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Themathematical foundation of the traditional elastoplastic constitutive theory for geomaterials is presented from themathematical
point of view, that is, the expression of stress-strain relationship in principal stress/strain space being transformed to the expression
in six-dimensional space. A new framework is then established according to the mathematical theory of vectors and tensors, which
is applicable to establishing elastoplastic models both in strain space and in stress space. Traditional constitutive theories can be
considered as its special cases. The framework also enables modification of traditional constitutive models.

1. Introduction

The mechanical properties of geomaterials are complex
and essential to make a numerical prediction; thus, many
researchers have paid attention to constitutive relations of
geomaterials. The simplest constitutive model for geomateri-
als is the elastic model, among which the common nonlinear
models are the Cauchy elastic model, the hyperelastic model,
and the hypoelasticmodel.TheCauchy elasticmodel assumes
that the stress (or strain) in the material depends on the
current strain (or stress) only, and not on its history. The
constitutive equation for the hyperelasticmodel is established
by the strain energy function or complement energy function.
The hypoelastic model assumes that the stress state of an
elastic material is associated with both the strain state and the
stress path.The typical hypoelastic models are the E-𝜇 and E-
Bmodels proposed by Duncan et al. [1, 2] and the K-Gmodel
[3–5].

According to the experimental results, most deforma-
tions of geomaterials are plastic deformations. Therefore,
traditional plasticity theory has often been used to establish
constitutive models for soil. For example, Drucker et al. [6]
described the deformation property of soil by traditional

elastoplastic theory and proposed a model with conical yield
surface affected by hydrostatic pressure. Roscoe et al. [7]
proposed a plastic cap model for normally consolidated clay,
which is well known as the Cambridge model. Subsequently,
Roscoe and Burland [8] modified the dilatancy equation in
the Cambridge model and proposed a modified Cambridge
model with elliptical yield surface. Wroth and Bassett [9]
and Poorooshasb et al. [10] extended the model to sandy
soil, and Yao et al. [11, 12] extended the model to sandy soil
and overconsolidated soil. There are plenty of elastoplastic
models, such as models with a single yield surface proposed
by Desai et al. [13, 14] and Lade et al. [15–18], models with
a double yield surface, and three surface models [19]. The
concepts of the bounding surface [20–23] and the subloading
surface [24, 25], endochronic theory [26], and disturbed
states [27] have also been applied to establishing constitutive
models for geomaterials.

In this paper, a theoretical framework on establishing
constitutive models for geomaterials is proposed, the initial
thought of which is provided by the first author in 1988
and in 1990s [28–31], and it has been implemented by some
researchers to simulate the behavior of jointed rock masses
[32] and soil-structure interface [33].
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2. Classical Elastoplastic Theory of
Geomaterials

The incremental form of a stress-strain relationship in tradi-
tional geomechanics is generally expressed as

d𝜎
𝑖𝑗
= 𝐷
𝑖𝑗𝑘𝑙

d𝜀
𝑘𝑙
. (1)

Determining 𝐷
𝑖𝑗𝑘𝑙

is the major topic for constitutive models
of geomaterials. Obviously, 𝐷

𝑖𝑗𝑘𝑙
can be obtained by fitting

experimental data, given that experiments on stress and
strain tensors are conducted.However, it is extremely difficult
to do so. Therefore, experiments on the stress-strain rela-
tionship of geomaterials are usually conducted in principal
stress/strain space; that is, only the relationship between
the principal stress 𝜎

𝑖
(𝑖 = 1, 2, 3) and the principal strain

𝜀
𝑖
(𝑖 = 1, 2, 3), is obtained. To obtain 𝐷

𝑖𝑗𝑘𝑙
, the constitutive

tensor in general coordinate space should be derived from
the stress-strain relationship in principal stress/strain space.
From a mathematical point of view, these can be treated as
the problems of coordinate transformation [34–36].

The relationship between the plastic strain increment and
stress increment in principal stress/strain space is defined as

{d𝜀𝑝
𝑖
}
3×1
= [𝐴]3×3{d𝜎𝑖}3×1, (2a)

[𝐴]3×3 =
[

[

𝑎
11
𝑎
12
𝑎
13

𝑎
21
𝑎
22
𝑎
23

𝑎
31
𝑎
32
𝑎
33

]

]

, (2b)

where 𝑎
𝑖𝑗
are the functions of total stress 𝜎

𝑖
, total strain 𝜀

𝑖
(𝑖 =

1, 2, 3) or stress path.
When the matrix rank of [𝐴] is 1, or |𝐴| = 0, there exists a

vector {𝛼
1
𝛼
2
𝛼
3
}
𝑇 and coefficients 𝛽

1
, 𝛽
2
, 𝛽
3
to express [𝐴]

as

[𝐴] = {𝛽1 𝛽2 𝛽3}
𝑇
{𝛼1 𝛼2 𝛼3} , (3)

Therefore, substituting (3) into (2a) and (2b) gives

{d𝜀𝑝
𝑖
} = {𝛽1 𝛽2 𝛽3}

𝑇
{𝛼1 𝛼2 𝛼3} {d𝜎𝑖} , (4a)

that is,

{d𝜀𝑝
𝑖
} = d𝜆{𝛽1 𝛽2 𝛽3}

𝑇
, (4b)

where

d𝜆 =
3

∑

𝑖=1

𝛼
𝑖
d𝜎
𝑖
. (5)

According to (4b),

d𝜀𝑝
1
: d𝜀𝑝
2
: d𝜀𝑝
3
= 𝛽
1
: 𝛽
2
: 𝛽
3
. (6)

𝛽
𝑖
(𝑖 = 1, 2, 3) is a function of𝜎

𝑖
or 𝜀
𝑖
.When𝛽 = {𝛽

1
𝛽
2
𝛽
3
}
𝑇

is of a field with potential, there is a potential function𝑄 such
that

𝛽
𝑖
=
𝜕𝑄

𝜕𝜎
𝑖

. (7)

Substituting (7) into (4b), we have

d𝜀𝑝
𝑖
= d𝜆𝜕𝑄

𝜕𝜎
𝑖

. (8)

If we assume that d𝜀𝑝
𝑖

and 𝜎
𝑖
have the same principal

directions, the coordinate transformation can be expressed as
follows:

d𝜀𝑝
𝑖𝑗
= d𝜀𝑝
𝑖

𝜕𝜎
𝑖

𝜕𝜎
𝑖𝑗

. (9)

Substituting (9) into (8) gives

d𝜀𝑝
𝑖𝑗
= d𝜆 𝜕𝑄

𝜕𝜎
𝑖𝑗

. (10)

Similarly, from elastic potentials theory, there is a poten-
tial function𝑊 in principal stress space, and 𝜀

𝑖
is defined as

𝜀
𝑖
=
𝜕𝑊

𝜕𝜎
𝑖

. (11)

If we assume that 𝜎
𝑖
and 𝜀
𝑖
have the same principal direction,

the coordinate transformation can be expressed as follows:

𝜀
𝑖𝑗
= 𝜀
𝑖

𝜕𝜎
𝑖

𝜕𝜎
𝑖𝑗

. (12)

Substituting (11) into (12),

𝜀
𝑖𝑗
=
𝜕𝑊

𝜕𝜎
𝑖𝑗

. (13)

In conclusion, traditional plastic potential theory corre-
sponds to the case that the matrix [𝐴] in (2a) and (2b) has
rank 1, and 𝛽 can be expressed as the gradient vector of a
potential function. Based onmathematical principles, a more
general potential function-based constitutive framework can
be established according to vector field theory and tensor
theory as described below.

3. Derivation of Constitutive Framework from
Vector Field Theory

Obviously, when the three principal components of the
plastic strain increment, d𝜀𝑝

𝑖
(𝑖 = 1, 2, 3), are considered to

be components of a vector d𝜀p, the principal components can
be expressed as three linearly independent 3D vectors by a
vector fitting method. The gradient vectors of three linearly
independent potential functions are selected as the linearly
independent vectors.

When d𝜀p is expressed in principal stress space, the
coordinate orientations of d𝜀p and 𝜎

𝑖
are the same, and

Φ
1
, Φ
2
, Φ
3
are three linearly independent potential func-

tions in principal stress space, and then the following expres-
sion is obtained:

d𝜀𝑝
𝑖
=

3

∑

𝑘=1

𝜆
𝑘

𝜕Φ
𝑘

𝜕𝜎
𝑖

, (14)
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where 𝜆
𝑘
(𝑖 = 1, 2, 3) are the coefficients. Suppose that the

principal directions of d𝜀p and 𝜎
𝑖
are the same, and we

substitute (14) into (9), giving the tensor expression in general
coordinate space as

d𝜀𝑝
𝑖𝑗
=

3

∑

𝑘=1

𝜆
𝑘

𝜕Φ
𝑘

𝜕𝜎
𝑖𝑗

. (15)

Similarly, d𝜀p can also be expressed in strain space. Let
Ψ
1
, Ψ
2
, Ψ
3
be three linearly independent potential functions

in principal strain space, and the following expression is
obtained:

d𝜀𝑝
𝑖𝑗
=

3

∑

𝑘=1

𝜇
𝑘

𝜕Ψ
𝑘

𝜕𝜀
𝑖𝑗

. (16)

Define the plastic stress increment as

{d𝜎𝑝} = [𝐷
𝑒
] {d𝜀𝑝} , (17)

where [𝐷
𝑒
] is the elastic stiffness matrix, and then the

expressions in stress space and strain space are

d𝜎𝑝
𝑖𝑗
=

3

∑

𝑘=1

𝛽
𝑘

𝜕𝐺
𝑘

𝜕𝜎
𝑖𝑗

, (18)

d𝜎𝑝
𝑖𝑗
=

3

∑

𝑘=1

𝛼
𝑘

𝜕𝐹
𝑘

𝜕𝜀
𝑖𝑗

. (19)

For the total stress and the total strain, consider the three
principal stresses and the three principal strains as vectors in
three-dimensional space with the same principal directions,
and the following expressions are obtained:

𝜎
𝑖𝑗
=

3

∑

𝑘=1

𝜂
𝑘

𝜕𝑊
𝑘

𝜕𝜀
𝑖𝑗

,

𝜀
𝑖𝑗
=

3

∑

𝑘=1

𝜒
𝑘

𝜕Ω
𝑘

𝜕𝜎
𝑖𝑗

,

(20)

where 𝑊
𝑘
, Ω
𝑘
(𝑖 = 1, 2, 3) are potential functions with lin-

early independent gradient vectors in strain space and stress
space, respectively.

4. Derivation of Constitutive Framework from
Tensor Theory

If 𝐴
𝑖𝑗

and 𝐸
𝑖𝑗

are symmetric second-order tensors with
the same principal directions, the following equations are
obtained according to tensor theory and vector fitting:

𝐴
𝑖𝑗
=

3

∑

𝑘=1

𝜆
𝑘

𝜕𝐼
𝐸𝑘

𝜕𝐸
𝑖𝑗

, (21)

𝐸
𝑖𝑗
=

3

∑

𝑘=1

𝛽
𝑘

𝜕𝐼
𝐴𝑘

𝜕𝐴
𝑖𝑗

, (22)

where 𝐼
𝐸𝑘
(𝑘 = 1, 2, 3) are three independent invariants of𝐸

𝑖𝑗
,

and 𝐼
𝐴𝑘
(𝑘 = 1, 2, 3) are three independent invariants of 𝐴

𝑖𝑗
.

For example, for the stress tensor 𝜎
𝑖𝑗
, the three independent

invariants can be 𝐼
𝜎1

= 𝜎
𝑖𝑖
, 𝐼
𝜎2

= (1/2)𝜎
𝑖𝑗
𝜎
𝑗𝑖
, 𝐼
𝜎3

=

(1/3)𝜎
𝑖𝑘
𝜎
𝑘𝑛
𝜎
𝑛𝑚
; 𝐼
𝜎1
= 𝑝, 𝐼
𝜎2
= 𝑞, 𝐼
𝜎3
= 𝜃; or 𝐼

𝜎1
= 𝜎
1
, 𝐼
𝜎2
= 𝜎
2
,

𝐼
𝜎3
= 𝜎
3
, where 𝑝 is the mean stress, 𝑞 is the deviatoric stress,

𝜃 is the Lode’s angle, and 𝜎
1
, 𝜎
2
, and 𝜎

3
are the three principal

stresses.
If 𝐴
𝑖𝑗
= d𝜀𝑝
𝑖𝑗
, 𝐸
𝑖𝑗
= 𝜎
𝑖𝑗
, 𝐼
𝜎𝑘
(𝑘 = 1, 2, 3) are invariants of

𝜎
𝑖𝑗
, it can be obtained from (21) that

d𝜀𝑝
𝑖𝑗
=

3

∑

𝑘=1

𝜆
𝑘

𝜕𝐼
𝜎𝑘

𝜕𝜎
𝑖𝑗

, (23)

which is equivalent to (15) when Φ
𝑘
= 𝐼
𝜎𝑘
.

If𝐴
𝑖𝑗
= d𝜀𝑝
𝑖𝑗
,𝐸
𝑖𝑗
= 𝜀
𝑖𝑗
, 𝐼
𝜀𝑘
(𝑘 = 1, 2, 3) are invariants of 𝜀

𝑖𝑗
,

then

d𝜀𝑝
𝑖𝑗
=

3

∑

𝑘=1

𝛼
𝑘

𝜕𝐼
𝜀𝑘

𝜕𝜀
𝑖𝑗

. (24)

If 𝐴
𝑖𝑗
= 𝜀
𝑖𝑗
, 𝐸
𝑖𝑗
= 𝜎
𝑖𝑗
, then

𝜎
𝑖𝑗
=

3

∑

𝑘=1

𝛽
𝑘

𝜕𝐼
𝜀𝑘

𝜕𝜀
𝑖𝑗

,

𝜀
𝑖𝑗
=

3

∑

𝑘=1

𝜆
𝑘

𝜕𝐼
𝜎𝑘

𝜕𝜎
𝑖𝑗

.

(25)

Equation (25) corresponds to (20), respectively, when𝑊
𝑘
=

𝐼
𝜀𝑘
, Ω
𝑘
= 𝐼
𝜎𝑘
.

Similarly, if 𝐴
𝑖𝑗
= Δ𝜀
𝑖𝑗
, 𝐸
𝑖𝑗
= Δ𝜎
𝑖𝑗
, then according to (21),

we have

Δ𝜀
𝑖𝑗
=

3

∑

𝑘=1

𝜆
𝑘

𝜕𝐼
𝜎𝑘

𝜕 (Δ𝜎
𝑖𝑗
)
. (26)

It should be noted that the derivations from vector field
theory and from tensor theory are actually coincident. The
potential functions in the derivation from vector field theory
are functions of invariants, which degenerate to tensor form
after composite derivation.

5. Elastoplastic Matrix in Stress Space

Without considering the effect of the Lode’s angle 𝜃 and
rotation of principal stress, the relations for the plastic strain
increment and stress increment are expressed as

d𝜀𝑝V = 𝐴d𝑝 + 𝐵d𝑞, (27a)

d𝜀𝑝 = 𝐶d𝑝 + 𝐷d𝑞, (27b)

where 𝐴, 𝐵, 𝐶, 𝐷 are parameters.
The following equation is obtained from the potential

functions Φ
1
= 𝑝, Φ

2
= 𝑞 in (15) without considering the

effect of the Lode’s angle:

d𝜀𝑝
𝑖𝑗
= 𝜆
1

𝜕𝑝

𝜕𝜎
𝑖𝑗

+ 𝜆
2

𝜕𝑞

𝜕𝜎
𝑖𝑗

. (28)
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In matrix form, this is

{d𝜀𝑝} = 𝜆
1
{
𝜕𝑝

𝜕𝜎
} + 𝜆
2
{
𝜕𝑞

𝜕𝜎
} . (29)

It is obvious that

𝜆
1
= d𝜀𝑝V , 𝜆

2
= d𝜀𝑝. (30)

According to (27a), (27b), (29), and (30),

{d𝜀𝑝} = (𝐴d𝑝 + 𝐵d𝑞) {
𝜕𝑝

𝜕𝜎
} + (𝐶d𝑝 + 𝐷d𝑞) {

𝜕𝑞

𝜕𝜎
} .

(31)

Since

d𝑝 = {
𝜕𝑝

𝜕𝜎
}

𝑇

{d𝜎} , d𝑞 = {
𝜕𝑞

𝜕𝜎
}

𝑇

{d𝜎} , (32)

it follows that

{d𝜀𝑝} = [𝐶𝜎
𝑝
] {d𝜎} , (33a)

[𝐶
𝜎

𝑝
] = 𝐴{

𝜕𝑝

𝜕𝜎
}{

𝜕𝑝

𝜕𝜎
}

𝑇

+ 𝐵{
𝜕𝑝

𝜕𝜎
}{

𝜕𝑞

𝜕𝜎
}

𝑇

+ 𝐶{
𝜕𝑞

𝜕𝜎
}{

𝜕𝑝

𝜕𝜎
}

𝑇

+ 𝐷{
𝜕𝑞

𝜕𝜎
}{

𝜕𝑞

𝜕𝜎
}

𝑇

,

(33b)

where [𝐶𝜎
𝑝
] is the plastic compliance matrix.

Since {d𝜀} = {d𝜀𝑒} + {d𝜀𝑝}, then

{d𝜀} = [𝐶𝜎
𝑒𝑝
] {d𝜎} , (34a)

where

[𝐶
𝜎

𝑒𝑝
] = [𝐶

𝑒
] + [𝐶

𝜎

𝑝
] . (34b)

[𝐶
𝑒
] is the elastic compliance matrix and [𝐶𝜎

𝑒𝑝
] is the elasto-

plastic compliance matrix.
Therefore, the elastoplastic model in stress space can

be established once the parameters 𝐴, 𝐵, 𝐶, and 𝐷 are
determined. Note that 𝐴, 𝐵, 𝐶, and 𝐷 are not constants,
which evolve with stress and strain, as presented in the
following sections.

6. Elastoplastic Matrix in Strain Space

According to (17), the plastic stress increment is defined as
{d𝜎𝑝} = [𝐷

𝑒
]{d𝜀𝑝}, where [𝐷

𝑒
] is the elastic matrix and {d𝜀𝑝}

is the plastic strain increment.
𝜀V, 𝜀, and𝜓 are three invariants of the strain tensor, where

𝜓 is the strain Lode’s angle. If we ignore the effect of Lode’s
angle and take 𝜀V and 𝜀 as potential functions, that is, 𝐹1 =
𝜀V, 𝐹2 = 𝜀 in (19), then

d𝜎𝑝
𝑖𝑗
= 𝜆
1

𝜕𝜀V

𝜕𝜀
𝑖𝑗

+ 𝜆
2

𝜕𝜀

𝜕𝜀
𝑖𝑗

. (35)

Written in matrix form,

{d𝜎𝑝} = 𝜆
1
{
𝜕𝜀V

𝜕𝜀
} + 𝜆
2
{
𝜕𝜀

𝜕𝜀
} . (36)

Obviously,

𝜆
1
= d𝑝𝑝, 𝜆

2
= d𝑞𝑝. (37)

From the definition of (17),

d𝑝𝑝 = 𝐾
𝑒
d𝜀𝑝V = 𝐾𝑒 (d𝜀V − d𝜀

𝑒

V) = 𝐾𝑒d𝜀V − d𝑝, (38a)

d𝑞𝑝 = 3𝐺
𝑒
d𝜀𝑝 = 3𝐺

𝑒
(d𝜀 − d𝜀𝑒) = 3𝐺

𝑒
d𝜀 − d𝑞, (38b)

where𝐾
𝑒
, 𝐺
𝑒
are the elastic bulkmodulus and shearmodulus.

Considering

d𝜀𝑒V =
1

𝐾
𝑒

d𝑝, (39a)

d𝜀𝑒 = 1

3𝐺
𝑒

d𝑞, (39b)

substituting (39a) and (39b) into (27a) and (27b) yields

d𝜀V = (
1

𝐾
𝑒

+ 𝐴) d𝑝 + 𝐵d𝑞, (40a)

d𝜀 = 𝐶d𝑝 + ( 1

3𝐺
𝑒

+ 𝐷) d𝑞. (40b)

It can now be calculated that

d𝑝 = 𝐴d𝜀V + 𝐵d𝜀, (41a)

d𝑞 = 𝐶d𝜀V + 𝐷d𝜀, (41b)

where

𝐴 =
1

|𝐴|
(𝐷 +

1

3𝐺
𝑒

) , 𝐵 = −
𝐵

|𝐴|
, 𝐶 = −

𝐶

|𝐴|
,

𝐷 =
1

|𝐴|
(𝐴 +

1

𝐾
𝑒

) ,

|𝐴| =
3𝐷𝐺
𝑒
+ 𝐴𝐾
𝑒
+ 1

3𝐾
𝑒
𝐺
𝑒

+ (𝐴𝐷 − 𝐵𝐶) .

(42)

Substituting (41a) and (41b) into (37), (38a), and (38b) gives

𝜆
1
= d𝑝𝑝 = (𝐾

𝑒
− 𝐴) d𝜀V − 𝐵d𝜀, (43a)

𝜆
2
= d𝑞𝑝 = −𝐶d𝜀V + (3𝐺𝑒 − 𝐷) d𝜀. (43b)

In addition,

d𝜀V = {
𝜕𝜀V

𝜕𝜀
}

𝑇

{d𝜀} , d𝜀 = {𝜕𝜀
𝜕𝜀
}

𝑇

{d𝜀} . (44)

Substituting (44) into (43a), (43b), and (36) yields

{d𝜎𝑝} = [𝐷𝜀
𝑝
] {d𝜀} , (45a)
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where

[𝐷
𝜀

𝑝
] = (𝐾

𝑒
− 𝐴){

𝜕𝜀V

𝜕𝜀
}{
𝜕𝜀V

𝜕𝜀
}

𝑇

− 𝐵{
𝜕𝜀V

𝜕𝜀
}{
𝜕𝜀

𝜕𝜀
}

𝑇

− 𝐶{
𝜕𝜀

𝜕𝜀
}{
𝜕𝜀V

𝜕𝜀
}

𝑇

+ (3𝐺
𝑒
− 𝐷){

𝜕𝜀

𝜕𝜀
}{
𝜕𝜀

𝜕𝜀
}

𝑇

,

(45b)

that is,

[𝐷
𝜀

𝑝
] =

1

|𝐴|
{𝛼𝐴{

𝜕𝜀V

𝜕𝜀
}{
𝜕𝜀V

𝜕𝜀
}

𝑇

+ 𝐵{
𝜕𝜀V

𝜕𝜀
}{
𝜕𝜀

𝜕𝜀
}

𝑇

+ 𝐶{
𝜕𝜀

𝜕𝜀
}{
𝜕𝜀V

𝜕𝜀
}

𝑇

+
𝐷

𝛼
{
𝜕𝜀

𝜕𝜀
}{
𝜕𝜀

𝜕𝜀
}

𝑇

} ,

(45c)

where 𝛼 = 𝐾
𝑒
/3𝐺
𝑒
= 2(1+𝜇

𝑒
)/9(1−2𝜇

𝑒
), and 𝜇

𝑒
is the elastic

Poisson ratio.
Hence, the total stress increment can be expressed as

{d𝜎} = [𝐷𝑒] {d𝜀
𝑒
} = [𝐷

𝑒
] ({d𝜀} − {d𝜀𝑝})

= [𝐷
𝑒
] {d𝜀} − {d𝜎𝑝} = [𝐷𝑒] {d𝜀} − [𝐷

𝜀

𝑝
] {d𝜀}

= [𝐷
𝜀

𝑒𝑝
] {d𝜀} ,

(46a)

where

[𝐷
𝜀

𝑒𝑝
] = [𝐷

𝑒
] − [𝐷

𝜀

𝑝
] . (46b)

Theduality of stress and strain is evident in (45a), (45b), (45c),
(33a), and (33b).

It should be noted that it is practically impossible to
obtain the total strain in soil, and thus the elastoplastic
matrix in stress space is more applicable. However, if we
could further extend the framework to the space of strain
increment, the practicability becomes promising.

7. Relationship with Traditional
Elastoplastic Model

7.1. General Form. The elastoplastic compliance matrix of the
traditional elastoplastic model is

[𝐶
𝜎

𝑒𝑝
] = [𝐶

𝑒
] +

1

𝐴
𝐻

{
𝜕𝑔

𝜕𝜎
}{

𝜕𝑓

𝜕𝜎
}

𝑇

, (47)

where 𝑓 and 𝑔 are the yield function and plastic potential
function, 𝐴

𝐻
= −𝜕𝑓/𝜕𝐻{𝜕𝐻/𝜕𝜀

𝑝
}
𝑇
{𝜕𝑔/𝜕𝜎} is the plastic

hardening modulus, and𝐻 is the hardening parameter.
𝑓 and 𝑔 are usually expressed in terms of the stress

invariants, 𝑝, 𝑞, 𝜃. If the effect of the Lode’s angle 𝜃 is not
considered, the expression only concerns 𝑝 and 𝑞, that is,

{
𝜕𝑓

𝜕𝜎
} =

𝜕𝑓

𝜕𝑝
{
𝜕𝑝

𝜕𝜎
} +

𝜕𝑓

𝜕𝑞
{
𝜕𝑞

𝜕𝜎
} , (48a)

{
𝜕𝑔

𝜕𝜎
} =

𝜕𝑔

𝜕𝑝
{
𝜕𝑝

𝜕𝜎
} +

𝜕𝑔

𝜕𝑞
{
𝜕𝑞

𝜕𝜎
} . (48b)

Substituting (48a) and (48b) into (47), we have

[𝐶
𝜎

𝑒𝑝
]

= [𝐶
𝑒
] +

1

𝐴
𝐻

× {
𝜕𝑔

𝜕𝑝

𝜕𝑓

𝜕𝑝
{
𝜕𝑝

𝜕𝜎
}{

𝜕𝑝

𝜕𝜎
}

𝑇

+
𝜕𝑔

𝜕𝑝

𝜕𝑓

𝜕𝑞
{
𝜕𝑝

𝜕𝜎
}{

𝜕𝑞

𝜕𝜎
}

𝑇

+
𝜕𝑔

𝜕𝑞

𝜕𝑓

𝜕𝑝
{
𝜕𝑞

𝜕𝜎
}{

𝜕𝑝

𝜕𝜎
}

𝑇

+
𝜕𝑔

𝜕𝑞

𝜕𝑓

𝜕𝑞
{
𝜕𝑞

𝜕𝜎
}{

𝜕𝑞

𝜕𝜎
}

𝑇

} .

(49)

Comparing this with (33a), (33b), (34a), and (34b), it follows
that

𝐴 =
1

𝐴
𝐻

𝜕𝑔

𝜕𝑝

𝜕𝑓

𝜕𝑝
, 𝐵 =

1

𝐴
𝐻

𝜕𝑔

𝜕𝑝

𝜕𝑓

𝜕𝑞
,

𝐶 =
1

𝐴
𝐻

𝜕𝑔

𝜕𝑞

𝜕𝑓

𝜕𝑝
, 𝐷 =

1

𝐴
𝐻

𝜕𝑔

𝜕𝑞

𝜕𝑓

𝜕𝑞
.

(50a)

Equation (33a) and (33b) can be seen as a general formula for
traditional constitutive models, and (49) is a special form of
(33a) and (33b). For associated models, when 𝑓 = 𝑔,

𝐴 =
1

𝐴
𝐻

(
𝜕𝑓

𝜕𝑝
)

2

, 𝐵 = 𝐶 =
1

𝐴
𝐻

𝜕𝑓

𝜕𝑝

𝜕𝑓

𝜕𝑞
,

𝐷 =
1

𝐴
𝐻

(
𝜕𝑓

𝜕𝑞
)

2

.

(50b)

Most traditional constitutive models are to determine
the relationship between 𝑓, 𝑔 and 𝑝, 𝑞, which can be used
to calculate the four model parameters 𝐴, 𝐵, 𝐶, and 𝐷
indirectly. It can be seen from (50a) and (50b) that the
traditional nonassociated models actually assume that

𝐴𝐷 − 𝐵𝐶 = 0. (51a)

The associated models still need to satisfy (51a) and also
require

𝐵 = 𝐶. (51b)

Rewrite (27a) and (27b) into matrix form

{

d𝜀𝑝V
d𝜀𝑝
} = [

𝐴 𝐵

𝐶 𝐷
]{

d𝑝
d𝑞} . (52)

Clearly (51a) requires the determinant rank of the coef-
ficient matrix in (52) to be 1 or requires d𝜀𝑝V and d𝜀𝑝 to be
linearly correlated. Equation (51b) additionally requires the
coefficient matrix to be symmetric.

The traditional elastoplastic model in stress space can be
translated to strain space by the duality of (45a), (45b), (45c),
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(33a), and (33b). Substituting (50a) and (50b) into (42), (45a),
(45b), and (45c) yields the expression in strain space

[𝐷
𝜀

𝑒𝑝
]

= [𝐷
𝑒
] −

1

𝛽

× {𝛼
𝜕𝑔

𝜕𝑝

𝜕𝑓

𝜕𝑝
{
𝜕𝜀V

𝜕𝜀
}{
𝜕𝜀V

𝜕𝜀
}

𝑇

+
𝜕𝑔

𝜕𝑝

𝜕𝑓

𝜕𝑞
{
𝜕𝜀V

𝜕𝜀
}{
𝜕𝜀

𝜕𝜀
}

𝑇

+
𝜕𝑔

𝜕𝑞

𝜕𝑓

𝜕𝑝
{
𝜕𝜀V

𝜕𝜀
}{
𝜕𝜀

𝜕𝜀
}

𝑇

+
1

𝛼

𝜕𝑔

𝜕𝑞

𝜕𝑓

𝜕𝑞
{
𝜕𝜀

𝜕𝜀
}{
𝜕𝜀

𝜕𝜀
}

𝑇

} ,

(53a)
where

𝛽 = 𝐴
𝐻 |𝐴| =

1

3𝐺
𝑒

𝜕𝑔

𝜕𝑝

𝜕𝑓

𝜕𝑝
+
1

𝐾
𝑒

𝜕𝑔

𝜕𝑞

𝜕𝑓

𝜕𝑞
+
𝐴
𝐻

3𝐾
𝑒
𝐺
𝑒

. (53b)

Hence, the stiffness matrix of (53a) and (53b) is obtained
using 𝑓 and 𝑔 from the traditional constitutive models,
and the transformation from stress space to strain space is
thus achieved. Obviously, the transformation only changes
the mathematical calculation method of the coefficient and
elastoplastic matrices and has no influence on a particular
model itself or the loading-unloading criterion of the model.
Therefore, the transformation is applicable to all traditional
elastoplastic models.

7.2. Modified Cambridge Model. In the modified Cambridge
model,

𝑓 = 𝑔 = 𝑝 +
𝑞
2

𝑀2𝑝
− 𝑝
0
𝑒
(1+𝑒0)/(𝜆−𝜅)𝐻 = 0, (54)

and so
𝜕𝑓

𝜕𝑝
= 1 −

𝜂
2

𝑀2
,

𝜕𝑓

𝜕𝑞
=
2𝜂

𝑀2
,

𝐴
𝐻
=
1 + 𝑒
0

𝜆 − 𝜅
(1 −

𝜂
2

𝑀2
)𝑝
0
𝑒
(1+𝑒0)/(𝜆−𝜅)𝐻,

(55)

where 𝜂 = 𝑞/𝑝, 𝐻 is the hardening parameter (= 𝜀𝑝V , for the
modified Cambridge model),𝑀 is the stress ratio at critical
state, 𝑝

0
is the initial mean stress, 𝑒

0
is the initial void ratio,

𝜆 is the slope of the normal compression line (NCL), and 𝜅 is
the slope of the unloading line. The elastoplastic compliance
matrix in stress space is expressed as

[𝐶
𝜎

𝑒𝑝
] = [𝐶

𝑒
] +

1

𝐴
𝐻

× {(1 −
𝜂
2

𝑀2
)

2

{
𝜕𝑝

𝜕𝜎
}{

𝜕𝑝

𝜕𝜎
}

𝑇

+
2𝜂

𝑀2
(1 −

𝜂
2

𝑀2
){

𝜕𝑝

𝜕𝜎
}{

𝜕𝑞

𝜕𝜎
}

𝑇

+
2𝜂

𝑀2
(1 −

𝜂
2

𝑀2
){

𝜕𝑞

𝜕𝜎
}{

𝜕𝑝

𝜕𝜎
}

𝑇

+
4𝜂
2

𝑀4
{
𝜕𝑞

𝜕𝜎
}{

𝜕𝑞

𝜕𝜎
}

𝑇

} .

(56)

The elastoplastic stiffness matrix in strain space is

[𝐷
𝜀

𝑒𝑝
] = [𝐷

𝑒
] −

1

𝛽

× {
𝐾
𝑒

3𝐺
𝑒

(1 −
𝜂
2

𝑀2
)

2

{
𝜕𝜀V

𝜕𝜀
}{
𝜕𝜀V

𝜕𝜀
}

𝑇

+
2𝜂

𝑀2
(1 −

𝜂
2

𝑀2
){

𝜕𝜀V

𝜕𝜀
}{
𝜕𝜀

𝜕𝜀
}

𝑇

+
2𝜂

𝑀2
(1 −

𝜂
2

𝑀2
){

𝜕𝜀V

𝜕𝜀
}{
𝜕𝜀

𝜕𝜀
}

𝑇

+
3𝐺
𝑒

𝐾
𝑒

4𝜂
2

𝑀4
{
𝜕𝜀

𝜕𝜀
}{
𝜕𝜀

𝜕𝜀
}

𝑇

} ,

(57a)

where

𝛽 =
1

3𝐺
𝑒

(1 −
𝜂
2

𝑀2
)

2

+
1

𝐾
𝑒

4𝜂
2

𝑀4
+
𝐴
𝐻

3𝐺
𝑒
𝐾
𝑒

. (57b)

A new hardening parameter for the modified Cambridge
model was proposed by Yao et al. [12] as

𝐻 = ∫ d𝐻 = ∫
𝑀
4

𝑓
− 𝜂
4

𝑀4 − 𝜂4
d𝜀𝑝V = ∫

1

Ω
d𝜀𝑝V . (58a)

in which

Ω =
𝑀
4
− 𝜂
4

𝑀4
𝑓
− 𝜂4

, (58b)

where𝑀
𝑓
is the potential failure stress ratio.

Yao improved the modified Cambridge model by replac-
ing 𝐻 = 𝜀

𝑝

V with (58a) and (58b), which changes 𝐴
𝐻
in the

modified Cambridge model to (1/Ω)𝐴
𝐻
. The improved con-

stitutive model is a unified hardening model and is suitable
for sandy soil, which actually replaces {d𝜀𝑝} by Ω{d𝜀𝑝} with
(49), or the following expression with (52):

d𝜀𝑝V
d𝜀𝑝V
󵄨󵄨󵄨󵄨󵄨𝑐

=
d𝜀𝑝

d𝜀𝑝󵄨󵄨󵄨󵄨𝑐
= Ω =

𝑀
4
− 𝜂
4

𝑀4
𝑓
− 𝜂4

, (59)

where d𝜀𝑝V |𝑐, d𝜀
𝑝
|
𝑐
are the volumetric strain and shear strain,

respectively, that are calculated by the modified Cambridge
model.

This modification can be further improved. For instance,
the volumetric strain and shear strain of triaxial testing are
first calculated by the modified Cambridge model, and then
the ratio of the volumetric strain and shear strain can be fitted
according to the test results, that is

d𝜀𝑝V
d𝜀𝑝V
󵄨󵄨󵄨󵄨󵄨𝑐

= 𝜉 (𝑝, 𝑞) ,
d𝜀𝑝

d𝜀𝑝󵄨󵄨󵄨󵄨𝑐
= 𝜁 (𝑝, 𝑞) . (60)

Therefore, (52) is modified to

{

d𝜀𝑝V
d𝜀𝑝
} = [

𝜉𝐴 𝜉𝐵

𝜁𝐶 𝜁𝐷
]{

d𝑝
d𝑞} . (61)

𝜉 and 𝜁 can be estimated by polynomial fitting or other
fitting methods. Yao’s hardening model is obtained when 𝜉 =
𝜁 = (𝑀

4
− 𝜂
4
)/(𝑀
4

𝑓
− 𝜂
4
).
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The above-mentioned modification method can be
extended to other elastoplastic models.The correction coeffi-
cients 𝜉 and 𝜁 can be fitted based on the triaxial testing results
or other testing results. The obtained matrix can improve the
calculation accuracy of existing elastoplastic models or be
used to establish new modified models. Note that there is
no physical mechanism involved in the framework, and thus
the loading-unloading criterion and the evolution of internal
state variables of the original model should still be employed
in the modified one.

8. Application: A Simple Model

Theoretically, the constitutive model of soil would be estab-
lished if the parameters𝐴, 𝐵, 𝐶, and 𝐷 in (27a), (27b), (33a),
and (33b) are obtained by experiments such as conventional
triaxial test, isotropic compression test, and 𝑝 = Const. test.

For example, the equations for the tangent modulus 𝐸
𝑡

and tangential Poisson ratio 𝜇
𝑡
are obtained by fitting the

curve from triaxial testing, that is

𝐸
𝑡
=
𝜕 (𝜎
1
− 𝜎
3
)

𝜕𝜀
1

, (62a)

𝜇
𝑡
= −

𝜕𝜀
3

𝜕𝜀
1

=
1

2
(1 −

𝜕𝜀V

𝜕𝜀
1

) . (62b)

𝐸
𝑡
and 𝜇

𝑡
can be curve fitted by a polynomial or by

the formulae in the Duncan-Chang E-𝜇model [1]. However,
two supplementary equations are needed as there are four
unknown parameters in (27a) and (27b). Therefore, an
isotropic compression test or 𝑝 = Const. test should be
conducted, or the assumptions 𝐴𝐷 − 𝐵𝐶 = 0 and 𝐵 = 𝐶

are made.
In conventional triaxial test, 𝜎

3
= Const, d𝑝 = (1/3)d𝜎

1
,

d𝑞 = d𝜎
1
, d𝜀V = d𝜀

1
+ d𝜀
2
+ d𝜀
3
= (1 − 2𝜇

𝑡
)d𝜀
1
, and d𝜀 =

(2/3)(1 + 𝜇
𝑡
)d𝜀
1
. According to (62a), (62b), (27a), and (27b)

and the assumption in (51a) and (51b), we have

𝐴 =

𝐾
2

𝑒𝑝

𝜔
, 𝐵 = 𝐶 =

𝐾
𝑒𝑝
𝐺
𝑒𝑝

𝜔
, 𝐷 =

𝐺
2

𝑒𝑝

𝜔
, (63a)

where

𝐾
𝑒𝑝
=
1 − 2𝜇

𝑡

𝐸
𝑡

−
1 − 2𝜇

𝑒

𝐸
𝑒

,

𝐺
𝑒𝑝
=
2 (1 + 𝜇

𝑡
)

3𝐸
𝑡

−
2 (1 + 𝜇

𝑒
)

3𝐸
𝑒

,

𝜔 = 𝐺
𝑒𝑝
+
1

3
𝐾
𝑒𝑝
=
1

𝐸
𝑡

−
1

𝐸
𝑒

.

(63b)

𝐸
𝑒
is the elastic modulus, and the elastic Poisson ratio 𝜇

𝑒
is

generally taken as 0.3 for soil. It is obvious that𝜔 > 0 is always
fulfilled in (63a) and (63b).

By substituting (63a) and (63b) into (33a), (33b), or (35),
the elastoplastic compliance matrix in stress space or the
stiffness matrix in strain space is obtained. For convenience,
we call this model the multiple potential surface model (MPS
model).

It should be noted that, contrary to the Duncan-Chang
model (DC model), 𝐸

𝑡
and 𝜇

𝑡
in the MPS model are not
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Figure 1: Calculation and test results for triaxial test of Ottawa silica
sand.

limited by the generalizedHooke’s law; that is, theMPSmodel
is still available when 𝜇

𝑡
> 0.5 and the stiffness matrix of the

model is not singular. Actually, 𝐸
𝑡
and 𝜇

𝑡
in the new model

are not the traditional modulus and Poisson ratio, but just the
slope of the curves.

Figure 1 shows the calculation and test results for triaxial
testing of Ottawa silica sand conducted by Wu [37]. The
unit weight of the sand is 16.8 kN/m3 (=107 pcf). The test
is a conventional consolidated-drained triaxial compression
test (CD test). The confining pressures were 68.9, 206.7, and
344.5 kPa (= 10, 30, and 50 psi, resp.). During the CD test,
confining pressure was firstly applied and then the specimen
was consolidated. Deviation stress (𝜎

1
− 𝜎
3
) was applied in

the axial direction after consolidation. Variations of deviation
stress and volumetric strain versus axial strain can be acquired
in the test.

The calculations were made using the MPS model as well
as the Duncan-Chang model, during which 𝐸

𝑡
, 𝐸
𝑒
, and 𝜇

𝑡

were calculated by the method proposed by Duncan and
Chang [1], that is

𝐸
𝑡
= [1 −

𝑅
𝑓
(1 − sin𝜙) (𝜎

1
− 𝜎
3
)

2𝑐 cos𝜙 + 2𝜎
3
sin𝜙

]

2

𝐾𝑃
𝑎
(
𝜎
3

𝑃
𝑎

)

𝑛

,

𝐸
𝑒
= 𝐾
𝑢𝑟
𝑃
𝑎
(
𝜎
3

𝑃
𝑎

)

𝑛

,

(64)
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Figure 2: Calculation and test results for triaxial test of rockfill material.

𝜇
𝑡
=
𝐺 − 𝐹𝑙𝑔 (𝜎

3
/𝑃
𝑎
)

(1 − 𝐴∗)
2

, (65a)

𝐴
∗
=

𝐷 (𝜎
1
− 𝜎
3
)

𝐾𝑃
𝑎
(𝜎
3
/𝑃
𝑎
)
𝑛
[1 − 𝑅

𝑓
(1 − sin𝜙) (𝜎

1
− 𝜎
3
) / (2𝑐 cos𝜙 + 2𝜎

3
sin𝜙)]

, (65b)

where 𝑐 is the cohesion of the soil, 𝜙 is the friction angle of
the soil, 𝑃

𝑎
is the atmospheric pressure, 100 kPa; 𝐾, 𝐾

𝑢𝑟
, 𝑛,

𝑅
𝑓
, 𝐺, 𝐹, and𝐷 are parameters.
The parameters in the calculation are taken as 𝑐 = 0 kPa,

𝜙 = 38
∘, 𝐾 = 1116, 𝐾

𝑢𝑟
= 1500, 𝑛 = 0.65, 𝑅

𝑓
= 0.88,𝐹 = 0,

and 𝐷 = 0, which are the same for both the DC and MPS
models.The value of𝐺 for theDCmodel is taken as 0.45while
for theMPSmodel it is 0.8, which is larger than 0.5. Although
the calculation results for deviation stress are identical for the
two models, the MPS model can reproduce the dilation of
soil. Because of the limitation that 𝜇

𝑡
< 0.5 in the DC model,

the dilatation of soil is not revealed and 𝜀V < 0 is not achieved.
Figure 2 shows the calculation and test results of

consolidated-drained triaxial compression test (CD test) of
a rock-fill material from Hengshan Dam in China. The unit
weight of the material is 20.7 kN/m3. The confining pressures
were 300, 500, and 800 kPa, respectively.

The parameters for 𝐸
𝑡
are 𝑐 = 178 kPa, 𝜙 = 40.4∘, K =

1915,𝐾
𝑢𝑟
= 2490, 𝑛 = 0.18, and 𝑅

𝑓
= 0.85, which are also the

same for both the DC andMPSmodels. 𝜇
𝑡
in the DCmodel is

still calculated using (65a) and (65b), and 𝐺 = 0.6, 𝐹 = 0.37,
and𝐷 = 0.023 in the calculation, while 𝜇

𝑡
in the MPS model

is calculated using the method proposed by Shen and Zhang
[38],

𝜇
𝑡
=
1

2
− 𝑐
𝑑
(
𝜎
3

𝑃
𝑎

)

𝑛𝑑 𝐸
𝑖
𝑅
𝑓

(𝜎
1
− 𝜎
3
)
𝑓

1 − 𝑅
𝑑

𝑅
𝑑

× (1 −
𝑅
𝑓
𝑆
𝑙

1 − 𝑅
𝑓
𝑆
𝑙

1 − 𝑅
𝑑

𝑅
𝑑

) ,

(66a)

𝐸
𝑖
= 𝐾𝑃

𝑎
(
𝜎
3

𝑃
𝑎

)

𝑛

, (66b)

in which 𝑆
𝑙
= (𝜎
1
−𝜎
3
)/(𝜎
1
−𝜎
3
)
𝑓
; (𝜎
1
−𝜎
3
)
𝑓
is the deviation

stress at failure, (2𝑐 cos𝜙 + 2𝜎
3
sin𝜙)/(1 − sin𝜙); 𝑐

𝑑
, 𝑛
𝑑
, and

𝑅
𝑑
are parameters; 𝑐

𝑑
= 0.000224, 𝑛

𝑑
= 2.24, and 𝑅

𝑑
= 0.85

in the calculation.
Again, the calculation results for deviation stress are

identical for the two models, while the MPS model repro-
duces the dilatation of soil giving better results than the DC
model. Obviously, more appropriate results of volumetric
strain can be acquired using the MPS model if we improve
the calculation method of 𝜇

𝑡
. However, this is impossible for

the DCmodel due to the limitation that 𝜇
𝑡
cannot exceed 0.5

for the nonlinear elastic model.
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9. Conclusions

The main tasks in establishing the constitutive equations for
geomaterials are the determination of stress-strain relations
in principal stress/strain space and the coordinate transfor-
mation of the relationship from principal stress/strain space
to general coordinate space. The stress (or strain) and stress
increment (or strain increment) in principal stress/strain
space is expressed as a vector in a potential field in traditional
elastic potential theory and plastic potential theory. However,
the vector can be expressed more generally as the gradient
vector of linearly independent potential functions. Based
on this framework, the traditional models can be easily
transformed from stress space to strain space and can be
modified in a general way. This framework can also be used
to establish new models based on curve fitting. Since it
investigates constitutivemodels from amathematical point of
view independent of the material itself and relevant physical
mechanism, the framework can be potentially used in a wider
range, not limited to geomaterials. However, the lack of phys-
ical insights of materials and constitutive models may also
hinder its development, for example, the constitutive model
based on the framework may be oversimplified.The loading-
unloading criteria as well as the evolutions of internal state
variables are not considered in the framework.Therefore, the
current framework ismainly useful formodifying the existing
models. In the next research, Lode’s angle and noncoaxiality
should also be investigated, and more test results are needed
to make the verification.
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