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The objective of this paper is to emphasize the role of “common limit range property” to ascertain the existence of common fixed
point in fuzzy metric spaces. Some illustrative examples are furnished which demonstrate the validity of the hypotheses and degree
of utility of our results. We derive a fixed point theorem for four finite families of self-mappings which can be utilized to derive
common fixed point theorems involving any finite number of mappings. As an application to our main result, we prove an integral-
type fixed point theorem in fuzzy metric space. Our results improve and extend a host of previously known results including the
ones contained in Imdad et al. (2012).

1. Introduction

In 1965, Zadeh [1] studied the concept of a fuzzy set in his
seminal paper. Thereafter, it was developed extensively by
many researchers, which also include interesting applications
of this theory in different fields. Fuzzy set theory has appli-
cations in applied sciences such as neural network theory,
stability theory, mathematical programming, modeling the-
ory, engineering sciences,medical sciences (medical genetics,
nervous system), image processing, control theory, and com-
munication. In 1975, Kramosil and Michálek [2] introduced
the concept of fuzzy metric space, which opened an avenue
for further development of analysis in such spaces. Further,
George andVeeramani [3]modified the concept of fuzzymet-
ric space introduced by Kramosil and Michálek [2] and also
have succeeded in inducing a Hausdorff topology on such a
fuzzy metric space which is often used in current research
these days. Most recently, Gregori et al. [4] showed several
interesting examples of fuzzy metrics in the sense of George
and Veeramani [3] and have also utilized such fuzzy metrics
to color image processing.

On the other hand, Mishra et al. [5] extended the notion
of compatible mappings to fuzzy metric spaces and proved
common fixed point theorems in presence of continuity of
at least one of the mappings, completeness of the underlying
space, and containment of the ranges amongst involved
mappings. Further, Singh and Jain [6] weakened the notion
of compatibility by using the notion of weakly compatible
mappings in fuzzy metric spaces and showed that every pair
of compatible mappings is weakly compatible, but reverse is
not true. Many mathematicians used different conditions on
self-mappings and proved several fixed point theorems for
contractions in fuzzy metric spaces (see [6–13]). However,
the study of common fixed points of noncompatible maps
is also of great interest according to Pant [14]. In 2002,
Aamri and El Moutawakil [15] defined a property (E.A.) for
self-mappings which contained the class of noncompatible
mappings in metric spaces. In a paper of Ali and Imdad [16],
it was pointed out that property (E.A.) allows replacing the
completeness requirement of the space with a more natural
condition of closedness of the range. Afterwards, Liu et al.
[17] defined a new property which contains the property
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(E.A.) and proved some common fixed point theorems under
hybrid contractive conditions. It was observed that the notion
of common property (E.A.) relatively relaxes the required
containment of the range of one mapping into the range of
other which is utilized to construct the sequence of joint
iterates. Subsequently, there are a number of results proved
for contraction mappings satisfying property (E.A.) and
common property (E.A.) in fuzzy metric spaces (see [18–
25]). In 2011, Sintunavarat and Kumam [26] coined the idea
of “common limit range property” (also see [27–33]) which
relaxes the condition of closedness of the underlying sub-
space. Recently, Imdad et al. [34] extended the notion of
common limit range property to two pairs of self-mappings
which relaxes the requirement on closedness of the subspaces.
Several common fixed point theorems have been proved by
many researchers in the framework of fuzzymetric spaces via
implicit relations (see [6, 22, 35]).

In this paper, we prove some common fixed point the-
orems for weakly compatible mappings with common limit
range property in fuzzy metric spaces which include fuzzy
metric spaces of two types, namely, Kramosil and Michálek
fuzzy metric spaces and George and Veeramani fuzzy metric
spaces. Some related results are also derived besides furnish-
ing illustrative examples. We also present some integral-type
common fixed point theorems in fuzzy metric spaces. Our
results improve, extend, and generalize a host of previously
known results existing in the literature.

2. Preliminaries

Definition 1 (see [36]). A binary operation∗ : [0, 1]×[0, 1] →
[0, 1] is said to be continuous 𝑡-norm if

(1) ∗ is commutative and associative;
(2) ∗ is continuous;
(3) 𝑎 ∗ 1 = 𝑎 for all 𝑎 ∈ [0, 1];
(4) 𝑎∗𝑏 ≤ 𝑐∗𝑑whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 for all 𝑎, 𝑏, 𝑐, 𝑑 ∈

[0, 1].

Examples of continuous 𝑡-norms are Lukasiewicz 𝑡-norm,
that is, 𝑎∗

𝐿
𝑏 = max{𝑎 + 𝑏 − 1, 0}, product 𝑡-norm, that is,

𝑎∗
𝑃
𝑏 = 𝑎𝑏, and minimum 𝑡-norm, that is, 𝑎∗

𝑀
𝑏 =

min{𝑎, 𝑏}.
The fuzzy metric space of Kramosil and Michálek [2] is

defined as follows.

Definition 2 (see [2]). The 3-tuple (𝑋,𝑀, ∗) is said to be
a KM-fuzzy metric space if 𝑋 is an arbitrary set, ∗ is a
continuous 𝑡-norm, and 𝑀 is a fuzzy set on 𝑋2

× [0,∞)

satisfying the following conditions: for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and
𝑡, 𝑠 > 0

(KM-1):𝑀(𝑥, 𝑦, 0) = 0;
(KM-2):𝑀(𝑥, 𝑦, 𝑡) = 1 if and only if 𝑥 = 𝑦;
(KM-3):𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡);
(KM-4):𝑀(𝑥, 𝑧, 𝑡 + 𝑠) ≥ 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠);
(KM-5):𝑀(𝑥, 𝑦, ⋅) : [0,∞) → [0, 1] is left continu-
ous.

Lemma 3 (see [37]). Let (𝑋,𝑀, ∗) be a fuzzy metric space.
Then𝑀(𝑥, 𝑦, ⋅) is nondecreasing on (0,∞) for all 𝑥, 𝑦 ∈ 𝑋.

The fuzzy metric space of George and Veeramani [3] is
defined as follows.

Definition 4 (see [3]). The 3-tuple (𝑋,𝑀, ∗) is said to be aGV-
fuzzy metric space if 𝑋 is an arbitrary set, ∗ is a continuous
𝑡-norm, and 𝑀 is a fuzzy set on 𝑋2

× (0,∞) satisfying the
following conditions: for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑡, 𝑠 > 0

(GV-1):𝑀(𝑥, 𝑦, 𝑡) > 0;
(GV-2):𝑀(𝑥, 𝑦, 𝑡) = 1 if and only if 𝑥 = 𝑦;
(GV-3):𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡);
(GV-4):𝑀(𝑥, 𝑧, 𝑡 + 𝑠) ≥ 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠);
(GV-5):𝑀(𝑥, 𝑦, ⋅) : (0,∞) → [0, 1] is continuous.

In view of (GV-1) and (GV-2), it is worth pointing out that
0 < 𝑀(𝑥, 𝑦, 𝑡) < 1 (for all 𝑡 > 0) provided 𝑥 ̸= 𝑦 (see [24]).

Example 5 (see [3]). Let (𝑋, 𝑑) be a metric space. Define𝑀 :

𝑋
2
× (0,∞) → [0, 1] as

𝑀(𝑥, 𝑦, 𝑡) =

𝑡

𝑡 + 𝑑 (𝑥, 𝑦)

(1)

for all𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0.Then (𝑋,𝑀, ∗) is aGV-fuzzymetric
space, where ∗ is the product 𝑡-norm (or minimum 𝑡-norm).
Indeed, we call this fuzzy metric𝑀 induced by metric 𝑑 the
standard fuzzy metric. Hence every metric space is a fuzzy
metric space.

Now we give some examples of fuzzy metric spaces
according to Gregori et al. [4].

Example 6 (see [4]). Let 𝑋 be a nonempty set, 𝑓 : 𝑋 → R+

a one-one function, and 𝑔 : R+
→ [0,∞) an increasing

continuous function. For fixed 𝛼, 𝛽 > 0, define 𝑀 : 𝑋
2
×

(0,∞) → [0, 1] as

𝑀(𝑥, 𝑦, 𝑡) = (

(min{𝑓(𝑥), 𝑓(𝑦)})𝛼 + 𝑔(𝑡)
(max{𝑓(𝑥), 𝑓(𝑦)})𝛼 + 𝑔(𝑡)

)

𝛽

, (2)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0. Then, (𝑋,𝑀, ∗) is a fuzzy metric
space on𝑋 wherein ∗ is the product 𝑡-norm.

Example 7 (see [4]). Let (𝑋, 𝑑) be a metric space and 𝑔 :

R+
→ [0,∞) an increasing continuous function. Define

𝑀 : 𝑋
2
× (0,∞) → [0, 1] as

𝑀(𝑥, 𝑦, 𝑡) = 𝑒
(−𝑑(𝑥,𝑦)/𝑔(𝑡))

, (3)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0. Then (𝑋,𝑀, ∗) is a fuzzy metric
space on𝑋 wherein ∗ is the product 𝑡-norm.

Example 8 (see [4]). Let (𝑋, 𝑑) be a bounded metric space
with 𝑑(𝑥, 𝑦) < 𝑘 (for all 𝑥, 𝑦 ∈ 𝑋, where 𝑘 is fixed constant
in (0,∞)) and 𝑔 : R+

→ (𝑘,∞) an increasing continuous
function. Define a function𝑀 : 𝑋

2
× (0,∞) → [0, 1] as

𝑀(𝑥, 𝑦, 𝑡) = 1 −

𝑑 (𝑥, 𝑦)

𝑔 (𝑡)

, (4)
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for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0. Then (𝑋,𝑀, ∗) is a fuzzy metric
space on𝑋 wherein ∗ is a Lukasiewicz 𝑡-norm.

Definition 9 (see [24]). A sequence {𝑥
𝑛
} in a KM- (or GV-)

fuzzy metric space (𝑋,𝑀, ∗) is said to be convergent to some
𝑥 ∈ 𝑋 if for all 𝑡 > 0 there is some 𝑛

0
∈ N such that

lim
𝑛→∞

𝑀(𝑥
𝑛
, 𝑥, 𝑡) = 1, (5)

for all 𝑛 ≥ 𝑛
0
.

Lemma 10 (see [24]). If (𝑋,𝑀, ∗) is a KM-fuzzy metric space
and {𝑥

𝑛
}, {𝑦

𝑛
} are sequences in𝑋 such that 𝑥

𝑛
→ 𝑥, 𝑦

𝑛
→ 𝑦,

then𝑀(𝑥
𝑛
, 𝑦

𝑛
, 𝑡) → 𝑀(𝑥, 𝑦, 𝑡) for every continuity point 𝑡 of

𝑀(𝑥, 𝑦, ⋅).

Definition 11 (see [5]). A pair (𝐴, 𝑆) of self-mappings of aKM-
(or GV-) fuzzymetric space (𝑋,𝑀, ∗) is said to be compatible
if for all 𝑡 > 0

lim
𝑛→∞

𝑀(𝐴𝑆𝑥
𝑛
, 𝑆𝐴𝑥

𝑛
, 𝑡) = 1, (6)

whenever {𝑥
𝑛
} is a sequence in 𝑋 such that lim

𝑛→∞
𝐴𝑥

𝑛
=

lim
𝑛→∞

𝑆𝑥
𝑛
= 𝑧 for some 𝑧 ∈ 𝑋.

Definition 12 (see [5]). A pair (𝐴, 𝑆) of self-mappings of a
KM- (or GV-) fuzzy metric space (𝑋,𝑀, ∗) is said to be
noncompatible if there exists at least one sequence {𝑥

𝑛
} in 𝑋

such that lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= 𝑧 for some 𝑧 ∈ 𝑋

but lim
𝑛→∞

𝑀(𝐴𝑆𝑥
𝑛
, 𝑆𝐴𝑥

𝑛
, 𝑡) ̸= 1 or nonexistent for at least

one 𝑡 > 0.

Definition 13 (see [38]). A pair (𝐴, 𝑆) of self-mappings of a
nonempty set 𝑋 is said to be weakly compatible (or coinci-
dentally commuting) if they commute at their coincidence
points; that is, if 𝐴𝑧 = 𝑆𝑧 for some 𝑧 ∈ 𝑋, then 𝐴𝑆𝑧 = 𝑆𝐴𝑧.

Remark 14 (see [38]). Two compatible self-mappings are
weakly compatible, but the converse is not true.Therefore the
concept of weak compatibility is more general than that of
compatibility.

Definition 15 (see [18]). A pair (𝐴, 𝑆) of self-mappings of a
KM- (or GV-) fuzzy metric space (𝑋,𝑀, ∗) is said to satisfy
the property (E.A.) if there exists a sequence {𝑥

𝑛
} in 𝑋 such

that for all 𝑡 > 0

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= 𝑧, (7)

for some 𝑧 ∈ 𝑋.

Note that weak compatibility and property (E.A.) are
independent of each other (see [39, Examples 2.1-2.2]).

Remark 16. In view of Definition 15, a pair of noncompatible
mappings of a KM- (or GV-) fuzzy metric space (𝑋,𝑀, ∗)
satisfies the property (E.A.), but the converse need not be true
(see [39, Remark 4.8 ]).

Definition 17 (see [18]). Two pairs (𝐴, 𝑆) and (𝐵, 𝑇) of self-
mappings of a KM- (or GV-) fuzzymetric space (𝑋,𝑀, ∗) are

said to satisfy the common property (E.A.) if there exist two
sequences {𝑥

𝑛
}, {𝑦

𝑛
} in𝑋 such that for all 𝑡 > 0

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= lim

𝑛→∞
𝐵𝑦

𝑛
= lim

𝑛→∞
𝑇𝑦

𝑛
= 𝑧, (8)

for some 𝑧 ∈ 𝑋.

Definition 18 (see [26]). A pair (𝐴, 𝑆) of self-mappings of a
KM- (or GV-) fuzzy metric space (𝑋,𝑀, ∗) is said to satisfy
the common limit range property with respect to mapping 𝑆
(briefly, (CLR

𝑆
) property) if there exists a sequence {𝑥

𝑛
} in𝑋

such that for all 𝑡 > 0
lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= 𝑧, (9)

where 𝑧 ∈ 𝑆(𝑋).

Definition 19 (see [27]). Two pairs (𝐴, 𝑆) and (𝐵, 𝑇) of self-
mappings of a KM- (or GV-) fuzzymetric space (𝑋,𝑀, ∗) are
said to satisfy the common limit range property with respect
to mappings 𝑆 and 𝑇 (briefly, (CLR

𝑆𝑇
) property) if there exist

two sequences {𝑥
𝑛
}, {𝑦

𝑛
} in𝑋 such that for all 𝑡 > 0

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= lim

𝑛→∞
𝐵𝑦

𝑛
= lim

𝑛→∞
𝑇𝑦

𝑛
= 𝑧, (10)

where 𝑧 ∈ 𝑆(𝑋) ∩ 𝑇(𝑋).

Remark 20. If 𝐴 = 𝐵 and 𝑆 = 𝑇, then Definition 19 implies
(CLR

𝑆
) property (that is, Definition 18) according to Sintu-

navarat and Kumam [26].

Now we show that the (CLR
𝑆𝑇
) property implies the

common property (E.A.), but converse is not true. In this
regard, see the following example.

Example 21. Let (𝑋,𝑀, ∗) be a fuzzymetric space, where𝑋 =
[2, 11], with product 𝑡-norm defined as 𝑎∗

𝑃
𝑏 = 𝑎𝑏 for all

𝑎, 𝑏 ∈ [0, 1] and

𝑀(𝑥, 𝑦, 𝑡) =

𝑡

𝑡 +
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

, (11)

for all 𝑡 > 0 and 𝑥, 𝑦 ∈ 𝑋. Define the self-mappings 𝐴, 𝐵, 𝑆
and 𝑇 by

𝐴 (𝑥) =

{
{
{

{
{
{

{

3, if 𝑥 = 2,
5, if 2 < 𝑥 ≤ 7,
𝑥 + 1

2

, if 𝑥 > 7,

𝐵 (𝑥) =

{
{
{

{
{
{

{

6, if 𝑥 = 2,
𝑥 + 6

2

, if 2 < 𝑥 ≤ 7,
7, if 𝑥 > 7,

𝑆 (𝑥) =

{
{
{

{
{
{

{

3, if 𝑥 = 2,
2, if 2 < 𝑥 ≤ 7,
2𝑥 + 6

5

, if 𝑥 > 7,

𝑇 (𝑥) =

{
{

{
{

{

7, if 𝑥 = 2,
𝑥 + 2, if 2 < 𝑥 ≤ 7,
8, if 𝑥 > 7.

(12)
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Then we have 𝐴(𝑋) = {3} ∪ (4, 6], 𝐵(𝑋) = (4, 13/2] ∪ {7},
𝑆(𝑋) = {2, 3} ∪ (4, 28/5], and 𝑇(𝑋) = (4, 9].

Let us consider two sequences {𝑥
𝑛
} = {7 + (1/𝑛)} and

{𝑦
𝑛
} = {2 + (1/𝑛)} in𝑋; one can verify that

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= lim

𝑛→∞
𝐵𝑦

𝑛
= lim

𝑛→∞
𝑇𝑦

𝑛
= 4 ∈ 𝑋, (13)

but 4 ∉ 𝑆(𝑋)∩𝑇(𝑋). Hence both pairs (𝐴, 𝑆) and (𝐵, 𝑇) do not
satisfy the (CLR

𝑆𝑇
) property while they satisfy the common

property (E.A.).

Proposition 22. If the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy the
common property (E.A.) and 𝑆(𝑋) and 𝑇(𝑋) are closed subsets
of𝑋, then the pairs also share the (𝐶𝐿𝑅

𝑆𝑇
) property.

Definition 23 (see [40]). Let {𝐴
𝑖
}
𝑚

𝑖=1
and {𝑆

𝑘
}
𝑛

𝑘=1
be two

families of self-mappings. The pair of families (𝐴
1
𝐴

2
⋅ ⋅ ⋅

𝐴
𝑚
, 𝑆

1
𝑆
2
⋅ ⋅ ⋅ 𝑆

𝑘
) is said to be pairwise commuting if

(1) 𝐴
𝑖
𝐴

𝑗
= 𝐴

𝑗
𝐴

𝑖
for all 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑚};

(2) 𝑆
𝑘
𝑆
𝑙
= 𝑆

𝑙
𝑆
𝑘
for all 𝑘, 𝑙 ∈ {1, 2, . . . , 𝑛};

(3) 𝐴
𝑖
𝑆
𝑘
= 𝑆

𝑘
𝐴

𝑖
for all 𝑖 ∈ {1, 2, . . . , 𝑚} and 𝑘 ∈ {1, 2,

. . . , 𝑛}.

3. Main Results

Our results involve classΦ of all mappings 𝜙 : [0, 1] → [0, 1]

satisfying the following properties:

(𝜙
1
): 𝜙 is continuous and nondecreasing on [0, 1];

(𝜙
2
): 𝜙(𝑠) > 𝑠 for all 𝑠 ∈ (0, 1).

We note that if 𝜙 ∈ Φ, then 𝜙(1) = 1, and that 𝜙(𝑠) ≥ 𝑠 for
all 𝑠 ∈ [0, 1].

3.1. Fixed Point Theorems in KM-Fuzzy Metric Spaces. We
beginwith the following observation before proving ourmain
result.

Lemma 24. Let𝐴, 𝐵, 𝑆, and 𝑇 be four self-mappings of a KM-
fuzzy metric space (𝑋,𝑀, ∗). Suppose that

(1) the pair (𝐴, 𝑆)(or (𝐵, 𝑇)) satisfies the (𝐶𝐿𝑅
𝑆
) (or

(𝐶𝐿𝑅
𝑇
)) property;

(2) 𝐴(𝑋) ⊂ 𝑇(𝑋) (or 𝐵(𝑋) ⊂ 𝑆(𝑋));
(3) 𝑇(𝑋) (or 𝑆(𝑋)) is a closed subset of𝑋;
(4) 𝐵(𝑦

𝑛
) converges for every sequence {𝑦

𝑛
} in𝑋 whenever

𝑇(𝑦
𝑛
) converges (or𝐴(𝑥

𝑛
) converges for every sequence

{𝑥
𝑛
} in𝑋 whenever 𝑆(𝑥

𝑛
) converges);

(5) for all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦 there exists 𝑡 > 0: 0 < 𝑀(𝑥,

𝑦, 𝑡) < 1, for some 𝜙 ∈ Φ,

𝑀(𝐴𝑥, 𝐵𝑦, 𝑡)

≥ 𝜙(min{𝑀(𝑆𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐴𝑥, 𝑆𝑥, 𝑡) ,𝑀 (𝐵𝑦, 𝑇𝑦, 𝑡) ,

𝑀 (𝐴𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐵𝑦, 𝑆𝑥, 𝑡)

}) .

(14)

Then the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy the (𝐶𝐿𝑅
𝑆𝑇
) prop-

erty.

Proof. If the pair (𝐴, 𝑆) enjoys the (CLR
𝑆
) property, then there

exists a sequence {𝑥
𝑛
} in𝑋 such that

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= 𝑧, (15)

where 𝑧 ∈ 𝑆(𝑋). By (2), 𝐴(𝑋) ⊂ 𝑇(𝑋), and for each sequence
{𝑥

𝑛
}, there exists a sequence {𝑦

𝑛
} in 𝑋 such that 𝐴𝑥

𝑛
= 𝑇𝑦

𝑛
.

Therefore, due to the closedness of 𝑇(𝑋),

lim
𝑛→∞

𝑇𝑦
𝑛
= lim

𝑛→∞
𝐴𝑥

𝑛
= 𝑧, (16)

so that 𝑧 ∈ 𝑇(𝑋) and in all 𝑧 ∈ 𝑆(𝑋) ∩ 𝑇(𝑋). Thus, we have
𝐴𝑥

𝑛
→ 𝑧, 𝑆𝑥

𝑛
→ 𝑧, and 𝑇𝑦

𝑛
→ 𝑧 as 𝑛 → ∞. By (4),

sequence {𝐵𝑦
𝑛
} converges and in all we need to show that

𝐵𝑦
𝑛
→ 𝑧 as 𝑛 → ∞. Suppose that 𝐵𝑦

𝑛
→ 𝑧

󸀠
( ̸= 𝑧) as

𝑛 → ∞, and then using inequality (14) with 𝑥 = 𝑥
𝑛
, 𝑦 = 𝑦

𝑛
,

we have

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦

𝑛
, 𝑡)

≥ 𝜙(min
{

{

{

𝑀(𝑆𝑥
𝑛
, 𝑇𝑦

𝑛
, 𝑡) ,𝑀 (𝐴𝑥

𝑛
, 𝑆𝑥

𝑛
, 𝑡) ,

𝑀 (𝐵𝑦
𝑛
, 𝑇𝑦

𝑛
, 𝑡) ,

𝑀 (𝐴𝑥
𝑛
, 𝑇𝑦

𝑛
, 𝑡) ,𝑀 (𝐵𝑦

𝑛
, 𝑆𝑥

𝑛
, 𝑡)

}

}

}

) .

(17)

Taking the limit as 𝑛 → ∞ and using Lemma 10, we get

𝑀(𝑧, 𝑧
󸀠
, 𝑡)

≥ 𝜙(min{
𝑀(𝑧, 𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝑧

󸀠
, 𝑧, 𝑡) ,

𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝑧
󸀠
, 𝑧, 𝑡)

})

(18)

or, equivalently,

𝑀(𝑧, 𝑧
󸀠
, 𝑡) ≥ 𝜙 (𝑀(𝑧

󸀠
, 𝑧, 𝑡)) . (19)

As 𝑧 ̸= 𝑧
󸀠, we have 0 < 𝑀(𝑧, 𝑧

󸀠
, 𝑡

0
) < 1 for some 𝑡

0
>

0. Then, in view of condition (𝜙
2
), we get 𝜙(𝑀(𝑧, 𝑧󸀠, 𝑡

0
)) >

𝑀(𝑧, 𝑧
󸀠
, 𝑡

0
), which is a contradiction, thereby implying 𝑧 = 𝑧󸀠

which shows that the pairs (𝐴, 𝑆) and (𝐵, 𝑇) enjoy the (CLR
𝑆𝑇
)

property.

Remark 25. The converse of Lemma 24 is not true in general.
For counterexamples, one can see Examples 27 and 30.

Theorem26. Let𝐴,𝐵, 𝑆, and𝑇 be four self-mappings of aKM-
fuzzymetric space (𝑋,𝑀, ∗) satisfying inequality (14). Suppose
that the pairs (𝐴, 𝑆) and (𝐵, 𝑇) enjoy the (𝐶𝐿𝑅

𝑆𝑇
) property.

Then the pairs (𝐴, 𝑆) and (𝐵, 𝑇) have a coincidence point each.
Moreover, 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common fixed point
provided both pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible.

Proof. Since the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy the (CLR
𝑆𝑇
)

property, there exist two sequences {𝑥
𝑛
} and {𝑦

𝑛
} in 𝑋 such

that

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= lim

𝑛→∞
𝐵𝑦

𝑛
= lim

𝑛→∞
𝑇𝑦

𝑛
= 𝑧, (20)
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where 𝑧 ∈ 𝑆(𝑋) ∩ 𝑇(𝑋). Since 𝑧 ∈ 𝑆(𝑋), there exists a point
𝑢 ∈ 𝑋 such that 𝑆𝑢 = 𝑧. We show that𝑀(𝐴𝑢, 𝑧, 𝑡) = 1. If not,
then using inequality (14) with 𝑥 = 𝑢, 𝑦 = 𝑦

𝑛
, we get

𝑀(𝐴𝑢, 𝐵𝑦
𝑛
, 𝑡)

≥ 𝜙(min
{

{

{

𝑀(𝑆𝑢, 𝑇𝑦
𝑛
, 𝑡) ,𝑀 (𝐴𝑢, 𝑆𝑢, 𝑡) ,

𝑀 (𝐵𝑦
𝑛
, 𝑇𝑦

𝑛
, 𝑡) ,

𝑀 (𝐴𝑢, 𝑇𝑦
𝑛
, 𝑡) ,𝑀 (𝐵𝑦

𝑛
, 𝑆𝑢, 𝑡)

}

}

}

) ,

(21)

which, on making 𝑛 → ∞ and using Lemma 10, reduces to

𝑀(𝐴𝑢, 𝑧, 𝑡)

≥ 𝜙 (min {𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝐴𝑢, 𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡) ,

𝑀 (𝐴𝑢, 𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡)}) ,

(22)

and so

𝑀(𝐴𝑢, 𝑧, 𝑡) ≥ 𝜙 (𝑀 (𝐴𝑢, 𝑧, 𝑡)) . (23)

If 𝐴𝑢 ̸= 𝑧, then 0 < 𝑀(𝐴𝑢, 𝑧, 𝑡
0
) < 1 for some 𝑡

0
> 0.

Then in view of condition (𝜙
2
) we get 𝜙(𝑀(𝐴𝑢, 𝑧, 𝑡

0
)) >

𝑀(𝐴𝑢, 𝑧, 𝑡
0
), which is a contradiction. Therefore, 𝐴𝑢 = 𝑧 so

that 𝐴𝑢 = 𝑧 = 𝑆𝑢 which shows that 𝑢 is a coincidence point
of the pair (𝐴, 𝑆).

Also 𝑧 ∈ 𝑇(𝑋); there exists a point V ∈ 𝑋 such that𝑇V = 𝑧.
Now we assert that𝑀(𝑧, 𝐵V, 𝑡) = 1. Assume the contrary, and
then using inequality (14) with 𝑥 = 𝑢, 𝑦 = V, we have

𝑀(𝐴𝑢, 𝐵V, 𝑡)

≥ 𝜙(min{𝑀(𝑆𝑢, 𝑇V, 𝑡) ,𝑀 (𝐴𝑢, 𝑆𝑢, 𝑡) ,𝑀 (𝐵V, 𝑇V, 𝑡) ,
𝑀 (𝐴𝑢, 𝑇V, 𝑡) ,𝑀 (𝐵V, 𝑆𝑢, 𝑡)

}) ,

(24)

which reduces to

𝑀(𝑧, 𝐵V, 𝑡)

≥ 𝜙(min{𝑀(𝑧, 𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝐵V, 𝑧, 𝑡) ,
𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝐵V, 𝑧, 𝑡)

})

(25)

or, equivalently,

𝑀(𝑧, 𝐵V, 𝑡) ≥ 𝜙 (𝑀 (𝑧, 𝐵V, 𝑡)) . (26)

As 𝐵V ̸= 𝑧 implies 0 < 𝑀(𝑧, 𝐵V, 𝑡
0
) < 1 for some 𝑡

0
>

0, then in view of condition (𝜙
2
), we get 𝜙(𝑀(𝑧, 𝐵V, 𝑡

0
)) >

𝑀(𝑧, 𝐵V, 𝑡
0
), which is a contradiction. Therefore, 𝐵V = 𝑧 so

that 𝐵V = 𝑧 = 𝑇V which shows that V is a coincidence point
of the pair (𝐵, 𝑇).

Since the pair (𝐴, 𝑆) is weakly compatible and 𝐴𝑢 = 𝑆𝑢,
hence 𝐴𝑧 = 𝐴𝑆𝑢 = 𝑆𝐴𝑢 = 𝑆𝑧. Now we show that 𝑧 is a
common fixed point of the pair (𝐴, 𝑆). To prove this, we show
that𝑀(𝐴𝑧, 𝑧, 𝑡) = 1. If not, then using inequality (14) with
𝑥 = 𝑧, 𝑦 = V, we have

𝑀(𝐴𝑧, 𝐵V, 𝑡)

≥ 𝜙(min{𝑀(𝑆𝑧, 𝑇V, 𝑡) ,𝑀 (𝐴𝑧, 𝑆𝑧, 𝑡) ,𝑀 (𝐵V, 𝑇V, 𝑡) ,
𝑀 (𝐴𝑧, 𝑇V, 𝑡) ,𝑀 (𝐵V, 𝑆𝑧, 𝑡)

}) ,

(27)

and so

𝑀(𝐴𝑧, 𝑧, 𝑡)

≥ 𝜙(min{𝑀(𝐴𝑧, 𝑧, 𝑡) ,𝑀 (𝐴𝑧, 𝐴𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡) ,

𝑀 (𝐴𝑧, 𝑧, 𝑡) ,𝑀 (𝑧, 𝐴𝑧, 𝑡)

}) .

(28)

Then on simplification, we obtain

𝑀(𝐴𝑧, 𝑧, 𝑡) ≥ 𝜙 (𝑀 (𝐴𝑧, 𝑧, 𝑡)) . (29)

Since𝐴𝑧 ̸= 𝑧, therefore 0 < 𝑀(𝐴𝑧, 𝑧, 𝑡
0
) < 1 for some 𝑡

0
>

0. Then in view of condition (𝜙
2
), we get 𝜙(𝑀(𝐴𝑧, 𝑧, 𝑡

0
)) >

𝑀(𝐴𝑧, 𝑧, 𝑡
0
), which is a contradiction. Hence 𝐴𝑧 = 𝑧 = 𝑆𝑧.

Therefore, 𝑧 is a common fixed point of the pair (𝐴, 𝑆).
Also the pair (𝐵, 𝑇) is weakly compatible and 𝐵V = 𝑇V;

then 𝐵𝑧 = 𝐵𝑇V = 𝑇𝐵V = 𝑇𝑧. To accomplish this, we assert
that 𝑀(𝑧, 𝐵𝑧, 𝑡) = 1. If not, then using inequality (14) with
𝑥 = 𝑢, 𝑦 = 𝑧, we have

𝑀(𝐴𝑢, 𝐵𝑧, 𝑡)

≥ 𝜙(min
{

{

{

𝑀(𝑆𝑢, 𝑇𝑧, 𝑡) ,𝑀 (𝐴𝑢, 𝑆𝑢, 𝑡) ,

𝑀 (𝐵𝑧, 𝑇𝑧, 𝑡) ,

𝑀 (𝐴𝑢, 𝑇𝑧, 𝑡) ,𝑀 (𝐵𝑧, 𝑆𝑢, 𝑡)

}

}

}

) ,

(30)

which reduces to

𝑀(𝑧, 𝐵𝑧, 𝑡)

≥ 𝜙(min{𝑀(𝑧, 𝐵𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝐵𝑧, 𝐵𝑧, 𝑡) ,

𝑀 (𝑧, 𝐵𝑧, 𝑡) ,𝑀 (𝐵𝑧, 𝑧, 𝑡)

}) ,

(31)

and so

𝑀(𝑧, 𝐵𝑧, 𝑡) ≥ 𝜙 (𝑀 (𝑧, 𝐵𝑧, 𝑡)) . (32)

If 𝐵𝑧 ̸= 𝑧, then 0 < 𝑀(𝑧, 𝐵𝑧, 𝑡
0
) < 1 for some 𝑡

0
> 0. Then

(in view of condition (𝜙
2
)) it follows that 𝜙(𝑀(𝑧, 𝐵𝑧, 𝑡

0
)) >

𝑀(𝑧, 𝐵𝑧, 𝑡
0
), which is a contradiction. Therefore, 𝐵𝑧 = 𝑧 =

𝑇𝑧 which shows that 𝑧 is a common fixed point of the
pair (𝐵, 𝑇). Uniqueness of commonfixed point is an easy con-
sequence of inequality (14) (in view of condition (𝜙

2
)).

Next, we give an example which is not applied by the
results of Imdad et al. [21, Theorem 2.1] but can be applied
toTheorem 26.

Example 27. Let (𝑋,𝑀, ∗) be a fuzzymetric space, where𝑋 =
[3, 15), with product 𝑡-norm defined as 𝑎∗

𝑃
𝑏 = 𝑎𝑏 for all

𝑎, 𝑏 ∈ [0, 1] and

𝑀(𝑥, 𝑦, 𝑡) = (

𝑡

𝑡 + 1

)

|𝑥−𝑦|

, (33)
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for all 𝑡 > 0 and 𝑥, 𝑦 ∈ 𝑋. Define the self-mappings 𝐴, 𝐵, 𝑆,
and 𝑇 by

𝐴 (𝑥) = {

3, if 𝑥 ∈ {3} ∪ (5, 15) ,
3.5, if 𝑥 ∈ (3, 5] ,

𝐵 (𝑥) = {

3, if 𝑥 ∈ {3} ∪ (5, 15) ,
4, if 𝑥 ∈ (3, 5] ,

𝑆 (𝑥) =

{
{
{
{
{

{
{
{
{
{

{

3, if 𝑥 = 3,
9, if 𝑥 ∈ (3, 5) ,
10, if 𝑥 = 5,
𝑥 + 70

25

, if 𝑥 ∈ (5, 15) ,

𝑇 (𝑥) =

{
{
{
{
{

{
{
{
{
{

{

3, if 𝑥 = 3,
14, if 𝑥 ∈ (3, 5) ,
15, if 𝑥 = 5,
𝑥 + 70

25

, if 𝑥 ∈ (5, 15) .

(34)

We obtain

𝐴 (𝑋) = {3, 3.5} ̸⊆ [3, 3.4) ∪ {14, 15} = 𝑇 (𝑋) ,

𝐵 (𝑋) = {3, 4} ̸⊆ [3, 3.4) ∪ {9, 10} = 𝑆 (𝑋) .

(35)

Hence 𝑆(𝑋) and 𝑇(𝑋) are not closed subsets of 𝑋 and so
Theorem 2.1 of Imdad et al. [21] can not be applied to this
example.

Next, we choose two sequences {𝑥
𝑛
} = {5 + (1/𝑛)}, {𝑦

𝑛
} =

{3} (or {𝑥
𝑛
} = {3}, {𝑦

𝑛
} = {5 + (1/𝑛)}), and then clearly

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= lim

𝑛→∞
𝐵𝑦

𝑛
= lim

𝑛→∞
𝑇𝑦

𝑛

= 3 ∈ 𝑆 (𝑋) ∩ 𝑇 (𝑋) ,

(36)

which shows that both pairs (𝐴, 𝑆) and (𝐵, 𝑇) enjoy the
(CLR

𝑆𝑇
) property. By a routine calculation, one can verify

inequality (14) (for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0) wherein 𝜙 is
defined by 𝜙(𝑠) = √𝑠. Furthermore, we obtain that the pairs
(𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible.

Therefore, all the conditions of Theorem 26 are satisfied
and 3 is a unique common fixed point of𝐴, 𝐵, 𝑆, and 𝑇which
also remains a coincidence point as well.

Nowwe show that the result contained in Imdad et al. [21,
Theorem 2.1] can be easily obtained byTheorem 26.

Theorem28. Let𝐴,𝐵, 𝑆, and𝑇 be four self-mappings of aKM-
fuzzymetric space (𝑋,𝑀, ∗) satisfying inequality (14). Suppose
that the following hypotheses hold:

(1) the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy the common property
(E.A.);

(2) 𝑆(𝑋) and 𝑇(𝑋) are closed subsets of𝑋.

Then the pairs (𝐴, 𝑆) and (𝐵, 𝑇) have a coincidence point each.
Moreover, 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common fixed point
provided both pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible.

Proof. Since the pairs (𝐴, 𝑆) and (𝐵, 𝑇) enjoy the common
property (E.A.), there exist two sequences {𝑥

𝑛
} and {𝑦

𝑛
} in

𝑋 such that

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= lim

𝑛→∞
𝐵𝑦

𝑛
= lim

𝑛→∞
𝑇𝑦

𝑛
= 𝑧, (37)

for some 𝑧 ∈ 𝑋. Since 𝑆(𝑋) and 𝑇(𝑋) are closed subsets of𝑋,
hence lim

𝑛→∞
𝑆𝑥

𝑛
= 𝑧 ∈ 𝑆(𝑋).Therefore, there exists a point

𝑢 ∈ 𝑋 such that 𝑆𝑢 = 𝑧. Similarly, lim
𝑛→∞

𝑇𝑦
𝑛
= 𝑧 ∈ 𝑇(𝑋).

Therefore, there exists a point V ∈ 𝑋 such that𝑇V = 𝑧.The rest
of the proof runs on the lines of the proof ofTheorem 26.

Theorem 29. Let 𝐴, 𝐵, 𝑆, and 𝑇 be four self-mappings of a
KM-fuzzy metric space (𝑋,𝑀, ∗) satisfying all the hypotheses
of Lemma 24. Then 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common
fixed point provided both pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly
compatible.

Proof. In view of Lemma 24, the pairs (𝐴, 𝑆) and (𝐵, 𝑇) enjoy
the (CLR

𝑆𝑇
) property; there exist two sequences {𝑥

𝑛
} and {𝑦

𝑛
}

in𝑋 such that

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= lim

𝑛→∞
𝑇𝑦

𝑛
= lim

𝑛→∞
𝐵𝑦

𝑛
= 𝑡, (38)

where 𝑡 ∈ 𝑆(𝑋)∩𝑇(𝑋).The rest of the proof can be completed
on the lines of the proof of Theorem 26. This completes the
proof.

The following example demonstrates the utility of
Theorem 29.

Example 30. In the setting of Example 27, replace the self-
mappings 𝐴, 𝐵, 𝑆, and 𝑇 by the following besides retaining
the rest:

𝐴 (𝑥) = {

3, if 𝑥 ∈ {3} ∪ (5, 15) ,
3.5, if 𝑥 ∈ (3, 5] ,

𝐵 (𝑥) = {

3, if 𝑥 ∈ {3} ∪ (5, 15) ,
4, if 𝑥 ∈ (3, 5] ,

𝑆 (𝑥) =

{
{

{
{

{

3, if 𝑥 = 3,
13, if 𝑥 ∈ (3, 5] ,
𝑥 − 2, if 𝑥 ∈ (5, 15) ,

𝑇 (𝑥) =

{
{
{

{
{
{

{

3, if 𝑥 = 3,
14, if 𝑥 ∈ (3, 5] ,
11𝑥 − 25

10

, if 𝑥 ∈ (5, 15) .

(39)

Then we have 𝐴(𝑋) = {3, 3.5} ⊆ [3, 14] = 𝑇(𝑋) and 𝐵(𝑋) =
{3, 4} ⊆ [3, 13] = 𝑆(𝑋), whereas 𝑆(𝑋) and 𝑇(𝑋) are closed
subsets of 𝑋. Then, like the earlier example, the pairs (𝐴, 𝑆)
satisfy the (CLR

𝑆
) property and (𝐵, 𝑇) satisfy the (CLR

𝑇
)

property.
It easy to calculate that inequality (14) holds wherein 𝜙 is

defined by 𝜙(𝑠) = √𝑠. Moreover, the pairs (𝐴, 𝑆) and (𝐵, 𝑇)
are weakly compatible.

Thus all the conditions of Theorem 29 are satisfied, and 3
is a unique common fixed point of the involved mappings 𝐴,
𝐵, 𝑆, and 𝑇.
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By choosing𝐴, 𝐵, 𝑆, and𝑇 suitably, we can derive amulti-
tude of common fixed point theorems for a pair of mappings.
As a sample, we deduce the following natural result for a pair
of self-mappings.

Corollary 31. Let𝐴 and 𝑆 be two self-mappings of a KM-fuzzy
metric space (𝑋,𝑀, ∗) satisfying the following conditions:

(1) the pair (𝐴, 𝑆) enjoys the (𝐶𝐿𝑅
𝑆
) property;

(2) for all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦, there exists 𝑡 > 0: 0 < 𝑀(𝑥, 𝑦,
𝑡) < 1, for some 𝜙 ∈ Φ

𝑀(𝐴𝑥,𝐴𝑦, 𝑡)

≥ 𝜙(min
{

{

{

𝑀(𝑆𝑥, 𝑆𝑦, 𝑡) ,𝑀 (𝐴𝑥, 𝑆𝑥, 𝑡) ,

𝑀 (𝐴𝑦, 𝑆𝑦, 𝑡) ,

𝑀 (𝐴𝑥, 𝑆𝑦, 𝑡) ,𝑀 (𝐴𝑦, 𝑆𝑥, 𝑡)

}

}

}

) .

(40)

Then𝐴 and 𝑆 have a coincidence point.Moreover, if the pair
(𝐴, 𝑆) is weakly compatible, then 𝐴 and 𝑆 have a unique com-
mon fixed point.

As an application of Theorem 26, we have the following
result involving four finite families of self-mappings.

Theorem 32. Let {𝐴
𝑖
}
𝑚

𝑖=1
, {𝐵

𝑐
}

𝑝

𝑐=1
, {𝑆

𝑗
}
𝑛

𝑗=1
, and {𝑇

𝑑
}

𝑞

𝑑=1
be four

finite families of self-mappings of a KM-fuzzy metric space
(𝑋,𝑀, ∗) such that 𝐴 = 𝐴

1
𝐴

2
⋅ ⋅ ⋅ 𝐴

𝑚
, 𝐵 = 𝐵

1
𝐵
2
⋅ ⋅ ⋅ 𝐵

𝑝
,

𝑆 = 𝑆
1
𝑆
2
⋅ ⋅ ⋅ 𝑆

𝑛
, and 𝑇 = 𝑇

1
𝑇
2
⋅ ⋅ ⋅ 𝑇

𝑞
which satisfy inequality

(14). If the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy the (𝐶𝐿𝑅
𝑆𝑇
) property,

then (𝐴, 𝑆) and (𝐵, 𝑇) have a point of coincidence each.
Moreover, {𝐴

𝑖
}
𝑚

𝑖=1
, {𝐵

𝑐
}

𝑝

𝑐=1
, {𝑆

𝑗
}
𝑛

𝑗=1
, and {𝑇

𝑑
}

𝑞

𝑑=1
have a

unique common fixed point provided the pairs of families
(𝐴

1
𝐴

2
⋅ ⋅ ⋅ 𝐴

𝑚
, 𝑆

1
𝑆
2
⋅ ⋅ ⋅ 𝑆

𝑛
) and (𝐵

1
𝐵
2
⋅ ⋅ ⋅ 𝐵

𝑝
, 𝑇

1
𝑇
2
⋅ ⋅ ⋅ 𝑇

𝑞
) are

commute pairwise.

Proof. Theproof of this theorem is similar to that ofTheorem
3.1 contained in Imdad et al. [40]; hence the details are omit-
ted.

Remark 33. Theorem 32 is a partial generalization of
Theorem 26 as commutativity requirements in Theorem 32
are relatively stronger than weak compatibility used in
Theorem 26.

Now, we indicate that Theorem 32 can be utilized to
derive common fixed point theorems for any finite number
of mappings. As a sample for five mappings, we can derive
the following by setting one family of two members while the
remaining families contain single members:

Corollary 34. Let 𝐴, 𝐵, 𝑅, 𝑆, and 𝑇 be five self-mappings of
a KM-fuzzy metric space (𝑋,𝑀, ∗) satisfying the following
conditions:

(1) the pairs (𝐴, 𝑆𝑅) and (𝐵, 𝑇) share the (𝐶𝐿𝑅
(𝑆𝑅)(𝑇)

)

property;

(2) for all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦, there exists 𝑡 > 0: 0 < 𝑀(𝑥,
𝑦, 𝑡) < 1, for some 𝜙 ∈ Φ

𝑀(𝐴𝑥, 𝐵𝑦, 𝑡)

≥ 𝜙(min
{

{

{

𝑀(𝑆𝑅𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐴𝑥, 𝑆𝑅𝑥, 𝑡) ,

𝑀 (𝐵𝑦, 𝑇𝑦, 𝑡) ,

𝑀 (𝐴𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐵𝑦, 𝑆𝑅𝑥, 𝑡)

}

}

}

) .

(41)

Then the pairs (𝐴, 𝑆𝑅) and (𝐵, 𝑇) have a coincidence point
each. Moreover,𝐴, 𝐵, 𝑅, 𝑆, and 𝑇 have a unique common fixed
point provided the pairs (𝐴, 𝑆𝑅) and (𝐵, 𝑇) commute pairwise
(that is, 𝐴𝑆 = 𝑆𝐴, 𝐴𝑅 = 𝑅𝐴, 𝑆𝑅 = 𝑅𝑆, and 𝐵𝑇 = 𝑇𝐵).

Similarly, we can derive a common fixed point theorem
for six mappings by setting two families of two members
while the remaining families contain single members:

Corollary 35. Let 𝐴, 𝐵, 𝑅, 𝑆, 𝐻, and 𝑇 be six self-mappings
of a KM-fuzzy metric space (𝑋,𝑀, ∗) satisfying the following
conditions:

(1) the pairs (𝐴, 𝑆𝑅) and (𝐵, 𝑇𝐻) enjoy the (𝐶𝐿𝑅
(𝑆𝑅)(𝑇𝐻)

)

property;
(2) for all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦, there exists 𝑡 > 0: 0 <

𝑀(𝑥, 𝑦, 𝑡) < 1, for some 𝜙 ∈ Φ

𝑀(𝐴𝑥, 𝐵𝑦, 𝑡)

≥ 𝜙(min
{

{

{

𝑀(𝑆𝑅𝑥, 𝑇𝐻𝑦, 𝑡) ,𝑀 (𝐴𝑥, 𝑆𝑅𝑥, 𝑡) ,

𝑀 (𝐵𝑦, 𝑇𝐻𝑦, 𝑡) ,

𝑀 (𝐴𝑥, 𝑇𝐻𝑦, 𝑡) ,𝑀 (𝐵𝑦, 𝑆𝑅𝑥, 𝑡)

}

}

}

) .

(42)

Then the pairs (𝐴, 𝑆𝑅) and (𝐵, 𝑇𝐻) have a coincidence
point each. Moreover,𝐴, 𝐵, 𝑅, 𝑆,𝐻, and 𝑇 have a unique com-
mon fixed point provided the pairs (𝐴, 𝑆𝑅) and (𝐵, 𝑇𝐻) com-
mute pairwise (that is, 𝐴𝑆 = 𝑆𝐴, 𝐴𝑅 = 𝑅𝐴, 𝑆𝑅 = 𝑅𝑆, 𝐵𝑇 =
𝑇𝐵, 𝐵𝐻 = 𝐻𝐵, and 𝑇𝐻 = 𝐻𝑇).

By setting 𝐴
1
= 𝐴

2
= ⋅ ⋅ ⋅ = 𝐴

𝑚
= 𝐴, 𝐵

1
= 𝐵

2
= ⋅ ⋅ ⋅ =

𝐵
𝑝
= 𝐵, 𝑆

1
= 𝑆

2
= ⋅ ⋅ ⋅ = 𝑆

𝑛
= 𝑆, and 𝑇

1
= 𝑇

2
= ⋅ ⋅ ⋅ = 𝑇

𝑞
= 𝑇 in

Theorem 32, we deduce the following.

Corollary 36. Let 𝐴, 𝐵, 𝑆, and 𝑇 be four self-mappings of a
KM-fuzzy metric space (𝑋,𝑀, ∗) such that the pairs (𝐴𝑚

, 𝑆
𝑛
)

and (𝐵𝑝, 𝑇𝑞
) satisfy the (𝐶𝐿𝑅

𝑆
𝑛
,𝑇
𝑞) property. Suppose that for

all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦 there exists 𝑡 > 0: 0 < 𝑀(𝑥, 𝑦, 𝑡) < 1, for
some 𝜙 ∈ Φ

𝑀(𝐴
𝑚
𝑥, 𝐵

𝑝
𝑦, 𝑡)

≥ 𝜙(min
{

{

{

𝑀(𝑆
𝑛
𝑥, 𝑇

𝑞
𝑦, 𝑡) ,𝑀 (𝐴

𝑚
𝑥, 𝑆

𝑛
𝑥, 𝑡) ,

𝑀 (𝐵
𝑝
𝑦, 𝑇

𝑞
𝑦, 𝑡) ,

𝑀 (𝐴
𝑚
𝑥, 𝑇

𝑞
𝑦, 𝑡) ,𝑀 (𝐵

𝑝
𝑦, 𝑆

𝑛
𝑥, 𝑡)

}

}

}

) ,

(43)

where𝑚, 𝑛, 𝑝, and 𝑞 are fixed positive integers. Then the pairs
(𝐴, 𝑆) and (𝐵, 𝑇) have a point of coincidence each. Further, 𝐴,
𝐵, 𝑆, and 𝑇 have a unique common fixed point provided both
pairs (𝐴𝑚

, 𝑆
𝑛
) and (𝐵𝑝, 𝑇𝑞

) commute pairwise.
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Remark 37. The results similar to Theorem 28, Theorem 29,
Corollary 31, Corollary 34, and Corollary 35 can be outlined
in respect of Theorem 32 and Corollary 36.

3.2. Grabiec-Type Fixed Point Results. Inspired by the work of
Grabiec [37], we state and prove some fixed point theorems
for weakly compatible mappings with common limit range
property.

Lemma 38 (see [37]). Let (𝑋,𝑀, ∗) be a KM- (or GV-) fuzzy
metric space. If there exists a constant 𝑘 ∈ (0, 1) such that

𝑀(𝑥, 𝑦, 𝑘𝑡) ≥ 𝑀(𝑥, 𝑦, 𝑡) , (44)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0, then 𝑥 = 𝑦.

Theorem39. Let𝐴,𝐵, 𝑆, and𝑇 be four self-mappings of aKM-
fuzzy metric space (𝑋,𝑀, ∗). Suppose that

(1) the pairs (𝐴, 𝑆) and (𝐵, 𝑇) enjoy the (𝐶𝐿𝑅
𝑆𝑇
) property;

(2) for all 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0 and for some 𝑘 ∈ (0, 1)

𝑀 (𝐴𝑥, 𝐵𝑦, 𝑘𝑡)

≥ min{𝑀(𝑆𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐴𝑥, 𝑆𝑥, 𝑡) ,𝑀 (𝐵𝑦, 𝑇𝑦, 𝑡) ,

𝑀 (𝐴𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐵𝑦, 𝑆𝑥, 𝑡)

} .

(45)

Then the pairs (𝐴, 𝑆) and (𝐵, 𝑇) have a coincidence point
each. Moreover, 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common fixed
point provided both pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compat-
ible.

Proof. If the pairs (𝐴, 𝑆) and (𝐵, 𝑇) share the (CLR
𝑆𝑇
) prop-

erty, then there exist two sequences {𝑥
𝑛
} and {𝑦

𝑛
} in 𝑋 such

that

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= lim

𝑛→∞
𝐵𝑦

𝑛
= lim

𝑛→∞
𝑇𝑦

𝑛
= 𝑧, (46)

where 𝑧 ∈ 𝑆(𝑋) ∩ 𝑇(𝑋). Since 𝑧 ∈ 𝑆(𝑋), there exists a point
𝑢 ∈ 𝑋 such that 𝑆𝑢 = 𝑧. Now we have to show that 𝐴𝑢 = 𝑧.
On using inequality (45), we have

𝑀(𝐴𝑢, 𝐵𝑦
𝑛
, 𝑘𝑡)

≥ min{𝑀(𝑆𝑢, 𝑇𝑦
𝑛
, 𝑡) ,𝑀 (𝐴𝑢, 𝑆𝑢, 𝑡) ,𝑀 (𝐵𝑦

𝑛
, 𝑇𝑦

𝑛
, 𝑡) ,

𝑀 (𝐴𝑢, 𝑇𝑦
𝑛
, 𝑡) ,𝑀 (𝐵𝑦

𝑛
, 𝑆𝑢, 𝑡)

} .

(47)

Letting 𝑛 → ∞ and using Lemma 10,

𝑀(𝐴𝑢, 𝑧, 𝑘𝑡)

≥ min {𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝐴𝑢, 𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡) ,

𝑀 (𝐴𝑢, 𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡)}

= min {1,𝑀 (𝐴𝑢, 𝑧, 𝑡) , 1,𝑀 (𝐴𝑢, 𝑧, 𝑡) , 1}

= 𝑀 (𝐴𝑢, 𝑧, 𝑡) .

(48)

Appealing to Lemma 38, we obtain 𝐴𝑢 = 𝑧 and so 𝐴𝑢 =
𝑧 = 𝑆𝑢 which shows that 𝑢 is a coincidence point of the pair
(𝐴, 𝑆).

Also 𝑧 ∈ 𝑇(𝑋); there exists a point V ∈ 𝑋 such that𝑇V = 𝑧.
Now we have to assert that 𝐵V = 𝑧. On using inequality (45),
we get

𝑀(𝐴𝑢, 𝐵V, 𝑘𝑡)

≥ min{𝑀(𝑆𝑢, 𝑇V, 𝑡) ,𝑀 (𝐴𝑢, 𝑆𝑢, 𝑡) ,𝑀 (𝐵V, 𝑇V, 𝑡) ,
𝑀 (𝐴𝑢, 𝑇V, 𝑡) ,𝑀 (𝐵V, 𝑆𝑢, 𝑡)

}

(49)

or, equivalently,

𝑀(𝑧, 𝐵V, 𝑘𝑡) ≥ min {𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝐵V, 𝑧, 𝑡) ,

𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝐵V, 𝑧, 𝑡)}

= min {1, 1,𝑀 (𝐵V, 𝑧, 𝑡) , 1,𝑀 (𝐵V, 𝑧, 𝑡)}

= 𝑀 (𝑧, 𝐵V, 𝑡) .
(50)

In view of Lemma 38, we have𝐵V = 𝑧; that is,𝐵V = 𝑧 = 𝑇V
which shows that V is a coincidence point of the pair (𝐵, 𝑇).

As the pair (𝐴, 𝑆) is weakly compatible and 𝐴𝑢 = 𝑆𝑢,
therefore 𝐴𝑧 = 𝐴𝑆𝑢 = 𝑆𝐴𝑢 = 𝑆𝑧. Now we show that 𝑧 is
a common fixed point of the pair (𝐴, 𝑆). To prove this, using
inequality (45), we have

𝑀(𝐴𝑧, 𝐵V, 𝑘𝑡)

≥ min{𝑀(𝑆𝑧, 𝑇V, 𝑡) ,𝑀 (𝐴𝑧, 𝑆𝑧, 𝑡) ,𝑀 (𝐵V, 𝑇V, 𝑡) ,
𝑀 (𝐴𝑧, 𝑇V, 𝑡) ,𝑀 (𝐵V, 𝑆𝑧, 𝑡)

} ,

(51)

which reduces to

𝑀(𝐴𝑧, 𝑧, 𝑘𝑡) ≥ min {𝑀 (𝐴𝑧, 𝑧, 𝑡) ,𝑀 (𝐴𝑧, 𝐴𝑧, 𝑡) ,

𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝐴𝑧, 𝑧, 𝑡) ,𝑀 (𝑧, 𝐴𝑧, 𝑡)}

= min {𝑀 (𝐴𝑧, 𝑧, 𝑡) , 1, 1,𝑀 (𝐴𝑧, 𝑧, 𝑡) ,

𝑀 (𝑧, 𝐴𝑧, 𝑡)}

= 𝑀 (𝐴𝑧, 𝑧, 𝑡) .

(52)

Owing to Lemma 38, we get 𝐴𝑧 = 𝑧 = 𝑆𝑧. Therefore, 𝑧 is
a common fixed point of the pair (𝐴, 𝑆).

Since pair (𝐵, 𝑇) is weakly compatible and𝐵V = 𝑇V, hence
𝐵𝑧 = 𝐵𝑇V = 𝑇𝐵V = 𝑇𝑧. On using inequality (45), we get

𝑀(𝐴𝑢, 𝐵𝑧, 𝑘𝑡)

≥ min{𝑀(𝑆𝑢, 𝑇𝑧, 𝑡) ,𝑀 (𝐴𝑢, 𝑆𝑢, 𝑡) ,𝑀 (𝐵𝑧, 𝑇𝑧, 𝑡) ,

𝑀 (𝐴𝑢, 𝑇𝑧, 𝑡) ,𝑀 (𝐵𝑧, 𝑆𝑢, 𝑡)

} .

(53)

Then on simplification, we have

𝑀(𝑧, 𝐵𝑧, 𝑘𝑡) ≥ 𝑀 (𝑧, 𝐵𝑧, 𝑡) . (54)
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By Lemma 38, we obtain 𝐵𝑧 = 𝑧 = 𝑇𝑧 which shows that
𝑧 is a common fixed point of the pair (𝐵, 𝑇). Uniqueness of
common fixed point is an easy consequence of the inequality
(45) (in view of Lemma 38).

Remark 40. Theorem 39 improves and extends the results of
Grabiec [37] and Imdad et al. [21, Theorem 2.5] and extends
some relevant results contained in [16] to fuzzymetric spaces.

Remark 41. The results similar to Lemma 24, Theorem 28,
Theorem 29, Theorem 32, Corollary 31, Corollary 34,
Corollary 35, and Corollary 36 can be proved in view of
contraction condition (45) which will generalize and extend
several results from the literature. The listing of the possible
corollaries are not included.

3.3. Fixed Point Theorems in GV-Fuzzy Metric Spaces

Lemma 42. Let 𝐴, 𝐵, 𝑆, and 𝑇 be four self-mappings of a GV-
fuzzy metric space (𝑋,𝑀, ∗) satisfying conditions (1)–(4) of
Lemma 24. Suppose that for all 𝑥, 𝑦 ∈ 𝑋, for some 𝜙 ∈ Φ,
and for some 𝑡 > 0

𝑀(𝐴𝑥, 𝐵𝑦, 𝑡)

≥ 𝜙(min{𝑀(𝑆𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐴𝑥, 𝑆𝑥, 𝑡) ,𝑀 (𝐵𝑦, 𝑇𝑦, 𝑡) ,

𝑀 (𝐴𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐵𝑦, 𝑆𝑥, 𝑡)

}) .

(55)

Then the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy the (𝐶𝐿𝑅
𝑆𝑇
)

property.

Proof. As the pair (𝐴, 𝑆) enjoys the (CLR
𝑆
) property, there

exists a sequence {𝑥
𝑛
} in𝑋 such that

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= 𝑧, (56)

where 𝑧 ∈ 𝑆(𝑋). Since 𝐴(𝑋) ⊂ 𝑇(𝑋), each sequence {𝑥
𝑛
}

there exists a sequence {𝑦
𝑛
} in 𝑋 such that 𝐴𝑥

𝑛
= 𝑇𝑦

𝑛
.

Therefore, due to the closedness of 𝑇(𝑋),

lim
𝑛→∞

𝑇𝑦
𝑛
= lim

𝑛→∞
𝐴𝑥

𝑛
= 𝑧, (57)

so that 𝑧 ∈ 𝑆(𝑋) ∩ 𝑇(𝑋). Thus in all we have 𝐴𝑥
𝑛
→ 𝑧,

𝑆𝑥
𝑛
→ 𝑧, and 𝑇𝑦

𝑛
→ 𝑧 as 𝑛 → ∞. By (4) of Lemma 24,

the sequence {𝐵𝑦
𝑛
} converges and in all we need to show that

𝐵𝑦
𝑛
→ 𝑧 as 𝑛 → ∞. Suppose that 𝐵𝑦

𝑛
→ 𝑧

󸀠
( ̸= 𝑧) as 𝑛 →

∞, and then using inequality (55) with 𝑥 = 𝑥
𝑛
, 𝑦 = 𝑦

𝑛
, we

have

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦

𝑛
, 𝑡)

≥ 𝜙(min
{

{

{

𝑀(𝑆𝑥
𝑛
, 𝑇𝑦

𝑛
, 𝑡) ,𝑀 (𝐴𝑥

𝑛
, 𝑆𝑥

𝑛
, 𝑡) ,

𝑀 (𝐵𝑦
𝑛
, 𝑇𝑦

𝑛
, 𝑡) ,

𝑀 (𝐴𝑥
𝑛
, 𝑇𝑦

𝑛
, 𝑡) ,𝑀 (𝐵𝑦

𝑛
, 𝑆𝑥

𝑛
, 𝑡)

}

}

}

) ,

(58)

in which, on making 𝑛 → ∞, we obtain

𝑀(𝑧, 𝑧
󸀠
, 𝑡) ≥ 𝜙 (𝑀(𝑧

󸀠
, 𝑧, 𝑡)) . (59)

As 𝑧 ̸= 𝑧
󸀠 implies 0 < 𝑀(𝑧, 𝑧󸀠, 𝑡) < 1, henceforth 𝜙(𝑀(𝑧,

𝑧
󸀠
, 𝑡)) > 𝑀(𝑧, 𝑧

󸀠
, 𝑡), which is a contradiction, thereby imply-

ing 𝑧 = 𝑧󸀠 which shows that the pairs (𝐴, 𝑆) and (𝐵, 𝑇) enjoy
the (CLR

𝑆𝑇
) property.

Theorem43. Let𝐴,𝐵, 𝑆, and𝑇 be four self-mappings of a GV-
fuzzymetric space (𝑋,𝑀, ∗) satisfying inequality (55). Suppose
that the pairs (𝐴, 𝑆) and (𝐵, 𝑇) enjoy the (𝐶𝐿𝑅

𝑆𝑇
) property.

Then the pairs (𝐴, 𝑆) and (𝐵, 𝑇) have a coincidence point each.
Moreover, 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common fixed point
provided both pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible.

Proof. If the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy the (CLR
𝑆𝑇
) prop-

erty, then there exist two sequences {𝑥
𝑛
} and {𝑦

𝑛
} in 𝑋 such

that

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= lim

𝑛→∞
𝐵𝑦

𝑛
= lim

𝑛→∞
𝑇𝑦

𝑛
= 𝑧, (60)

where 𝑧 ∈ 𝑆(𝑋) ∩ 𝑇(𝑋). Since 𝑧 ∈ 𝑆(𝑋), there exists a point
𝑢 ∈ 𝑋 such that 𝑆𝑢 = 𝑧. We assert that 𝑀(𝐴𝑢, 𝑧, 𝑡) = 1.
Assume the contrary, and then using inequality (55) with 𝑥 =
𝑢, 𝑦 = 𝑦

𝑛
, we get

𝑀(𝐴𝑢, 𝐵𝑦
𝑛
, 𝑡)

≥ 𝜙(min
{

{

{

𝑀(𝑆𝑢, 𝑇𝑦
𝑛
, 𝑡) ,𝑀 (𝐴𝑢, 𝑆𝑢, 𝑡) ,

𝑀 (𝐵𝑦
𝑛
, 𝑇𝑦

𝑛
, 𝑡) ,

𝑀 (𝐴𝑢, 𝑇𝑦
𝑛
, 𝑡) ,𝑀 (𝐵𝑦

𝑛
, 𝑆𝑢, 𝑡)

}

}

}

) ,

(61)

which, on making 𝑛 → ∞, reduces to

𝑀(𝐴𝑢, 𝑧, 𝑡) ≥ 𝜙 (𝑀 (𝐴𝑢, 𝑧, 𝑡)) . (62)

As 𝐴𝑢 ̸= 𝑧 implies 0 < 𝑀(𝐴𝑢, 𝑧, 𝑡) < 1, henceforth
𝜙(𝑀(𝐴𝑢, 𝑧, 𝑡)) > 𝑀(𝐴𝑢, 𝑧, 𝑡), which is a contradiction.
Therefore, 𝐴𝑢 = 𝑧 so that 𝐴𝑢 = 𝑧 = 𝑆𝑢. Hence 𝑢 is a coinci-
dence point of the pair (𝐴, 𝑆).

Also 𝑧 ∈ 𝑇(𝑋) there exists a point V ∈ 𝑋 such that
𝑇V = 𝑧. Now we show that𝑀(𝑧, 𝐵V, 𝑡) = 1. If not, then using
inequality (55) with 𝑥 = 𝑢, 𝑦 = V, we have

𝑀(𝐴𝑢, 𝐵V, 𝑡)

≥ 𝜙(min
{

{

{

𝑀(𝑆𝑢, 𝑇V, 𝑡) ,𝑀 (𝐴𝑢, 𝑆𝑢, 𝑡) ,

𝑀 (𝐵V, 𝑇V, 𝑡) ,
𝑀 (𝐴𝑢, 𝑇V, 𝑡) ,𝑀 (𝐵V, 𝑆𝑢, 𝑡)

}

}

}

) ,

(63)

which reduces to

𝑀(𝑧, 𝐵V, 𝑡) ≥ 𝜙 (𝑀 (𝑧, 𝐵V, 𝑡)) . (64)

As 𝐵V ̸= 𝑧 implies 0 < 𝑀(𝑧, 𝐵V, 𝑡
0
) < 1, henceforth

𝜙(𝑀(𝑧, 𝐵V, 𝑡)) > 𝑀(𝑧, 𝐵V, 𝑡), which is a contradiction.There-
fore, 𝐵V = 𝑧 so that 𝐵V = 𝑧 = 𝑇V which shows that V is a
coincidence point of the pair (𝐵, 𝑇).

Since the pair (𝐴, 𝑆) is weakly compatible and 𝐴𝑢 = 𝑆𝑢,
hence 𝐴𝑧 = 𝐴𝑆𝑢 = 𝑆𝐴𝑢 = 𝑆𝑧. Now we show that 𝑧 is a
common fixed point of the pair (𝐴, 𝑆). To prove this, we show
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that 𝑀(𝐴𝑧, 𝑧, 𝑡) = 1. Assume the contrary, and then using
inequality (55) with 𝑥 = 𝑧, 𝑦 = V, we have

𝑀(𝐴𝑧, 𝐵V, 𝑡)

≥ 𝜙(min
{

{

{

𝑀(𝑆𝑧, 𝑇V, 𝑡) ,𝑀 (𝐴𝑧, 𝑆𝑧, 𝑡) ,

𝑀 (𝐵V, 𝑇V, 𝑡) ,
𝑀 (𝐴𝑧, 𝑇V, 𝑡) ,𝑀 (𝐵V, 𝑆𝑧, 𝑡)

}

}

}

) .

(65)

Then on simplification, we obtain

𝑀(𝐴𝑧, 𝑧, 𝑡) ≥ 𝜙 (𝑀 (𝐴𝑧, 𝑧, 𝑡)) . (66)

As 𝐴𝑧 ̸= 𝑧 implies 0 < 𝑀(𝐴𝑧, 𝑧, 𝑡
0
) < 1, henceforth

𝜙(𝑀(𝐴𝑧, 𝑧, 𝑡)) > 𝑀(𝐴𝑧, 𝑧, 𝑡), which is a contradiction.
Hence 𝐴𝑧 = 𝑧 = 𝑆𝑧. Therefore, 𝑧 is a common fixed point
of the pair (𝐴, 𝑆).

As the pair (𝐵, 𝑇) is weakly compatible and 𝐵V = 𝑇V, then
𝐵𝑧 = 𝐵𝑇V = 𝑇𝐵V = 𝑇𝑧. To accomplish this, we assert that
𝑀(𝑧, 𝐵𝑧, 𝑡) = 1. If not, then using inequality (55) with 𝑥 = 𝑢,
𝑦 = 𝑧, we have

𝑀(𝐴𝑢, 𝐵𝑧, 𝑡)

≥ 𝜙(min
{

{

{

𝑀(𝑆𝑢, 𝑇𝑧, 𝑡) ,𝑀 (𝐴𝑢, 𝑆𝑢, 𝑡) ,

𝑀 (𝐵𝑧, 𝑇𝑧, 𝑡) ,

𝑀 (𝐴𝑢, 𝑇𝑧, 𝑡) ,𝑀 (𝐵𝑧, 𝑆𝑢, 𝑡)

}

}

}

) ,

(67)

and so

𝑀(𝑧, 𝐵𝑧, 𝑡) ≥ 𝜙 (𝑀 (𝑧, 𝐵𝑧, 𝑡)) . (68)

As 𝐵𝑧 ̸= 𝑧 implies 0 < 𝑀(𝑧, 𝐵𝑧, 𝑡) < 1, henceforth
𝜙(𝑀(𝑧, 𝐵𝑧, 𝑡)) > 𝑀(𝑧, 𝐵𝑧, 𝑡), which is a contradiction.There-
fore𝑀(𝑧, 𝐵𝑧, 𝑡) = 1 so that 𝐵𝑧 = 𝑧 = 𝑇𝑧 which shows that
𝑧 is a common fixed point of the pair (𝐵, 𝑇). Uniqueness of
common fixed point is an easy consequence of the inequality
(55) (in view of condition (𝜙

2
)).

Remark 44. The results similar to Theorem 28, Theorem 29,
Theorem 32, Corollary 31, Corollary 34, Corollary 35, and
Corollary 36 can be proved in view of contraction condition
(55) (in respect of GV-fuzzy metric spaces) which will gener-
alize and extend several results from the literature, but due to
paucity of the space we have not opted to include the details.

4. Integral Analogue of
Related Fixed Point Theorems

Branciari [41] firstly states and proves an integral-type fixed
point theorem which generalized the well-known Banach
Contraction Principle. Since then, many researchers have
extensively proved several common fixed point theorems
satisfying integral-type contractive conditions (e.g., [19, 42–
46]). In this section, we state and prove an integral analogue
of Theorem 26.

In this section, first we state and prove an integral ana-
logue of Theorem 26 as follows.

Theorem45. Let𝐴,𝐵, 𝑆, and𝑇 be four self-mappings of aKM-
fuzzy metric space (𝑋,𝑀, ∗) such that for all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦

there exists 𝑡 > 0: 0 < 𝑀(𝑥, 𝑦, 𝑡) < 1, for some 𝜙 ∈ Φ

∫

𝑀(𝐴𝑥,𝐵𝑦,𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ 𝜙(∫

𝑚(𝑥,𝑦)

0

𝜑 (𝑠) 𝑑𝑠) , (69)

𝑚(𝑥, 𝑦)

= min{𝑀(𝑆𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐴𝑥, 𝑆𝑥, 𝑡) ,𝑀 (𝐵𝑦, 𝑇𝑦, 𝑡) ,

𝑀 (𝐴𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐵𝑦, 𝑆𝑥, 𝑡)

} ,

(70)

where 𝜑 : [0,∞) → [0,∞) is a summable non-negative Leb-
esgue integrable function such that

∫

1

𝜖

𝜑 (𝑠) 𝑑𝑠 > 0, (71)

for each 𝜖 ∈ [0, 1). Suppose that the pairs (𝐴, 𝑆) and (𝐵, 𝑇)
satisfy the (𝐶𝐿𝑅

𝑆𝑇
) property. Then the pairs (𝐴, 𝑆) and (𝐵, 𝑇)

have a coincidence point each. Moreover,𝐴, 𝐵, 𝑆, and 𝑇 have a
unique common fixed point provided both pairs (𝐴, 𝑆) and
(𝐵, 𝑇) are weakly compatible.

Proof. Since the pairs (𝐴, 𝑆) and (𝐵, 𝑇) enjoy the (CLR
𝑆𝑇
)

property, there exist two sequences {𝑥
𝑛
} and {𝑦

𝑛
} in 𝑋 such

that

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥

𝑛
= lim

𝑛→∞
𝐵𝑦

𝑛
= lim

𝑛→∞
𝑇𝑦

𝑛
= 𝑧, (72)

where 𝑧 ∈ 𝑆(𝑋) ∩ 𝑇(𝑋). Since 𝑧 ∈ 𝑆(𝑋), there exists a point
𝑢 ∈ 𝑋 such that 𝑆𝑢 = 𝑧. We show that 𝐴𝑢 = 𝑧. If not, then
using inequality (69) with 𝑥 = 𝑢, 𝑦 = 𝑦

𝑛
, we get

∫

𝑀(𝐴𝑢,𝐵𝑦
𝑛
,𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ 𝜙(∫

𝑚(𝑢,𝑦
𝑛
)

0

𝜑 (𝑠) 𝑑𝑠) , (73)

where

𝑚(𝑢, 𝑦
𝑛
)

= min
{

{

{

𝑀(𝑆𝑢, 𝑇𝑦
𝑛
, 𝑡) ,𝑀 (𝐴𝑢, 𝑆𝑢, 𝑡) ,

𝑀 (𝐵𝑦
𝑛
, 𝑇𝑦

𝑛
, 𝑡) ,

𝑀 (𝐴𝑢, 𝑇𝑦
𝑛
, 𝑡) ,𝑀 (𝐵𝑦

𝑛
, 𝑆𝑢, 𝑡)

}

}

}

.

(74)

Taking the limit as 𝑛 → ∞ in (73) and using Lemma 10,
we have

lim
𝑛→∞

∫

𝑀(𝐴𝑢,𝐵𝑦
𝑛
,𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ lim
𝑛→∞

𝜙(∫

𝑚(𝑢,𝑦
𝑛
)

0

𝜑 (𝑠) 𝑑𝑠) ,

∫

𝑀(𝐴𝑢,𝑧,𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ 𝜙( lim
𝑛→∞

∫

𝑚(𝑢,𝑦
𝑛
)

0

𝜑 (𝑠) 𝑑𝑠)

= 𝜙(∫

lim
𝑛→∞

𝑚(𝑢,𝑦
𝑛
)

0

𝜑 (𝑠) 𝑑𝑠) ,

(75)
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where

lim
𝑛→∞

𝑚(𝑢, 𝑦
𝑛
)

= lim
𝑛→∞

min
{

{

{

𝑀(𝑆𝑢, 𝑇𝑦
𝑛
, 𝑡) ,𝑀 (𝐴𝑢, 𝑆𝑢, 𝑡) ,

𝑀 (𝐵𝑦
𝑛
, 𝑇𝑦

𝑛
, 𝑡) ,

𝑀 (𝐴𝑢, 𝑇𝑦
𝑛
, 𝑡) ,𝑀 (𝐵𝑦

𝑛
, 𝑆𝑢, 𝑡)

}

}

}

= min{𝑀(𝑧, 𝑧, 𝑡) ,𝑀 (𝐴𝑢, 𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡) ,

𝑀 (𝐴𝑢, 𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡)

}

= 𝑀 (𝐴𝑢, 𝑧, 𝑡) .

(76)

Hence from (75), we obtain

∫

𝑀(𝐴𝑢,𝑧,𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ 𝜙(∫

𝑀(𝐴𝑢,𝑧,𝑡)

0

𝜑 (𝑠) 𝑑𝑠) . (77)

Since 𝐴𝑢 ̸= 𝑧, therefore 0 < 𝑀(𝐴𝑢, 𝑧, 𝑡
0
) < 1 for some

𝑡
0
> 0. Then in view of condition (𝜙

2
) we get

𝜙(∫

𝑀(𝐴𝑢,𝑧,𝑡
0
)

0

𝜑 (𝑠) 𝑑𝑠) > ∫

𝑀(𝐴𝑢,𝑧,𝑡
0
)

0

𝜑 (𝑠) 𝑑𝑠, (78)

which is a contradiction. Therefore, 𝑧 = 𝐴𝑢 so that 𝐴𝑢 = 𝑧 =
𝑆𝑢. This shows that 𝑢 is a coincidence point of the pair (𝐴, 𝑆).

Also 𝑧 ∈ 𝑇(𝑋); there exists a point V ∈ 𝑋 such that𝑇V = 𝑧.
Now we assert that 𝐵V = 𝑧. If not, then using inequality (69)
with 𝑥 = 𝑢, 𝑦 = V, we have

∫

𝑀(𝐴𝑢,𝐵V,𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ 𝜙(∫

𝑚(𝑢,V)

0

𝜑 (𝑠) 𝑑𝑠) , (79)

where

𝑚(𝑢, V)

= min{𝑀(𝑆𝑢, 𝑇V, 𝑡) ,𝑀 (𝐴𝑢, 𝑆𝑢, 𝑡) ,𝑀 (𝐵V, 𝑇V, 𝑡) ,
𝑀 (𝐴𝑢, 𝑇V, 𝑡) ,𝑀 (𝐵V, 𝑆𝑢, 𝑡)

}

= min{𝑀(𝑧, 𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝐵V, 𝑧, 𝑡) ,
𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝐵V, 𝑧, 𝑡)

}

= 𝑀 (𝑧, 𝐵V, 𝑡) .
(80)

From (79), we get

∫

𝑀(𝑧,𝐵V,𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ 𝜙(∫

𝑀(𝑧,𝐵V,𝑡)

0

𝜑 (𝑠) 𝑑𝑠) . (81)

As 𝐵V ̸= 𝑧, then 0 < 𝑀(𝑧, 𝐵V, 𝑡
0
) < 1 for some 𝑡

0
> 0.

As𝑀(𝑧, 𝐵V, ⋅) is left-continuous and the𝑀(𝑧, 𝐵V, ⋅) is nonde-
creasing, it has only (at most) countable points of disconti-
nuity. Now, one may suppose that 𝑡

0
is a continuity point of

𝑀(𝑧, 𝐵V, ⋅), and then (in view of condition (𝜙
2
)) we get

𝜙(∫

𝑀(𝑧,𝐵V,𝑡
0
)

0

𝜑 (𝑠) 𝑑𝑠) > ∫

𝑀(𝑧,𝐵V,𝑡
0
)

0

𝜑 (𝑠) 𝑑𝑠, (82)

which is a contradiction. Therefore, 𝑧 = 𝐵V so that 𝐵V = 𝑧 =
𝑇V. Hence V is a coincidence point of the pair (𝐵, 𝑇).

As the pair (𝐴, 𝑆) is weakly compatible and𝐴𝑢 = 𝑆𝑢, then
𝐴𝑧 = 𝐴𝑆𝑢 = 𝑆𝐴𝑢 = 𝑆𝑧. Now we show that 𝑧 is a common
fixed point of the pair (𝐴, 𝑆). To prove this, we show that𝐴𝑧 =
𝑧. If not, then using inequality (69) with 𝑥 = 𝑧, 𝑦 = V, we have

∫

𝑀(𝐴𝑧,𝐵V,𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ 𝜙(∫

𝑚(𝑧,V)

0

𝜑 (𝑠) 𝑑𝑠) , (83)

where

𝑚(𝑧, V)

= min{𝑀(𝑆𝑧, 𝑇V, 𝑡) ,𝑀 (𝐴𝑧, 𝑆𝑧, 𝑡) ,𝑀 (𝐵V, 𝑇V, 𝑡) ,
𝑀 (𝐴𝑧, 𝑇V, 𝑡) ,𝑀 (𝐵V, 𝑆𝑧, 𝑡)

}

= min{𝑀(𝐴𝑧, 𝑧, 𝑡) ,𝑀 (𝐴𝑧, 𝐴𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡) ,

𝑀 (𝐴𝑧, 𝑧, 𝑡) ,𝑀 (𝑧, 𝐴𝑧, 𝑡)

}

= 𝑀 (𝐴𝑧, 𝑧, 𝑡) .

(84)

Hence (83) implies

∫

𝑀(𝐴𝑧,𝑧,𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ 𝜙(∫

𝑀(𝐴𝑧,𝑧,𝑡)

0

𝜑 (𝑠) 𝑑𝑠) . (85)

If 𝐴𝑧 ̸= 𝑧, then 0 < 𝑀(𝐴𝑧, 𝑧, 𝑡
0
) < 1 for some 𝑡

0
> 0. As

𝑀(𝐴𝑧, 𝑧, ⋅) is left-continuous and𝑀(𝐴𝑧, 𝑧, ⋅) is nondecreas-
ing, it has only (at most) countable points of discontinuity. If
we suppose that 𝑡

0
is a continuity point of𝑀(𝐴𝑧, 𝑧, ⋅), then

(in view of condition (𝜙
2
)) it follows that

𝜙(∫

𝑀(𝐴𝑧,𝑧,𝑡
0
)

0

𝜑 (𝑠) 𝑑𝑠) > ∫

𝑀(𝐴𝑧,𝑧,𝑡
0
)

0

𝜑 (𝑠) 𝑑𝑠, (86)

which is a contradiction. Therefore, 𝐴𝑧 = 𝑧 = 𝐵𝑧 which
shows that 𝑧 is a common fixed point of the pair (𝐴, 𝑆).

Since the pair (𝐵, 𝑇) is weakly compatible and 𝐵V = 𝑇V,
𝐵𝑧 = 𝐵𝑇V = 𝑇𝐵V = 𝑇𝑧. To prove this, we assert that 𝐵𝑧 = 𝑧.
If not, then using inequality (69) with 𝑥 = 𝑢, 𝑦 = 𝑧, we have

∫

𝑀(𝐴𝑢,𝐵𝑧,𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ 𝜙(∫

𝑚(𝑢,𝑧)

0

𝜑 (𝑠) 𝑑𝑠) , (87)

where

𝑚(𝑢, 𝑧)

= min{𝑀(𝑆𝑢, 𝑇𝑧, 𝑡) ,𝑀 (𝐴𝑢, 𝑆𝑢, 𝑡) ,𝑀 (𝐵𝑧, 𝑇𝑧, 𝑡) ,

𝑀 (𝐴𝑢, 𝑇𝑧, 𝑡) ,𝑀 (𝐵𝑧, 𝑆𝑢, 𝑡)

}

= min{𝑀(𝑧, 𝐵𝑧, 𝑡) ,𝑀 (𝑧, 𝑧, 𝑡) ,𝑀 (𝐵𝑧, 𝐵𝑧, 𝑡) ,

𝑀 (𝑧, 𝐵𝑧, 𝑡) ,𝑀 (𝐵𝑧, 𝑧, 𝑡)

}

= 𝑀 (𝑧, 𝐵𝑧, 𝑡) .

(88)

From (87), we get

∫

𝑀(𝑧,𝐵𝑧,𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ 𝜙(∫

𝑀(𝑧,𝐵𝑧,𝑡)

0

𝜑 (𝑠) 𝑑𝑠) . (89)



12 Abstract and Applied Analysis

As earlier, we obtain 𝐵𝑧 = 𝑧 = 𝑇𝑧 which shows that 𝑧 is a
common fixed point of the pair (𝐵, 𝑇). Hence 𝑧 is a common
fixed point of𝐴,𝐵, 𝑆, and𝑇. Uniqueness of the common fixed
point is an easy consequence of condition (69) in respect of
condition (𝜙

2
). This concludes the proof.

Now we state the earlier proved results (Theorems 39 and
43) in the framework of integral settings.

Motivated by the results of Altun et al. [47], we need the
following lemma to prove Corollary 47.

Lemma 46 (see [19]). Let (𝑋,𝑀, ∗) be a KM- (or GV-) fuzzy
metric space. If there exists a constant 𝑘 ∈ (0, 1) such that for
all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0

∫

𝑀(𝑥,𝑦,𝑘𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ ∫

𝑀(𝑥,𝑦,𝑡)

0

𝜑 (𝑠) 𝑑𝑠, (90)

where 𝜑 : [0,∞) → [0,∞) is a summable non-negative Leb-
esgue integrable function such that

∫

1

𝜖

𝜑 (𝑠) 𝑑𝑠 > 0, (91)

for each 𝜖 ∈ [0, 1), and then 𝑥 = 𝑦.

Corollary 47. Let 𝐴, 𝐵, 𝑆, and 𝑇 be four self-mappings of a
KM-fuzzy metric space (𝑋,𝑀, ∗) such that for all 𝑥, 𝑦 ∈ 𝑋,
𝑡 > 0 and for some 𝑘 ∈ (0, 1)

∫

𝑀(𝐴𝑥,𝐵𝑦,𝑘𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ ∫

𝑚(𝑥,𝑦)

0

𝜑 (𝑠) 𝑑𝑠, (92)

𝑚(𝑥, 𝑦)

= min{𝑀(𝑆𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐴𝑥, 𝑆𝑥, 𝑡) ,𝑀 (𝐵𝑦, 𝑇𝑦, 𝑡) ,

𝑀 (𝐴𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐵𝑦, 𝑆𝑥, 𝑡)

} ,

(93)

where 𝜑 : [0,∞) → [0,∞) is a summable non-negative Leb-
esgue integrable function such that

∫

1

𝜖

𝜑 (𝑠) 𝑑𝑠 > 0, (94)

for each 𝜖 ∈ [0, 1). Suppose that the pairs (𝐴, 𝑆) and (𝐵, 𝑇)
satisfy the (𝐶𝐿𝑅

𝑆𝑇
) property. Then the pairs (𝐴, 𝑆) and (𝐵, 𝑇)

have a coincidence point each. Moreover,𝐴, 𝐵, 𝑆, and 𝑇 have a
unique common fixed point provided both pairs (𝐴, 𝑆) and
(𝐵, 𝑇) are weakly compatible.

Corollary 48. Let 𝐴, 𝐵, 𝑆, and 𝑇 be four self-mappings of a
GV-fuzzy metric space (𝑋,𝑀, ∗) such that for all 𝑥, 𝑦 ∈ 𝑋, for
some 𝜙 ∈ Φ, and for some 𝑡 > 0

∫

𝑀(𝐴𝑥,𝐵𝑦,𝑡)

0

𝜑 (𝑠) 𝑑𝑠 ≥ 𝜙(∫

𝑚(𝑥,𝑦)

0

𝜑 (𝑠) 𝑑𝑠) , (95)

𝑚(𝑥, 𝑦)

= min{𝑀(𝑆𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐴𝑥, 𝑆𝑥, 𝑡) ,𝑀 (𝐵𝑦, 𝑇𝑦, 𝑡) ,

𝑀 (𝐴𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐵𝑦, 𝑆𝑥, 𝑡)

} ,

(96)

where 𝜑 : [0,∞) → [0,∞) is a summable non-negative Leb-
esgue integrable function such that

∫

1

𝜖

𝜑 (𝑠) 𝑑𝑠 > 0, (97)

for each 𝜖 ∈ [0, 1). Suppose that the pairs (𝐴, 𝑆) and (𝐵, 𝑇)
satisfy the (𝐶𝐿𝑅

𝑆𝑇
) property. Then the pairs (𝐴, 𝑆) and (𝐵, 𝑇)

have a coincidence point each. Moreover,𝐴, 𝐵, 𝑆, and 𝑇 have a
unique common fixed point provided both pairs (𝐴, 𝑆) and
(𝐵, 𝑇) are weakly compatible.

Remark 49. Theorem 45 improves and generalizes the results
of Miheţ [24], Imdad et al. [21], Shao and Hu [44, Theorem
3.2], and Murthy et al. [42, Theorems 2, 3, 5] and extend the
result of Sedghi and Shobe [43, Theorem 2.2].
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