+𝑗

)

(1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞𝑖)

−
(1 − 𝑞

𝑖+1

) ⋅ ⋅ ⋅ (1 − 𝑞
𝑖+𝑗

) (1 − 𝑞
𝑗+1

) ⋅ ⋅ ⋅ (1 − 𝑞
𝑖

)

(1 − 𝑞) ⋅ ⋅ ⋅ (1 − 𝑞𝑗) (1 − 𝑞𝑗+1) ⋅ ⋅ ⋅ (1 − 𝑞𝑖)

= 0.

(19)

This implies that

(𝑞
𝑖+1

; 𝑞)
𝑗

(𝑞, 𝑞)
𝑗

=

(𝑞
𝑗+1

; 𝑞)
𝑖

(𝑞, 𝑞)
𝑖

. (20)

Therefore, we have

ℎ
𝑖
(𝑡, 0) ℎ

𝑗
(𝑡, 0) = ℎ

𝑗
(𝑡, 0) ℎ

𝑖
(𝑡, 0) (21)

by Theorem 6.

3. Developing Series Solutions Method

Using the Taylor series on time scales, we develop a series
solution method for solving 𝑞-difference equations in this
section.

Consider a second-order 𝑞-difference equation

𝑢
ΔΔ

(𝑡) + 𝑔 (𝑡) 𝑢
Δ

(𝑡) + 𝑓 (𝑡) 𝑢 (𝑡) = 0, 𝑡 ∈ 𝑞N, (22)

where 𝑓 and 𝑔 are both 𝑞-analytic functions at 0 in the
interval (𝑐, 𝑑). Hence, there exist two sequences of coefficients
{𝐹(𝑘)} and {𝐺(𝑘)} such that

𝑓 (𝑡) =

∞

∑

𝑘=0

𝐹 (𝑘) ℎ
𝑘
(𝑡, 0) , 𝑔 (𝑡) =

∞

∑

𝑘=0

𝐺 (𝑘) ℎ
𝑘
(𝑡, 0) (23)

for all 𝑡 ∈ (𝑐, 𝑑) ∩ 𝑞N.
One can find a power series solution of the form

𝑢 (𝑡) =

∞

∑

𝑘=0

𝑈 (𝑘) ℎ
𝑘
(𝑡, 0) , (24)

by carrying out the following steps.

Step 1. Since

𝑢
Δ

(𝑡) =

∞

∑

𝑘=0

𝑈 (𝑘 + 1) ℎ
𝑘
(𝑡, 0) ,

𝑢
ΔΔ

(𝑡) =

∞

∑

𝑘=0

𝑈 (𝑘 + 2) ℎ
𝑘
(𝑡, 0) ,

(25)

we get

𝑔 (𝑡) 𝑢
Δ

(𝑡)

= [

∞

∑

𝑘=0

𝐺 (𝑘) ℎ
𝑘
(𝑡, 0)] [

∞

∑

𝑙=0

𝑈 (𝑙 + 1) ℎ
𝑙
(𝑡, 0)]

=

∞

∑

𝑘=0

𝑘

∑

𝑙=0

𝐺 (𝑙) 𝑈 (𝑘 + 1 − 𝑙) (ℎ
𝑙
(𝑡, 0) ℎ

𝑘−𝑙
(𝑡, 0))

=

∞

∑

𝑘=0

[

[

𝑘

∑

𝑙=0

𝐺 (𝑙) 𝑈 (𝑘 + 1 − 𝑙)

(𝑞
𝑙+1

, 𝑞)
𝑘−𝑙

(𝑞, 𝑞)
𝑘−𝑙

]

]

ℎ
𝑘
(𝑡, 0) ,

𝑓 (𝑡) 𝑢 (𝑡)

= [

∞

∑

𝑘=0

𝐹 (𝑘) ℎ
𝑘
(𝑡, 0)] [

∞

∑

𝑙=0

𝑈 (𝑙) ℎ
𝑙
(𝑡, 0)]

=

∞

∑

𝑘=0

𝑘

∑

𝑙=0

𝐹 (𝑙) 𝑈 (𝑘 − 𝑙) (ℎ
𝑙
(𝑡, 0) ℎ

𝑘−𝑙
(𝑡, 0))

=

∞

∑

𝑘=0

[

[

𝑘

∑

𝑙=0

𝐹 (𝑙) 𝑈 (𝑘 − 𝑙)

(𝑞
𝑙+1

, 𝑞)
𝑘−𝑙

(𝑞, 𝑞)
𝑘−𝑙

]

]

ℎ
𝑘
(𝑡, 0) .

(26)

Substituting (24) and (26) into (22), we get the equation

∞

∑

𝑘=0

[
[
[
[
[
[
[

[

𝑈 (𝑘 + 2)

+

𝑘

∑

𝑙=0

𝐺 (𝑙) 𝑈 (𝑘 + 1 − 𝑙)

(𝑞
𝑙+1

, 𝑞)
𝑘−𝑙

(𝑞, 𝑞)
𝑘−𝑙

+

𝑘

∑

𝑙=0

𝐹 (𝑙) 𝑈 (𝑘 − 𝑙)

(𝑞
𝑙+1

, 𝑞)
𝑘−𝑙

(𝑞, 𝑞)
𝑘−𝑙

]
]
]
]
]
]
]

]

ℎ
𝑘
(𝑡, 0) = 0.

(27)

Step 2. Set the coefficients of the power series equal to zero.
That gives a recurrence relation that relates later coefficients
in the power series (24) to the earlier ones. That is,

𝑈 (𝑘 + 2) +

𝑘

∑

𝑙=0

𝐺 (𝑙) 𝑈 (𝑘 + 1 − 𝑙)

(𝑞
𝑙+1

, 𝑞)
𝑘−𝑙

(𝑞, 𝑞)
𝑘−𝑙

+

𝑘

∑

𝑙=0

𝐹 (𝑙) 𝑈 (𝑘 − 𝑙)

(𝑞
𝑙+1

, 𝑞)
𝑘−𝑙

(𝑞, 𝑞)
𝑘−𝑙

= 0.

(28)

Step 3. Find all coefficients 𝑈(𝑘) in terms of the first two
coefficients 𝑈(0) and 𝑈(1), thus writing the 𝑞-series in the
form

∞

∑

𝑘=0

𝑈 (𝑘) ℎ
𝑘
(𝑡, 0) = 𝑈 (0) 𝑢

1
(𝑡) + 𝑈 (1) 𝑢

2
(𝑡) , (29)

where 𝑢
1
and 𝑢

2
are two linearly independent 𝑞-series

solutions.
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4. Applications

In this section, the series solution method is applied to
consider the 𝑞-Hermite’s equations with initial conditions.

Consider the 𝑞-Hermite’s equation of the form

𝑢
ΔΔ

(𝑡) − 𝑡𝑢
Δ

(𝑡) + 𝜆𝑢 (𝑡) = 0, 𝑡 ∈ 𝑞N, (30)

with 𝑢(0) = 𝑎 and 𝑢Δ(0) = 𝑏.
Let

𝑢 (𝑡) =

∞

∑

𝑘=0

𝑈 (𝑘) ℎ
𝑘
(𝑡, 0) , (31)

then 𝑢(0) = 𝑎 = 𝑈(0) and 𝑢Δ(0) = 𝑏 = 𝑈(1). Applying (31)
into (30), we have

𝑈 (2) = −𝜆𝑈 (0) ,

𝑈 (𝑘 + 2) = [

[

(𝑞
𝑘

; 𝑞)
1

(𝑞; 𝑞)
1

− 𝜆]

]

𝑈 (𝑘) = [
(1 − 𝑞

𝑘

)

(1 − 𝑞)
− 𝜆]𝑈 (𝑘) ,

(32)

where 𝑘 = 1, 2, . . ..
This implies that

𝑈 (2𝑙) = [
(1 − 𝑞

2(𝑙−1)

)

(1 − 𝑞)
− 𝜆]𝑈 (2 (𝑙 − 1))

=

𝑙

∏

𝑖=1

[
(1 − 𝑞

2(𝑖−1)

)

(1 − 𝑞)
− 𝜆] 𝑎,

𝑈 (2𝑙 + 1) = [
(1 − 𝑞

2𝑙−1

)

(1 − 𝑞)
− 𝜆]𝑈 (2𝑙 − 1)

=

𝑙

∏

𝑖=1

[
(1 − 𝑞

2𝑖−1

)

(1 − 𝑞)
− 𝜆] 𝑏.

(33)

Hence, we get

𝑢 (𝑡) = 𝑎(1 +

∞

∑

𝑙=1

𝑙

∏

𝑖=1

[
(1 − 𝑞

2(𝑖−1)

)

(1 − 𝑞)
− 𝜆] ℎ

2𝑙
(𝑡))

+ 𝑏(ℎ
1
(𝑡) +

∞

∑

𝑙=1

𝑙

∏

𝑖=1

[
(1 − 𝑞

2𝑖−1

)

(1 − 𝑞)
− 𝜆] ℎ

2𝑙+1
(𝑡))

= 𝑎𝑢
1
(𝑡) + 𝑏𝑢

2
(𝑡) .

(34)

By computing the Wronskian of 𝑢
1
and 𝑢

2
at 0, we get

𝑊[𝑢
1
, 𝑢
2
] (0) = 𝑢

1
(0) 𝑢
Δ

2
(0) − 𝑢

2
(0) 𝑢
Δ

1
(0) = 1 ̸= 0. (35)

This implies that 𝑢
1
and 𝑢

2
are two linearly independent

solutions.

Example 8. Consider the 𝑞-Hermite’s equation with 𝑞 = 1/2
of the form

𝑢
ΔΔ

− 𝑡𝑢
Δ

+ 𝑢 = 0 (36)

with 𝑢(0) = 1 and 𝑢Δ = 0. Substituting (31) into (36) yields

𝑈 (2𝑙) = Π
𝑙

𝑖=1
[
1 − (1/2)

2(𝑖−1)

(1/2)
− 1] = Π

𝑙

𝑖=1
[1 − (

1

2
)

2𝑖−3

]

(37)

and 𝑈(2𝑙 + 1) = 0 which implies that

𝑢 (𝑡) = 1 +

∞

∑

𝑙=1

Π
𝑙

𝑖=1
1 − (

1

2
)

2𝑖−3

ℎ
2𝑙
(𝑡)

= 1 − ℎ
2
(𝑡) −

1

2
ℎ
4
(𝑡) −

3

8
ℎ
6
(𝑡) − ⋅ ⋅ ⋅ .

(38)

5. Conclusion

One area which is the lack of development is the theory of
series solutions on 𝑞-difference equations. In this paper, we
present the formula for the multiplicity of two 𝑞-polynomials
at 0. The purpose is to provide the basic mechanics for find-
ing the series solutions of linear homogeneous 𝑞-difference
equation. As an example we consider series solution of the 𝑞-
Hermite’s equation of the form 𝑢

ΔΔ

− 𝑡𝑢
Δ

+ 𝜆𝑢 = 0, with the
initial conditions 𝑢(0) = 𝑎 and𝑢Δ(0) = 𝑏. Using the presented
method, the series solution of the Hermite’s equation can
be obtained iteratively. In future studies, we would apply
the presented method to find the series solution of other 𝑞-
difference equations on 𝑞N.
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