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We study the existence and uniqueness of solutions for a class of antiperiodic boundary value problems of the fractional differential
equation with a 𝑝-Laplacian operator. Based on the Leray-Schauder nonlinear alternative, several sufficient conditions of the
existence and uniqueness of solution of the above problem are established. Our results improve and complement the recent work
of Chen and Liu, 2012.

1. Introduction

Economics is a rich source for mathematical ideas. Particu-
larly, mathematical model is an important tool designed to
describe the operation of the economy of a country or a
region. Such model is usually created to examine the dynam-
ics of quantities as, for instance, level of prices, unemploy-
ment, total income, total amount of goods and services pro-
duced, investment demand, and so on. Recently, many math-
ematical models of differential equations are used for fitting
the available economic data. Of course,many of the economic
models are static, but there are also some dynamic models,
describing the economy over the time periods such asGDPor
employment, while the differential equations relating these
variables are intended to describe economic decisions.
Because fractional operators are nonlocal, they aremore suit-
able for constructing models possessing memory effect with
the long time periods, and then fractional differential equa-
tions possess large advantage in describing economic phen-
omena over the time periods. So it is important to investigate
the underlying economic models of fractional differential
equations theoretically in order to get an in-depth under-
standing of the systems and then make scientific economic
decisions [1–5].

Several theoretical interesting results are available in the
literature [6–14] for the existence and uniqueness of solution

of fractional order differential equations. In [6], by using the
iterative technique, Zhang andHan investigated the existence
and uniqueness of positive solutions for the fractional dif-
ferential model with integral boundary conditions, and some
growth conditions were adopted to guarantee the existence of
unique positive solution for fractional differential model.
Again the iterative technique is applied by Zhang et al. [12] to
obtain the iterative solutions of a nonlinear fractional differ-
ential equations. Besides the iterative technique, the Banach
contraction mapping principle is also a main tool to get the
existence and uniqueness of solution. Recently, Leibenson
[15] introduced the 𝑝-Laplacian equation to describe a tur-
bulent flow in a porous medium in mechanics problem:

(𝜑𝑝 (𝑥
󸀠
(𝑡)))
󸀠

= 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥
󸀠
(𝑡)) , (1)

where 𝜑𝑝(𝑠) = |𝑠|
𝑝−2

𝑠, 𝑝 > 1. Motivated by Leibenson’s work,
Chen and Liu [13] investigated the existence of solutions for
the antiperiodic boundary value problem of a fractional 𝑝-
Laplacian equationwith the following form (for shortABVP):

D
𝛽

0+
𝜑𝑝 (D

𝛼

0+
𝑥 (𝑡)) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑥 (0) = −𝑥 (1) , D
𝛼

0+
𝑥 (0) = −D

𝛼

0+
𝑥 (1) ,

(2)
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where 0 < 𝛼, 𝛽 ≤ 1, 1 < 𝛼 + 𝛽 ≤ 2,D𝛼
0+

is a Caputo fractional
derivative, and 𝑓 : [0, 1] × R2 → R is continuous. By using
Schaefer’s fixed point theorem, the authors established the
following result.

Theorem 1. Let𝑓 : [0, 1]×R → R be continuous. Assume that

(𝐻) there exist nonnegative functions 𝑎, 𝑏 ∈ 𝐶[0, 1]

such that
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢)

󵄨󵄨󵄨󵄨 ≤ 𝑎 (𝑡) + 𝑏 (𝑡) |𝑢|
𝑝−1

, ∀𝑡 ∈ [0, 1] , 𝑢 ∈ R. (3)

Then ABVP (2) has at least one solution, provided that

3
𝑞
‖𝑏‖
𝑞−1

∞

2𝑞Γ (𝛼 + 1) (Γ (𝛽 + 1))
𝑞−1

< 1, (4)

where 𝑞 satisfies 1/𝑝 + 1/𝑞 = 1.

The aim of this paper is to improve and complement the
work of Chen and Liu. Firstly, we introduce the following def-
initions which are used in our main results.

Definition 2. A function 𝜓 : (−∞, +∞) → [0, +∞) is called
a𝐶−𝑁 function if it is a continuous nondecreasing function.
Again if 𝜓 satisfies 𝜓(𝑟) < 𝑟, 𝑟 > 0, then 𝜓 is called a non-
linearD-contraction mapping.

Definition 3. A function 𝑓 is said to be a Crathéodory’s func-
tion if the following conditions hold:

(i) for each 𝑥 ∈ R, the mapping 𝑡 󳨃→ 𝑓(𝑡, 𝑥) is Lebesgue
measurable.

(ii) for a.e. 𝑡 ∈ [0, 1], the mapping 𝑥 󳨃→ 𝑓(𝑡, 𝑥) is con-
tinuous on R.

Let us finish our presentation to announce our main
results that can be stated as follows:

Theorem 4. Let 𝑓 be a Crathéodory’s function. Assume that

(𝑆) there exist some constant 𝜖 ∈ (0, 𝛽) such that 𝑎(𝑡),
𝑏(𝑡) ∈ 𝐿

1/𝜖
([0, 1], [0, +∞)) and a 𝐶 − 𝑁 function 𝜓

with
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑎 (𝑡) + 𝑏 (𝑡) 𝜓 (|𝑥|) , a.e. (𝑡, 𝑥) ∈ [0, 1] ×R.

(5)

Then theABVP (2) has at least one solution, provided that there
exists a real number 𝑟 > 0 such that

3

2Γ (𝛼+1)
[

3

2Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

(‖𝑎‖𝐿1/𝜖 + ‖𝑏‖𝐿1/𝜖𝜓 (𝑟))]

𝑞−1

≤ 𝑟.

(6)

The following some cases are straightforward consequ-
ences ofTheorem 4; the proof can follow asTheorem 4 andwe
will omit the corresponding proof.

Corollary 5. Let 𝑓 be a Crathéodory’s function. Assume that

(𝑆
∗
) there exists some constant 𝜖 ∈ (0, 𝛽) such that

𝑎(𝑡) ∈ 𝐿
1/𝜖

([0, 1], [0, +∞)) and
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑎 (𝑡) , a.e. (𝑡, 𝑥) ∈ [0, 1] ×R. (7)

Then theABVP (2) has at least one solution, provided that there
exists a real number 𝑟 > 0 such that

3

2Γ (𝛼 + 1)
[

3

2Γ(𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

‖𝑎‖𝐿1/𝜖]

𝑞−1

≤ 𝑟. (8)

Corollary 6. Let 𝑓 be a Crathéodory’s function. Assume that

(𝑆
∗∗
) there exists some constant 𝜖 ∈ (0, 𝛽) such that 𝑏(𝑡)

∈ 𝐿
1/𝜖

([0, 1], [0, +∞)) and a 𝐶 − 𝑁 function 𝜓 with
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑏 (𝑡) 𝜓 (|𝑥|) , a.e. (𝑡, 𝑥) ∈ [0, 1] ×R. (9)

Then theABVP (2) has at least one solution, provided that there
exists a real number 𝑟 > 0 such that

3

2Γ (𝛼 + 1)
[

3

2Γ(𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

‖𝑏‖𝐿1/𝜖𝜓(𝑟)]

𝑞−1

≤ 𝑟. (10)

Remark 7. Themain results of this paper improve the work of
Chen and Liu from the following three aspects.

(1) In [13], a stronger condition that 𝑓 : [0, 1] × R → R

is continuous is required, but in this paper we
only require that 𝑓 satisfies Crathéodory’s condition,
which is a weaker condition than those of paper [13].

(2) In Theorem 4, 𝑎(𝑡), 𝑏(𝑡) ∈ 𝐿
1/𝜖

([0, 1], [0, +∞)) for
some 𝜖 ∈ (0, 𝛽), and 𝑎, 𝑏 can be singular at some zero
measure set of [0, 1]. However, 𝑎(𝑡), 𝑏(𝑡) are continu-
ous in paper [13], which are not allowed to have sin-
gularity in [0, 1].

(3) In the main results of this paper, 𝜓 is only required to
be a𝐶−𝑁 function. Clearly, a𝐶−𝑁 function includes
𝜓(|𝑢|) = |𝑢|

𝑝−1, 𝑝 > 1 as special case.

In what follows, we also complement a uniqueness result
on the ABVP (2), which is based on the Banach contraction
mapping principle and a basic property of the 𝑝-Laplacian
operator: if 𝑞 > 2, |𝑥|, |𝑦| ≤ 𝑀, then

󵄨󵄨󵄨󵄨󵄨
𝜑𝑞 (𝑥) − 𝜑𝑞 (𝑦)

󵄨󵄨󵄨󵄨󵄨
≤ (𝑞 − 1)𝑀

𝑞−2 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 . (11)

In the case 1 < 𝑝 < 2, due to 1/𝑝 + 1/𝑞 = 1, we can get 𝑞 > 2.

Theorem 8. Let 𝑓 be a Crathéodory’s function. Assume that
1 < 𝑝 < 2 and

(𝑆) there exist some constant 𝜖 ∈ (0, 𝛽) such that 𝑎(𝑡),
𝑏(𝑡) ∈ 𝐿

1/𝜖
([0, 1], [0, +∞)) and aD-contraction map-

ping 𝜓 with
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑎 (𝑡) ,
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝑏 (𝑡) 𝜓 (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) ,

a.e. (𝑡, 𝑥) ∈ [0, 1] ×R.

(12)
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Then the ABVP (2) has a unique solution, provided that

3 (𝑞 − 1)

2Γ (𝛼 + 1)
[

3

2Γ(𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

]

𝑞−1

‖𝑎‖
𝑞−2

𝐿1/𝜖
‖𝑏‖𝐿1/𝜖 =: 𝜅 < 1.

(13)

2. Preliminaries and Lemmas

For the convenience of the reader, we present here some nec-
essary basic knowledge and definitions about fractional cal-
culus theory which are to be used in the later sections.

Definition 9 (see [16]). The Riemann-Liouville fractional
integral operator of order 𝛼 > 0 of a function 𝑥 : (𝑎, +∞) →

𝑅 is given by

𝐼
𝛼

0+
𝑥 (𝑡) =

1

Γ (𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

𝑥 (𝑠) 𝑑𝑠 (14)

provided that the right side integral is pointwise defined on
(𝑎, +∞).

Definition 10 (see [16]). The Caputo fractional derivative of
order 𝛼 > 0 of a continuous function 𝑥 : (𝑎, +∞) → 𝑅 is
given by

D
𝛼

0+
𝑥 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑥
(𝑛)

(𝑠) 𝑑𝑠, (15)

where 𝑛 is the smallest integer greater than or equal to 𝛼,
provided that the right side integral is pointwise defined on
(𝑎, +∞).

Proposition 11 (see [17]). Let 𝛼 > 0. Assume that 𝑥,D𝛼
0+
𝑥 ∈

𝐿
1
(0, 1). Then the following equality holds:

𝐼
𝛼

0+
D
𝛼

0+
𝑥 (𝑡) = 𝑥 (𝑡) + 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡

2
+ ⋅ ⋅ ⋅ + 𝑐𝑛𝑡

𝑛−1
, (16)

where 𝑐𝑖 ∈ R (𝑖 = 0, 1, 2, . . . , 𝑛 − 1), 𝑛 is the smallest integer
greater than or equal to 𝛼.

As a consequence of Proposition 11, Chen and Liu
obtained the following lemma.

Lemma 12 (see [13]). Given ℎ ∈ 𝐶[0, 1], the unique solution of

D
𝛽

0+
𝜑𝑝 (D

𝛼

0+
𝑥 (𝑡)) = ℎ (𝑡) , 𝑡 ∈ [0, 1] ,

𝑥 (0) = −𝑥 (1) , D
𝛼

0+
𝑥 (0) = −D

𝛼

0+
𝑥 (1)

(17)

is

𝑥 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝜑𝑞 (
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

ℎ (𝜏) 𝑑𝜏

+ 𝐴ℎ (𝑠) ) 𝑑𝑠 + 𝐵ℎ (𝑡) ,

(18)

where

𝐴ℎ (𝑡) = −
1

2
𝐼
𝛽

0+
ℎ (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1
= −

1

2Γ (𝛽)
∫

1

0

(1 − 𝑠)
𝛽−1

ℎ (𝑠) 𝑑𝑠,

∀𝑡 ∈ [0, 1] ,

𝐵ℎ (𝑡)

= −
1

2
𝐼
𝛼

0+
𝜑𝑞 (

1

2
𝐼
𝛽

0+
ℎ (𝑡) + 𝐴ℎ (𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1

= −
1

2Γ (𝛼)
∫

1

0

(1 − 𝑠)
𝛼−1

𝜑𝑞

× (
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

ℎ (𝜏) 𝑑𝜏 + 𝐴ℎ (𝑠)) 𝑑𝑠,

∀𝑡 ∈ [0, 1] .

(19)

As [13], define the Nemytskii operator 𝑁 : 𝐶[0, 1] →

𝐶[0, 1] as follows:

𝑁𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1] , (20)

and denote a nonlinear operator 𝐹 : 𝐶[0, 1] → 𝐶[0, 1] by

𝐹𝑥 (𝑡) = 𝐼
𝛼

0+
𝜑𝑞 (𝐼
𝛽

0+
𝑁𝑥 (𝑡) + 𝐴𝑁𝑥 (𝑡)) + 𝐵𝑁𝑥 (𝑡)

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝜑𝑞

× (
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

−
1

2Γ (𝛽)
∫

1

0

(1 − 𝜏)
𝛽−1

×𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠

−
1

2Γ (𝛼)
∫

1

0

(1 − 𝑠)
𝛼−1

𝜑𝑞

× (
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

−
1

2Γ (𝛽)
∫

1

0

(1 − 𝜏)
𝛽−1

×𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠,

(21)

then the fixed points of the operator 𝐹 are solutions of the
ABVP (2).

Our main tool is based on the following known Leray-
Schauder nonlinear alternative theorem.

Lemma 13. Let 𝑋 be a real Banach space and let Ω be a
bounded open subset of 𝑋, where 𝜃 ∈ Ω, 𝑇 : Ω → 𝑋
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is a completely continuous operator. Then, either there exists
𝑥 ∈ 𝜕Ω, 𝜆 > 1 such that 𝑇𝑥 = 𝜆𝑥, or there exists a fixed point
𝑥
∗
∈ Ω.

3. The Proof of the Main Results

Proof of Theorem 4. Consider the operator 𝐹 : 𝐶[0, 1] →

𝐶[0, 1] defined by (21). For the sake of convenience, we sub-
divide the proof into two steps.

Step 1. 𝐹 : 𝐶[0, 1] → 𝐶[0, 1] is completely continuous.
Let Ω ⊂ 𝐶[0, 1] be any bounded set. We will prove that

𝐹(Ω) is also bounded. In fact, for any 𝑥 ∈ Ω, there exists a
𝑙 > 0 such that ‖𝑥‖ ≤ 𝑙, and then by the Hölder inequality

󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝛽

0+
𝑁𝑥 (𝑡) + 𝐴𝑁𝑥 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

−
1

2Γ (𝛽)
∫

1

0

(1 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1 󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑥 (𝜏))

󵄨󵄨󵄨󵄨 𝑑𝜏

+
1

2Γ (𝛽)
∫

1

0

(1 − 𝜏)
𝛽−1 󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑥 (𝜏))

󵄨󵄨󵄨󵄨 𝑑𝜏

≤
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

× (𝑎 (𝜏) + 𝑏 (𝜏) 𝜓 (|𝑥 (𝜏)|)) 𝑑𝜏

+
1

2Γ (𝛽)

× ∫

1

0

(1 − 𝜏)
𝛽−1

(𝑎 (𝜏) + 𝑏 (𝜏) 𝜓 (|𝑥 (𝜏)|)) 𝑑𝜏

≤
1

Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

(‖𝑎‖𝐿1/𝜖 + ‖𝑏‖𝐿1/𝜖𝜓 (𝑙))

+
1

2Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

(‖𝑎‖𝐿1/𝜖 + ‖𝑏‖L1/𝜖𝜓 (𝑙))

=
3

2Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

× (‖𝑎‖𝐿1/𝜖 + ‖𝑏‖𝐿1/𝜖𝜓 (𝑙)) =: 𝐿,

(22)

|𝐵𝑁𝑥 (𝑡)|

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2Γ (𝛼)
∫

1

0

(1 − 𝑠)
𝛼−1

𝜑𝑞

× (
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

−
1

2Γ (𝛽)
∫

1

0

(1 − 𝜏)
𝛽−1

×𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2Γ (𝛼)
∫

1

0

(1 − 𝑠)
𝛼−1

𝜑𝑞 (𝐿) 𝑑𝑠 =
𝜑𝑞 (𝐿)

2𝛼Γ (𝛼)

=
𝜑𝑞 (𝐿)

2Γ (𝛼 + 1)
.

(23)

It follows from (22) and (23) that for any 𝑡 ∈ [0, 1]

|𝐹𝑥 (𝑡)| =
󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝛼

0+
𝜑𝑞 (𝐼
𝛽

0+
𝑁𝑥 (𝑡) + 𝐴𝑁𝑥 (𝑡)) + 𝐵𝑁𝑥 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨

≤
3𝜑𝑞 (𝐿)

2Γ (𝛼 + 1)
,

(24)

which implies that 𝐹(Ω) is bounded.
On the other hand, by the continuity of 𝑓 on 𝑥 and the

Lebesgue dominated convergence theorem, we can get that 𝐹
is continuous. Moreover, according to the strategy in [13], we
know that 𝐹(Ω) ⊂ 𝐶[0, 1] is equicontinuous. Thus Ascoli-
Arzela theorem assures that 𝐹 is completely continuous.

Step 2. 𝐹 has at least a fixed point.
Now consider 𝐵𝑟 = {𝑥 ∈ 𝐶[0, 1] : ‖𝑥‖ ≤ 𝑟}. An appli-

cation of Leray-Schauder nonlinear alternative theorem
yields either that the operator 𝐹𝑥 = 𝑥 has a fixed point or
there exists 𝑥 ∈ 𝜕𝐵𝑟 such that 𝐹𝑥 = 𝜆𝑥 for some 𝜆 > 1. We
show that the latter assertion does not hold. Assume the con-
trary, then there exist a 𝑥 ∈ 𝜕𝐵𝑟 and some 𝜆 > 1 such that
𝐹𝑥 = 𝜆𝑥. By (22)–(24) and (6), we have

𝜆𝑟 = 𝜆 ‖𝑥‖ = ‖𝐹𝑥‖

≤
3

2Γ (𝛼 + 1)
𝜑𝑞

× (
3

2Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

(‖𝑎‖𝐿1/𝜖 + ‖𝑏‖𝐿1/𝜖𝜓 (𝑟)))

=
3

2Γ (𝛼 + 1)

× (
3

2Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

(‖𝑎‖𝐿1/𝜖 + ‖𝑏‖𝐿1/𝜖𝜓 (𝑟)))

𝑞−1

≤ 𝑟,

(25)

which yields 𝜆 ≤ 1, and then a contraction to the inequality
𝜆 > 1 is obtained. In consequence, the operator 𝐹𝑥 = 𝑥 has a
fixed point in 𝐶[0, 1] with ‖𝑥‖ ≤ 𝑟. This further implies that
the ABVP (2) has at least a solution on [0, 1]. The proof is
completed.



Abstract and Applied Analysis 5

Proof of Theorem 8. According to (12) and a similar strategy
asTheorem 4, we know that𝐹 is completely continuous oper-
ator. Now we will prove that 𝐹 is a contraction mapping. By
(22), we have

󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝛽

0+
𝑁𝑥 (𝑡) + 𝐴𝑁𝑥 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1 󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑥 (𝜏))

󵄨󵄨󵄨󵄨 𝑑𝜏

+
1

2Γ (𝛽)
∫

1

0

(1 − 𝜏)
𝛽−1 󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑥 (𝜏))

󵄨󵄨󵄨󵄨 𝑑𝜏

≤
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑎 (𝜏) 𝑑𝜏 +
1

2Γ (𝛽)

× ∫

1

0

(1 − 𝜏)
𝛽−1

𝑎 (𝜏) 𝑑𝜏

≤
1

Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

‖𝑎‖𝐿1/𝜖

+
1

2Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

‖𝑎‖𝐿1/𝜖

=
3

2Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

‖𝑎‖𝐿1/𝜖 =: 𝑀‖𝑎‖𝐿1/𝜖 ,

󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝛽

0+
𝑁𝑥 (𝑡) + 𝐴𝑁𝑥 (𝑡) − 𝐼

𝛽

0+
𝑁𝑦 (𝑡) − 𝐴𝑁𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1 󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑥 (𝜏)) − 𝑓 (𝜏, 𝑦 (𝜏))

󵄨󵄨󵄨󵄨 𝑑𝜏

+
1

2Γ (𝛽)
∫

1

0

(1 − 𝜏)
𝛽−1 󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑥 (𝜏)) − 𝑓 (𝜏, 𝑦 (𝜏))

󵄨󵄨󵄨󵄨 𝑑𝜏

≤
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑏 (𝜏) 𝜓 (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) 𝑑𝜏

+
1

2Γ (𝛽)
∫

1

0

(1 − 𝜏)
𝛽−1

𝑏 (𝜏) 𝜓 (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) 𝑑𝜏

≤
1

Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

‖𝑏‖𝐿1/𝜖𝜓 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩)

+
1

2Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

‖𝑏‖𝐿1/𝜖𝜓 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩)

=
3

2Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

‖𝑏‖𝐿1/𝜖
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

= 𝑀‖𝑏‖𝐿1/𝜖
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(26)

So it follows from (11)-(12) and (26) that

󵄨󵄨󵄨󵄨𝐹𝑥 (𝑡) − 𝐹𝑦 (𝑡)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝛼

0+
𝜑𝑞 (𝐼
𝛽

0+
𝑁𝑥 (𝑡) + 𝐴𝑁𝑥 (𝑡)) + 𝐵𝑁𝑥 (𝑡)

−𝐼
𝛼

0+
𝜑𝑞 (𝐼
𝛽

0+
𝑁𝑦 (𝑡) + 𝐴𝑁𝑦 (𝑡)) − 𝐵𝑁𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝛼

0+
(𝜑𝑞 (𝐼

𝛽

0+
𝑁𝑥 (𝑡) + 𝐴𝑁𝑥 (𝑡))

−𝜑𝑞 (𝐼
𝛽

0+
𝑁𝑦 (𝑡) + 𝐴𝑁𝑦 (𝑡)))

󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝐵𝑁𝑥 (𝑡) − 𝐵𝑁𝑦 (𝑡)

󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(𝑞 − 1)𝑀
𝑞−1

‖𝑎‖
𝑞−2

𝐿1/𝜖
‖𝑏‖𝐿1/𝜖

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 𝑑𝑠

+
1

2Γ (𝛼)
∫

1

0

(1 − 𝑠)
𝛼−1

(𝑞 − 1)𝑀
𝑞−1

× ‖𝑎‖
𝑞−2

𝐿1/𝜖
‖𝑏‖𝐿1/𝜖

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 𝑑𝑠

≤
3 (𝑞 − 1)

2Γ (𝛼 + 1)
[

3

2Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

]

𝑞−1

× ‖𝑎‖
𝑞−2

𝐿1/𝜖
‖𝑏‖𝐿1/𝜖

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ,

(27)

which implies that
󵄩󵄩󵄩󵄩𝐹𝑥 − 𝐹𝑦

󵄩󵄩󵄩󵄩 ≤ 𝜅
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , (28)

and then 𝐹 : 𝐶[0, 1] → 𝐶[0, 1] is a contraction mapping
since 0 < 𝜅 < 1. Bymeans of the Banach contractionmapping
principle, we get that𝐹has a unique fixed point in𝐶[0, 1]; that
is, the ABVP (2) has a unique solution.

4. Examples

In this section we give two examples to illustrate our main
results.

Example 1. Consider the following ABVP for the fractional
𝑝-Laplacian equation:

D
1/2

0+
𝜑3 (D

3/4

0+
𝑥 (𝑡)) = −

1

10𝑡1/8
+

1

16𝑒(1 − 𝑡)
1/6

𝑒
|𝑥(𝑡)|

,

𝑡 ∈ [0, 1] ,

𝑥 (0) = −𝑥 (1) , D
3/4

0+
𝑥 (0) = −D

3/4

0+
𝑥 (1) .

(29)

Corresponding to the ABVP (2), we get that 𝑝 = 3, 𝑞 = 3/2,
𝛼 = 3/4, 𝛽 = 1/2, and

𝑓 (𝑡, 𝑥) = −
1

10𝑡1/8
+

1

8(1 − 𝑡)
1/6

𝑒
|𝑥|

2𝑒
. (30)

Choose

𝑎 (𝑡) =
1

10𝑡1/8
, 𝑏 (𝑡) =

1

5(1 − 𝑡)
1/6

, 𝜓 (|𝑥|) =
𝑒
|𝑥|

2𝑒

(31)

and 𝜖 = 1/4, 𝑟 = 1; then
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑎 (𝑡) + 𝑏 (𝑡) 𝜓 (|𝑥|) . (32)
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By a simple calculation, we can obtain that

‖𝑎‖𝐿4 =
1

10
× 2
1/4

, ‖𝑏‖𝐿4 =
1

5
× 3
1/4

, 𝜓 (1) =
1

2
.

(33)

Thus

3

2Γ (𝛼 + 1)
[

3

2Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

(‖𝑎‖𝐿1/𝜖 + ‖𝑏‖𝐿1/𝜖𝜓 (𝑟))]

𝑞−1

= 1.6321×[0.8463×3
3/4

×(
1

10
× 2
1/4

+
1

5
× 3
1/4

×
1

2
)]

3/2

= 0.5054 < 1 = 𝑟.

(34)

The above facts imply that the ABVP (1) satisfies all assump-
tions of Theorem 4. Hence, it has at least a solution.

Example 2. Consider the following ABVP for the fractional
𝑝-Laplacian equation:

D
1/2

0+
𝜑3/2 (D

3/4

0+
𝑥 (𝑡)) =

sin𝑥 (𝑡)

10𝑡1/8
, 𝑡 ∈ [0, 1] ,

𝑥 (0) = −𝑥 (1) , D
3/4

0+
𝑥 (0) = −D

3/4

0+
𝑥 (1) .

(35)

Corresponding to the ABVP (2), we get that 𝑝 = 3/2, 𝑞 = 3,
𝛼 = 3/4, 𝛽 = 1/2, and

𝑓 (𝑡, 𝑥) =
sin𝑥
10𝑡1/8

. (36)

Choose

𝑎 (𝑡) = 𝑏 (𝑡) =
1

10𝑡1/8
, 𝜓 (|𝑥|) = |𝑥| , (37)

and 𝜖 = 1/4; then

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝑎 (𝑡) =

1

10𝑡1/8
,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 ≤

1

10𝑡1/8
󵄨󵄨󵄨󵄨sin𝑥 − sin𝑦󵄨󵄨󵄨󵄨

≤ 𝑏 (𝑡) 𝜓 (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) .

(38)

By a simple calculation, we can obtain that

‖𝑎‖𝐿4 = ‖𝑏‖𝐿4 =
1

10
× 2
1/4

. (39)

Thus

3 (𝑞 − 1)

2Γ (𝛼 + 1)
[

3

2Γ (𝛽)
(
1 − 𝜖

𝛽 − 𝜖
)

1−𝜖

]

𝑞−1

‖𝑎‖
𝑞−2

𝐿1/𝜖
‖𝑏‖𝐿1/𝜖

= 3.2642 × [0.8463 × 3
3/4

]
2

× (
1

10
× 2
1/4

)

2

= 0.6171

= 𝜅 < 1.

(40)

The above facts imply that the ABVP (35) satisfies all assump-
tions of Theorem 8. Hence, it has a unique solution.

In the end of this work we also remark that Example 1
cannot be solved by using theorem of [13] because 𝜓(𝑢) is ex-
ponential growth and 𝑎(𝑡), 𝑏(𝑡) are singular at 𝑡 = 0 and 𝑡 = 1,
respectively. We also anticipate that the result of uniqueness
here can be extended to the case 𝑝 ≥ 2 as an open problem.
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