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The conjugate gradient (CG) method has played a special role in solving large-scale nonlinear optimization problems due to the
simplicity of their very low memory requirements. This paper proposes a conjugate gradient method which is similar to Dai-Liao
conjugate gradient method (Dai and Liao, 2001) but has stronger convergence properties.The givenmethod possesses the sufficient
descent condition, and is globally convergent under strong Wolfe-Powell (SWP) line search for general function. Our numerical
results show that the proposed method is very efficient for the test problems.

1. Introduction

The conjugate gradient (CG) method has played a special
role in solving large-scale nonlinear optimization due to the
simplicity of their iterations and their very low memory
requirements. In fact, the CG method is not among the
fastest or most robust optimization algorithms for nonlinear
problems available today, but it remains very popular for
engineers and mathematicians who are interested in solving
large problems.The conjugate gradientmethod is designed to
solve the following unconstrained optimization problem:

min {𝑓 (𝑥) | 𝑥 ∈ 𝑅𝑛} , (1)

where𝑓(𝑥) : 𝑅𝑛 → 𝑅 is a smooth, nonlinear function whose
gradient will be denoted by 𝑔(𝑥). The iterative formula of the
conjugate gradient method is given by

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝑠
𝑘
, 𝑠

𝑘
= 𝛼
𝑘
𝑑
𝑘
, (2)

where 𝛼
𝑘
is a step length which is computed by carrying out

a line search, and 𝑑
𝑘
is the search direction defined by

𝑑
𝑘
= {

−𝑔
𝑘

if 𝑘 = 1,

−𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

if 𝑘 ≥ 2,
(3)

where 𝛽
𝑘
is a scalar and 𝑔

𝑘
denotes the gradient ∇𝑓(𝑥

𝑘
). If 𝑓

is a strictly convex quadratic function, namely,

𝑓 (𝑥) =
1

2
𝑥𝑇𝐻𝑥 + 𝑏𝑇𝑥,

(4)

where 𝐻 is a positive definite matrix and if 𝛼
𝑘
is the exact

one-dimensional minimizer along the direction 𝑑
𝑘
, then the

method with (2) and (3) are called the linear conjugate gra-
dient method. Otherwise, (2) and (3) is called the nonlinear
conjugate gradient method. The most important feature of
linear conjugate gradient method is that the search directions
satisfy the following conjugacy condition:

𝑑𝑇
𝑖
𝐻𝑑
𝑗
= 0, 𝑖 ̸= 𝑗.

(5)

For nonlinear conjugate gradient methods, for general objec-
tive functions, (5) does not hold, since the Hessian ∇2𝑓(𝑥)
changes at different points.
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Somewell-known formulas for𝛽
𝑘
are the Fletcher-Reeves

(FR), Polak-Ribière (PR), Hestense-Stiefel (HS), and Dai-
Yuan (DY) methods which are given, respectively, by

𝛽FR
𝑘

=
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, (6)

𝛽PR
𝑘

=
𝑔𝑇
𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

)
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩
2

, (7)

𝛽HS
𝑘

=
𝑔𝑇
𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

)

(𝑔
𝑘
− 𝑔
𝑘−1

)
𝑇

𝑑
𝑘−1

, (8)

𝛽DY
𝑘

=
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

(𝑔
𝑘
− 𝑔
𝑘−1

)
𝑇

𝑑
𝑘−1

, (9)

where ‖ ‖ denotes the Euclidean norm. Their corresponding
conjugate methods are abbreviated as FR, PR, HS, and DY
methods. Although all these method are equivalent in the
linear case, namely, when 𝑓 is a strictly convex quadratic
function and 𝛼

𝑘
are determined by exact line search, their

behaviors for general objective functionsmay be far different.
For general functions, Zoutendijk [1] proved the global

convergence of FR methods with exact line search (here and
throughout this paper, for global convergence, we mean that
the sequence generated by the corresponding methods will
either terminate after finite steps or contain a subsequence
such that it converges to a stationary point of the objective
function from a given initial point). Although one would
be satisfied with its global convergence properties, the FR
method performs much worse than the PR (HS) method in
real computations. Powell [2] analyzed a major numerical
drawback of the FR method; namely, if a small step is
generated away from the solution point, the subsequent steps
may be also very short. On the other hand, in practical
computation, the HS method resembles the PR method, and
both methods are generally believed to be the most efficient
conjugate gradient methods since these two methods essen-
tially perform a restart if a bad direction occurs. However,
Powell [3] constructed a counterexample and showed that
the PR method and HS method can cycle infinitely without
approaching the solution. This example suggests that these
two methods have a drawback that they are not globally
convergent for general functions. Therefore, in the past two
decades, much effort has been exceterd to find out new
formulas for conjugate methods such that not only they are
globally convergent for general functions but also they have
good numerical performance.

Recently, using a new conjugacy condition, Dai and Liao
[4] proposed two new methods. Interestingly, one of their
methods is not only globally convergent for general functions
but also performs better than HS and PR methods. In this
paper, similar to Dai and Liao’s approach, we propose another
formula for 𝛽

𝑘
, analyze the convergence properties for the

given method, and also carry the numerical experiment
which shows that the given method is robust and efficient.

The remainder of this paper is organized as follows. In
Section 2, we firstly state the corresponding formula which

is proposed by Dai and Liao [4] and the motivations of this
paper, and then we propose the new nonlinear conjugate
gradient method. In Section 3, convergence analysis for the
given method is presented. Numerical results are reported in
Section 4. Finally, some conclusions are given in Section 5.

2. Motivations and New Nonlinear
Conjugate Gradient Method

2.1. Dai-Liao’s Methods. It is well known that the linear
conjugate gradient methods generate a sequence of search
directions 𝑑

𝑘
such that the conjugacy condition (5) holds.

Denote 𝑦
𝑘−1

to be the gradient change, which means that

𝑦
𝑘−1

= 𝑔
𝑘
− 𝑔
𝑘−1

. (10)

For a general nonlinear function 𝑓, we know by the mean
value theorem that there exists some 𝑡 ∈ (0, 1) such that

𝑦𝑇
𝑘−1

𝑑
𝑘
= 𝛼
𝑘−1

𝑑𝑇
𝑘
∇2𝑓 (𝑥

𝑘−1
+ 𝑡𝛼
𝑘−1

𝑑
𝑘−1

) 𝑑
𝑘−1

. (11)

Therefore, it is reasonable to replace (5) with the following
conjugacy condition:

𝑦𝑇
𝑘−1

𝑑
𝑘
= 0. (12)

Recently, extension of (12) has been studied by Dai and
Liao in [4]. Their approach is based on the Quasi-Newton
techniques. Recall that, in the Quasi-Newton method, an
approximation matrix 𝐻

𝑘−1
of the Hessian ∇2𝑓(𝑥

𝑘−1
) is

updated such that the new matrix 𝐻
𝑘
satisfies the following

Quasi-Newton equation:

𝐻
𝑘
𝑠
𝑘−1

= 𝑦
𝑘−1

. (13)

The search direction 𝑑
𝑘
in Quasi-Newton method is calcu-

lated by

𝑑
𝑘
= −𝐻−1
𝑘
𝑔
𝑘
. (14)

Combining these two equations, we obtain

𝑑𝑇
𝑘
𝑦
𝑘−1

= 𝑑𝑇
𝑘
(𝐻
𝑘
𝑠
𝑘−1

) = −𝑔𝑇
𝑘
𝑠
𝑘−1

. (15)

The previous relation implies that (12) holds if the line search
is exact since in this case 𝑔𝑇

𝑘
𝑑
𝑘−1

= 0. However, practical
numerical algorithms normally adopt inexact line searches
instead of exact line searches. For this reason, it seems more
reasonable to replace the conjugacy condition (12) with the
condition

𝑑𝑇
𝑘
𝑦
𝑘−1

= −𝑡𝑔𝑇
𝑘
𝑠
𝑘−1

, 𝑡 ≥ 0, (16)

where 𝑡 ≥ 0 is a scalar.
To ensure that the search direction 𝑑

𝑘
satisfies the

conjugate condition (16), one only needs to multiply (3) with
𝑦
𝑘−1

and use (16), yielding

𝛽DL1
𝑘

=
𝑔𝑇
𝑘
(𝑦
𝑘−1

− 𝑡𝑠
𝑘−1

)

𝑑𝑇
𝑘−1

𝑦
𝑘−1

. (17)
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It is obvious that

𝛽DL1
𝑘

= 𝛽HS
𝑘

− 𝑡
𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

. (18)

For simplicity, we call the method with (2), (3), and (17)
as DL1 method. Dai and Liao also prove that the conju-
gate gradient method with DL1 is globally convergent for
uniformly convex functions. For general functions, Powell
[3] constructed an example showing that the PR method
may cycle without approaching any solution point if the step
length 𝛼

𝑘
is chosen to be the first local minimizer along 𝑑

𝑘
.

Since the DL1method reduces to the PR method in the case
that 𝑔𝑇

𝑘
𝑑
𝑘−1

= 0 holds, this implies that the method with (17)
need not converge for general functions. To get the global
convergence, like Gilbert and Nocedal [5], who have proved
the global convergence of the PRmethod with the restriction
that 𝛽PR

𝑘
≥ 0, Dai and Liao replaced (17) by

𝛽DL
𝑘

= max{
𝑔𝑇
𝑘
𝑦
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

, 0} − 𝑡
𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

= max {𝛽HS
𝑘
, 0} − 𝑡

𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

.

(19)

We also call the method with (2), (3), and (19) as DL method,
Dai and Liao show that DL method is globally convergent
for general functions under the sufficient descent condition
(21) and some suitable conditions. Besides, some numerical
experiments in [4] indicate the efficiency of this method.

Similar to Dai and Liao’s approach, Li et al. [6] proposed
another conjugate condition and related conjugate gradient
methods, and they also prove that the proposed methods are
globally convergent under some assumptions.

2.2. Motivations. From the above discussions, Dai and Liao’s
approach is effective; the main reason is that the search
directions 𝑑

𝑘
generated by DL1 method or DL method not

only contain the gradient information but also contain some
Hessian ∇2𝑓(𝑥) information. From (18) and (19), 𝛽DL1

𝑘
and

𝛽DL
𝑘

are formed by two parts; the first part is 𝛽HS
𝑘
, and the

second part is −𝑡(𝑔𝑇
𝑘
𝑠
𝑘−1

/𝑑𝑇
𝑘−1

𝑦
𝑘−1

). So, we also can consider
DL1 and DL methods as some modified forms of the HS
method by adding some information of Hessian ∇2𝑓(𝑥)
which is contained in the second part. The convergence
properties of the HS method are similar to PR method;
it does not converge for general functions even if the line
search is exact. In order to get the convergence, one also
needs the nonnegative restriction 𝛽

𝑘
= max{𝛽HS

𝑘
, 0} and the

sufficient descent assumption (21). From the above discus-
sion, the descent condition or sufficient descent condition
and nonnegative property of 𝛽

𝑘
play important roles in the

convergence analysis.We say that the descent condition holds
if for each search directions 𝑑

𝑘

𝑔𝑇
𝑘
𝑑
𝑘
< 0, ∀𝑘 ≥ 1. (20)

In addition, we say that the sufficient descent condition holds
if there exists a constant 𝑐 > 0 such that for each search
direction 𝑑

𝑘
, we have

𝑔𝑇
𝑘
𝑑
𝑘
≤ −𝑐󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

, ∀𝑘 ≥ 1. (21)

Motivated by the above ideal, in this paper, we focus on
finding the new conjugate gradient method which possesses
the following properties:

(1) nonnegative property 𝛽
𝑘
≥ 0;

(2) the new formula contains not only the gradient
information but also some Hessian information;

(3) the search directions 𝑑
𝑘
generated by the proposed

method satisfy the sufficient descent conditions (21).

2.3.TheNewConjugate GradientMethod. From the structure
of (6), (7), (8), and (9), the PR and HS methods have the
common numerator 𝑔𝑇

𝑘
𝑦
𝑘−1

, and the FR and DY methods
have the common numerator ‖𝑔

𝑘
‖2; and this different choice

makes themhave different properties. Generally speaking, FR
and DYmethods have better convergence properties, and PR
and HS methods have better numerical experiments. Powell
[3] pointed out that the FR method, with exact line search,
was susceptible to jamming.That is, the algorithm could take
many short steps without making significant progress to the
minimum. If the line search is exact, that means 𝑔𝑇

𝑘
𝑑
𝑘−1

= 0,
in this case, DY method will turn out to be FR method.
So, these two methods have the same disadvantage. The
PR and HS methods which share the common numerator
𝑔𝑇
𝑘
𝑦
𝑘−1

possess a built-in restart feature to avoid the jamming
problem: when the step 𝑥

𝑘
− 𝑥
𝑘−1

is small, the factor 𝑦
𝑘−1

in
the numerator of 𝛽

𝑘
tends to zero. Hence, the next search

direction 𝑑
𝑘
is essentially the steepest descent direction

−𝑔
𝑘
. So, the numerical performance of these methods is

better than the performance of the methods with ‖𝑔
𝑘
‖2 in

numerator of 𝛽
𝑘
.

Just as above discussions, great attentions were given to
find the methods which not only have global convergent
properties but also have nice numerical experiments.

Recently, Wei et al. [7] proposed a new formula

𝛽WYL
𝑘

=
𝑔𝑇
𝑘
𝑦∗
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, 𝑦∗

𝑘−1
= 𝑔
𝑘
−

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
𝑔
𝑘−1

. (22)

Themethod with formula 𝛽WYL
𝑘

not only has nice numer-
ical results but also possesses the sufficient descent condition
and global convergence properties under the strong Wolfe-
Powell line search. From the structure of 𝛽WYL

𝑘
, we know

that the method with 𝛽WYL
𝑘

can also avoid jamming: when
the step 𝑥

𝑘
− 𝑥
𝑘−1

is small, ‖𝑔
𝑘
‖/‖𝑔
𝑘−1

‖ tends to 1 and the
next search direction tends to the steepest descent direction
which is similar to PR method. But WYL method has some
advantages, such as under strong Wolfe-Powell line search,
𝛽WYL
𝑘

≥ 0, and if the parameter 𝜎 ≤ 1/4 in SWP, WYL
method possesses the sufficient descent condition which
deduces the global convergence of the WYL method.
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In [8, 9], Shengwei et al. extended such modification to
HS method as follows:

𝛽MHS
𝑘

=
𝑔𝑇
𝑘
𝑦∗
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

, 𝑦∗
𝑘−1

= 𝑔
𝑘
−

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
𝑔
𝑘−1

. (23)

The previous formulae 𝛽WYL
𝑘

and 𝛽MHS
𝑘

can be considered
as the modification forms of 𝛽PR

𝑘
and 𝛽HS

𝑘
by using 𝑦∗

𝑘−1

to replace 𝑦
𝑘−1

, respectively. In [8, 9], the corresponding
methods are proved to be globally convergent for general
functions under the strong Wolfe-Powell line search and
Grippo-Lucidi line search. Based on the same approach, some
authors give other discussions and modifications in [10–12].
In fact, 𝑦∗

𝑘−1
is not our point at the beginning, our purpose is

involving the information of the angle between 𝑔
𝑘
and 𝑔

𝑘−1
.

From this point of view, 𝛽WYL
𝑘

has the following form:

𝛽WYL
𝑘

= 𝛽FR
𝑘
(1 − cos (𝜃

𝑘
)) , (24)

where 𝜃
𝑘
is the angle between 𝑔

𝑘
and 𝑔
𝑘−1

. Bymultiplying𝛽FR
𝑘

with 1 − cos 𝜃
𝑘
, the method not only has similar convergence

properties with FR method, but also avoids jamming which
is similar to PR method.

The above analysis motivates us to propose the following
formula to compute 𝛽

𝑘
:

𝛽MDL1
𝑘

= max{
𝑔𝑇
𝑘
𝑦∗
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

, 0} − 𝑡
𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

, (25)

where 𝑦∗
𝑘−1

= 𝑔
𝑘
− (‖𝑔

𝑘
‖/‖𝑔
𝑘−1

‖)𝑔
𝑘−1

. Since the 𝛽MHS
𝑘

are
nonnegative under the strong Wolfe-Powell line search, we
omit the nonnegative restriction and propose the following
formula:

𝛽MDL
𝑘

=
𝑔𝑇
𝑘
𝑦∗
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

− 𝑡
𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

= 𝛽MHS
𝑘

− 𝑡
𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

. (26)

From (25) and (26), we know that we only substitute 𝑦
𝑘−1

in the first part of the numerator of 𝛽DL1
𝑘

𝑜𝑟 𝛽DL
𝑘

by 𝑦∗
𝑘
. The

reason is that we hope the formulae (25) and (26) contain the
angle information between 𝑔

𝑘
and 𝑔

𝑘−1
. In fact, 𝛽MDL

𝑘
can be

expressed as

𝛽MDL
𝑘

=
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

𝑑𝑇
𝑘−1

𝑦
𝑘−1

(1 − cos 𝜃
𝑘
) − 𝑡

𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

= 𝛽DY
𝑘

(1 − cos 𝜃
𝑘
) − 𝑡

𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

.

(27)

For simplicity, we call the method generated by (2), (3), and
(26) as MDL method and give the algorithm as follows.

Algorithm 1 (MDL).
Step 1. Given 𝑥

1
∈ 𝑅𝑛, 𝜀 ≥ 0, set 𝑑

1
= −𝑔
1
, 𝑘 = 1; if ‖𝑔

1
‖ ≤ 𝜀,

then stop.

Step 2. Compute 𝑡
𝑘
by some line searches.

Step 3. Let 𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, and let 𝑔

𝑘+1
= 𝑔(𝑥

𝑘+1
); if ‖𝑔

𝑘
‖ ≤

𝜀, then stop.

Step 4. Compute 𝛽
𝑘
by (26) and generate 𝑑

𝑘+1
by (3).

Step 5. Set 𝑘 := 𝑘 + 1 and go to Step 2.

Wemake the following basic assumptions on the objective
functions.

Assumption A. (i) The level set Γ = {𝑥 ∈ 𝑅𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥
1
)}

is bounded; namely, there exists a constant 𝐵 > 0 such that

‖𝑥‖ ≤ 𝐵, ∀𝑥 ∈ Γ. (28)

(ii) In some neighborhood𝑁 of Γ, 𝑓 is continuously dif-
ferentiable, and its gradient is Lipschitz continuous; namely,
there exists a constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝑁. (29)

Under the above assumptions of 𝑓, there exists a constant
𝛾 ≥ 0 such that

󵄩󵄩󵄩󵄩∇𝑓 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝛾, ∀𝑥 ∈ Γ. (30)

The step length 𝛼
𝑘
in Algorithm 1 (MDL) is obtained by

some line search scheme. In conjugate gradient methods, the
strong Wolfe-Powell conditions; namely,

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝑓 (𝑥

𝑘
) ≤ 𝛿𝛼

𝑘
𝑔𝑇
𝑘
𝑑
𝑘
, (31)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑔(𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
≤ −𝜎𝑔𝑇

𝑘
𝑑
𝑘
, (32)

where 0 < 𝛿 < 𝜎 < 1, are often imposed on the line search
(SWP).

3. Convergence Analysis

Under Assumption A, based on the Zoutendijk condition in
[1], for any conjugate gradient method with the strongWolfe-
Powell line search, Dai et al. in [13] proved the following
general result.

Lemma 2. Suppose that Assumption A holds. Consider any
conjugate gradient method in the form (2)-(3), where 𝑑

𝑘
is a

descent direction and 𝛼
𝑘
is obtained by the strongWolfe-Powell

line search. If

∑
𝑘≥1

1
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
= ∞. (33)

One has that

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (34)
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If the objective functions are uniformly convex, we can prove
that the norm of 𝑑

𝑘
generated by Algorithm 1 (MDL) is

bounded previously. Thus, by Lemma 2 one immediately has
the following result.

Theorem 3. Suppose that Assumption A holds. ConsiderMDL
method, where 𝑑

𝑘
is a descent direction and 𝛼

𝑘
is obtained by

the strong Wolfe-Powell line search. If the objective functions
are uniformly convex, namely, there exists a constant 𝜇 > 0
such that

(∇𝑓 (𝑥) − ∇𝑓 (𝑦))
𝑇

(𝑥 − 𝑦) ≥ 𝜇󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2

, ∀𝑥, 𝑦 ∈ Γ. (35)

One has that

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (36)

Proof. It follows from (35) that

𝑑𝑇
𝑘−1

𝑦
𝑘−1

≥ 𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

. (37)

By (3), (26), (29), (30), and (37), we have

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨󵄨𝛽
MDL
𝑘

󵄨󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 +

𝑔𝑇
𝑘
(𝑔
𝑘
− (󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 /
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩) 𝑔𝑘−1 − 𝑡𝑠𝑘−1)

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

= 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

+
𝑔𝑇
𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

+ 𝑔
𝑘−1

− (󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 /

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩) 𝑔𝑘−1 − 𝑡𝑠𝑘−1)

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

× 󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑔𝑘− 𝑔𝑘−1

󵄩󵄩󵄩󵄩+
󵄩󵄩󵄩󵄩𝑔𝑘−1 (1−

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 /

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩+ 𝑡

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩)

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

× 󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑔𝑘 − 𝑔𝑘−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨 + 𝑡

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩)

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 (2𝐿

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩 + 𝑡

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩)

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤ 𝛾(1 +
2𝐿 + 𝑡

𝜇
) = 𝛾𝜇−1 (𝜇 + 2𝐿 + 𝑡) ,

(38)

which implies the truth of (33). Therefore, by Lemma 2 we
have (34), which is equivalent to (36) for uniformly convex
functions. The proof is completed.

In order to prove the convergence of the MDL method,
we need to state some properties of 𝛽MHS

𝑘
.

Lemma4. In any conjugate gradientmethods, if the parameter
𝛽
𝑘
is computed by (23), namely, 𝛽

𝑘
= 𝛽MHS
𝑘

, and 𝛼
𝑘
is

determined by strongWolfe-Powell line search of (31) and (32),
then

𝛽MHS
𝑘

≥ 0. (39)

Proof. By SWP condition (32), we have 𝑑𝑇
𝑘−1

𝑦
𝑘−1

≥ 𝜎𝑔𝑇
𝑘−1

𝑑
𝑘−1

− 𝑔𝑇
𝑘−1

𝑑
𝑘−1

≥ 0, since 𝜎 < 1 and 𝑔𝑇
1
𝑑
1
= −‖𝑔

1
‖2 < 0.

So we have

𝛽MHS
𝑘

=
𝑔𝑇
𝑘
(𝑔
𝑘
− (󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 /
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩) 𝑔𝑘−1)

𝑑𝑇
𝑘−1

𝑦
𝑘−1

=
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

𝑑𝑇
𝑘−1

𝑦
𝑘−1

(1 − cos 𝜃
𝑘
) ≥ 0.

(40)

The proof is completed.

In addition, we can also prove that, in conjugate gradient
method of forms (2)-(3), if 𝛽

𝑘
is computed by 𝛽MDL

𝑘
(26) and

𝛼
𝑘
is determined by strongWolfe-Powell line search, then the

search direction 𝑑
𝑘
satisfies the sufficient descent condition

(21).

Theorem 5. In any conjugate gradient methods, in which the
parameter 𝛽

𝑘
is computed by (26), namely, 𝛽

𝑘
= 𝛽MDL
𝑘

, and 𝛼
𝑘

is determined by strong Wolfe-Powell line search of (31) and
(32), if 𝜎 < 1/3, then the search direction 𝑑

𝑘
satisfied the

sufficient descent condition (21).

Proof. We prove this theorem by induction. Firstly, we prove
the descent condition 𝑑𝑇

𝑘
𝑔
𝑘
< 0 as follow.

Since 𝑔𝑇
1
𝑑
1
= −‖𝑔

1
‖2 < 0, supposing that 𝑔𝑇

𝑖
𝑑
𝑖
< 0 holds

for 𝑖 ≤ 𝑘 − 1, we deduce that the descent condition holds by
proving that 𝑔𝑇

𝑖
𝑑
𝑖
< 0 holds for 𝑖 = 𝑘 as follow.

By SWP condition (32), we have 𝑑𝑇
𝑘−1

𝑦
𝑘−1

≥ (𝜎 −
1)𝑔𝑇
𝑘−1

𝑑
𝑘−1

> 0. Combining (3) and (26), we have

𝑔𝑇
𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
= − 1 +

(1 − cos 𝜃
𝑘
)

𝑑𝑇
𝑘−1

𝑦
𝑘−1

𝑔𝑇
𝑘
𝑑
𝑘−1

− 𝑡 ∗
(𝑔𝑇
𝑘
𝑑
𝑘−1

)
2

𝛼
𝑘−1

(𝑑𝑇
𝑘−1

𝑦
𝑘−1

) 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

≤ − 1 + 2
−𝜎𝑔𝑇
𝑘−1

𝑑
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

≤ − 1 + 2
−𝜎𝑔𝑇
𝑘−1

𝑑
𝑘−1

(𝜎 − 1) 𝑔𝑇
𝑘−1

𝑑
𝑘−1

≤
−1 + 3𝜎

1 − 𝜎
< 0.

(41)

Equation (41) means that descent condition holds.
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Secondly, we prove the following sufficient descent con-
dition.

Set 𝑐 = 1 − 2𝜎/(1 − 𝜎); since the restriction 𝜎 < 1/3, we
have 0 < 𝑐 < 1. Combining 𝑔𝑇

1
𝑑
1
= −‖𝑔

1
‖2 and (41), the

sufficient descent condition (21) holds immediately.

ByTheorem 5, we can prove the following Lemma 6.

Lemma 6. Suppose that Assumption A holds. Consider MDL
method, where𝛼

𝑘
is obtained by strongWolfe-Powell lien search

with 𝜎 < 1/3. If there exists a constant 𝛾 > 0 such that

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≥ 𝛾, ∀𝑘 ≥ 1, (42)

then 𝑑
𝑘

̸= 0 and

∑
𝑘≥2

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢𝑘−1
󵄩󵄩󵄩󵄩
2

< ∞, (43)

where 𝑢
𝑘
= 𝑑
𝑘
/‖𝑑
𝑘
‖.

Proof. Firstly, note that 𝑑
𝑘

̸= 0; otherwise, (21) is false. There-
fore, 𝑢

𝑘
is well defined. In addition, by relation (42) and

Lemma 2, we have

∑
𝑘≥1

1
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
< ∞. (44)

Now, we divide formula 𝛽MDL
𝑘

into two parts as follows:

𝛽1
𝑘
=

𝑔𝑇
𝑘
𝑦∗
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

, 𝛽2
𝑘
= −𝑡

𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

, (45)

and define

𝑟
𝑘
:=

𝜗
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
, 𝛿

𝑘
:= 𝛽1
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
, (46)

where 𝜗
𝑘
= −𝑔
𝑘
+ 𝛽2
𝑘
𝑑
𝑘−1

.
Then by (3) we have for all 𝑘 ≥ 2,

𝑢
𝑘
= 𝑟
𝑘
+ 𝛿
𝑘
𝑢
𝑘−1

. (47)

Using the identity ‖𝑢
𝑘
‖ = ‖𝑢

𝑘−1
‖ = 1 and (47) we can obtain

󵄩󵄩󵄩󵄩𝑟𝑘
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝛿𝑘𝑢𝑘−1
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝛿𝑘𝑢𝑘 − 𝑢𝑘−1
󵄩󵄩󵄩󵄩 , (48)

using the condition 𝛿
𝑘
= 𝛽MHS
𝑘

(‖𝑑
𝑘−1

‖/‖𝑑
𝑘
‖) ≥ 0, the triangle

inequality, and (48), it follows that

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢𝑘−1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩(1 + 𝛿) 𝑢𝑘 − (1 + 𝛿) 𝑢𝑘−1
󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝑢𝑘 − 𝛿𝑘𝑢𝑘−1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝛿𝑘𝑢𝑘 − 𝑢𝑘−1
󵄩󵄩󵄩󵄩

= 2 󵄩󵄩󵄩󵄩𝑟𝑘
󵄩󵄩󵄩󵄩 .

(49)

On the other hand, the line search condition (32) gives

𝑦𝑇
𝑘−1

𝑑
𝑘−1

≥ (𝜎 − 1) 𝑔𝑇
𝑘−1

𝑑
𝑘−1

. (50)

Equations (50), (32), and (21) imply that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝑇
𝑘
𝑑
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

𝜎

1 − 𝜎
. (51)

It follows from the definition of 𝜗
𝑘
, (51), (28), and (30) that

󵄩󵄩󵄩󵄩𝜗𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝛿𝑘
󵄩󵄩󵄩󵄩 + 𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝑇
𝑘
𝑠
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

= 󵄩󵄩󵄩󵄩𝛿𝑘
󵄩󵄩󵄩󵄩 + 𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝑇
𝑘
𝑑
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

≤ 𝛾 + 𝑡
𝜎

1 − 𝜎
2𝐵.

(52)

So, we have

∑󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢𝑘−1
󵄩󵄩󵄩󵄩
2

≤ 4∑󵄩󵄩󵄩󵄩𝑟𝑘
󵄩󵄩󵄩󵄩
2

≤ 4∑
𝜗2
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≤ 4(𝛾 + 𝑡
𝜎

1 − 𝜎
2𝐵)
2

∑
1

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

< ∞.

(53)

The proof is completed.

Gilbert and Nocedal [5] introduced property (∗) which
is very important for the convergence properties of the con-
jugate gradient methods. We are going to show that method
with 𝛽MDL

𝑘
possesses such property (∗).

Property (∗). Consider a method of forms (2) and (3).
Suppose that

0 < 𝛾 ≤ 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≤ 𝛾, ∀𝑘 ≥ 1. (54)

We say that themethodhas property (∗), if for all 𝑘, there exist
constants 𝑏 > 1, 𝜆 > 0 such that |𝛽

𝑘
| ≤ 𝑏 and if ‖𝑠

𝑘−1
‖ ≤ 𝜆 we

have |𝛽
𝑘
| ≤ 1/2𝑏.

In fact, by (50), (21), and (42), we have

𝑑𝑇
𝑘−1

𝑦
𝑘−1

≥ (𝜎 − 1) 𝑔𝑇
𝑘−1

𝑑
𝑘−1

≥ 𝑐 (1 − 𝜎) 󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2

≥ (1 − 𝜎) 𝑐𝛾2.
(55)

Using this, (28), (29), and (30) we obtain

󵄨󵄨󵄨󵄨󵄨𝛽
MDL
𝑘

󵄨󵄨󵄨󵄨󵄨 ≤
(2𝐿 + 𝑡) 󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩
(1 − 𝜎) 𝑐𝛾2

≤
2 (2𝐿 + 𝑡) 𝛾𝐵

(1 − 𝜎) 𝑐𝛾2
=: 𝑏. (56)

Note that 𝑏 can be defined such that 𝑏 > 1. Therefore, we can
say 𝑏 > 1. As a result, we define

𝜆 :=
(1 − 𝜎) 𝑐𝛾2

2𝑏 (2𝐿 + 𝑡) 𝛾
, (57)

we get from the first inequality in (56) that if ‖𝑠
𝑘−1

‖ ≤ 𝜆, then

󵄨󵄨󵄨󵄨󵄨𝛽
MDL
𝑘

󵄨󵄨󵄨󵄨󵄨 ≤
(2𝐿 + 𝑡) 𝜆

(1 − 𝜎) 𝑐𝜆2
=

1

2𝑏
. (58)
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Let𝑁∗ denote the set of positive integers. For 𝜆 > 0 and
a positive integer Δ, denote

𝐾𝜆
𝑘,Δ

:= {𝑖 ∈ 𝑁∗ : 𝑘 ≤ 𝑖 ≤ 𝑘 + Δ − 1, 󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩 > 𝜆} . (59)

Let |𝐾𝜆
𝑘,Δ
| denote the number of elements in 𝐾𝜆

𝑘,Δ
. From the

previous property (∗), we can prove the following lemma.

Lemma 7. Suppose that Assumption A holds. Consider MDL
method, where 𝛼

𝑘
is obtained by the strong Wolfe-Powell line

search in which 𝜎 < 1/3. Then if (42) holds, there exists 𝜆 > 0
such that, for any Δ ∈ 𝑁∗ and any index 𝑘

0
, there is an index

𝑘 ≥ 𝑘
0
such that

󵄨󵄨󵄨󵄨󵄨𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨 >
Δ

2
. (60)

The proof of this lemma is similar to the proof of Lemma
3.5 in [4]. In [4], authors proved that method with (19)
has this property, if the search direction 𝑑

𝑘
satisfies the

sufficient descent condition (21). In our paper, we do not
need this assumption, since the directions generated byMDL
method with strong Wolfe-Powell line search always possess
the sufficient descent condition (21). So, we omit the proof of
this lemma.

According to the previous lemmas and theorems, we can
prove the following convergence theorem for the MDL.

Theorem8. Suppose that Assumption A holds. ConsiderMDL
method, if 𝛼

𝑘
is obtained by strong Wolfe-Powell line search

with 𝜎 < 1/3. Then we have lim inf
𝑘→∞

‖𝑔
𝑘
‖ = 0.

Proof. We proceed by contradiction. If lim inf
𝑘→∞

‖𝑔
𝑘
‖ > 0,

then (42) must hold. Then the conditions of Lemmas 6 and 7
hold. Defining 𝑢

𝑖
= 𝑑
𝑖
/‖𝑑
𝑖
‖, we have for any indices 𝑙, 𝑘, with

𝑙 ≥ 𝑘,

𝑥
𝑙
− 𝑥
𝑘−1

=
𝑙

∑
𝑖=𝑘

𝑥
𝑖
− 𝑥
𝑖−1

=
𝑙

∑
𝑖=𝑘

𝛼
𝑖−1
𝑑
𝑖−1

=
𝑙

∑
𝑖=𝑘

𝑢
𝑖−1

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩

=
𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 𝑢𝑘−1 +

𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 (𝑢𝑖−1 − 𝑢𝑘−1) .

(61)

Equation (61), ‖𝑢
𝑖
‖ = 1, and (28) give

𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑙 − 𝑥𝑘−1
󵄩󵄩󵄩󵄩 +
𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢𝑘−1

󵄩󵄩󵄩󵄩

≤ 2𝐵 +
𝑙

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢𝑘−1

󵄩󵄩󵄩󵄩 .

(62)

Let 𝜆 > 0 be given by Lemma 7, and define Δ := ⌈8𝐵/𝜆⌉
to be the smallest integer not less than 8𝐵/𝜆. By Lemma 6, we
can find an index 𝑘

0
≥ 1 such that

∑
𝑖≥𝑘0

󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢𝑘−1
󵄩󵄩󵄩󵄩
2

≤
1

4Δ
. (63)

With this Δ and 𝑘
0
, Lemma 7 gives an index 𝑘 ≥ 𝑘

0
such that

󵄨󵄨󵄨󵄨󵄨𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨 >
Δ

2
. (64)

For any index 𝑖 ∈ [𝑘, 𝑘+Δ−1], by Cauchy-Schwartz inequality
and (63),

󵄩󵄩󵄩󵄩𝑢𝑖 − 𝑢𝑘−1
󵄩󵄩󵄩󵄩 ≤
𝑖

∑
𝑗=𝑘

󵄩󵄩󵄩󵄩󵄩𝑢𝑗 − 𝑢𝑗−1
󵄩󵄩󵄩󵄩󵄩

≤ (𝑖 − 𝑘 + 1)1/2(
𝑖

∑
𝑗=𝑘

󵄩󵄩󵄩󵄩󵄩𝑢𝑗 − 𝑢𝑗−1
󵄩󵄩󵄩󵄩󵄩
2

)

1/2

≤ Δ1/2(
1

4Δ
)
1/2

=
1

2
.

(65)

From these relations (65) and (64) and taking 𝑙 = 𝑘 +Δ− 1 in
(62), we get

2𝐵 ≥
1

2

𝑘+Δ−1

∑
𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 >

𝜆

2

󵄨󵄨󵄨󵄨󵄨𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨 >
𝜆Δ

4
. (66)

Thus, Δ < 8𝐵/𝜆, which contradicts the definition of Δ. The
proof is completed.

4. Numerical Results

From (26) and (27), the MDL method can be considered as

(i) form 1: a modification form of DL method;
(ii) form 2: a modification form of MHS method;
(iii) form 3: a modification form of DY method.

In form 1, the 𝛽HS
𝑘

in 𝛽DL
𝑘

is replaced by 𝛽MHS
𝑘

. By this mod-
ification, we can guarantee the nonnegativity restrictions in
DL method. In form 2, 𝛽MDL

𝑘
is obtained by 𝛽MHS

𝑘
adding

an adjusting term −𝑡(𝑔𝑇
𝑘
𝑠
𝑘−1

/𝑦𝑇
𝑘−1

𝑑
𝑘−1

) which contains some
Hessian information of the objective function. In form 3,
𝛽MDL
𝑘

= 𝛽DY
𝑘
(1−cos 𝜃

𝑘
)−𝑡(𝑔𝑇

𝑘
𝑠
𝑘−1

/𝑑𝑇
𝑘−1

𝑦
𝑘−1

) shows that 𝛽MDL
𝑘

is obtained by multiplying 𝛽DY
𝑘

with (1 − cos 𝜃
𝑘
) and adding

the second term −𝑡(𝑔𝑇
𝑘
𝑠
𝑘−1

/𝑦𝑇
𝑘−1

𝑑
𝑘−1

).
From the above convergence analysis, we know thatMDL

method has stronger convergent properties than DLmethod,
and similar convergent properties withMHSmethod andDY
method. So, in this section, we test the following four CG
methods:

(i) MDL method: method of the forms (2) and (3), in
which 𝛽

𝑘
is computed by 𝛽MDL

𝑘
(26);

(ii) DLmethod:method of the forms (2) and (3), in which
𝛽
𝑘
is computed by 𝛽DL

𝑘
(19);

(iii) MHS method: method of the forms (2) and (3), in
which 𝛽

𝑘
is computed by 𝛽MHS

𝑘
(23);

(iv) DYmethod:method of the forms (2) and (3), inwhich
𝛽
𝑘
is computed by 𝛽DY

𝑘
(9).
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Table 1: Numerical results.

Problem Dim MDL DL MHS DY
ROSE 2 35/349/83 F 38/267/91 63/800/106
FROTH 2 18/88/29 9/25/18 15/84/26 16/38/26
BADSCP 2 28/275/64 36/510/96 42/362/96 F
BADSCB 2 26/446/48 F 28/452/50 F
BEALE 3 16/87/27 11/81/22 14/83/25 47/193/74
JENSAM 2 11/31/21 F 11/31/21 11/31/21
HELIX 3 49/347/81 28/164/54 47/390/73 80/406/126
BARD 3 18/38/26 24/145/37 18/86/26 48/148/77
GAUSS 3 4/9/5 3/7/4 4/9/5 4/9/5
SING 4 134/501/209 78/396/124 111/411/172 650/3254/1104
WOOD 4 102/613/182 179/865/306 207/1352/365 F
KOWOSB 4 39/178/66 46/383/72 53/259/88 462/1760/796
BIGGS 6 18/279/25 85/564/14 20/286/31 210/644/342
OSB2 11 268/1001/445 185/888/293 186/701/310 F
WATSON 20 1455/3587/2274 1426/4240/2255 1922/4843/3018 548/1480/864
ROSEX 8 36/446/90 26/421/62 38/362/93 63/764/100

50 46/548/101 32/469/84 44/412/101 86/707/146
100 45/459/99 23/445/57 46/414/102 71/856/112

SINGX 4 134/501/209 78/396/124 111/411/172 650/3254/1104
PEN1 2 5/18/12 12/182/34 5/18/12 5/18/12
PEN2 4 10/82/26 12/89/27 11/133/29 32/167/57

50 131/764/254 405/1453/683 136/1056/256 121/724/242
VARDIM 2 3/9/7 3/9/7 3/9/7 3/9/7

50 10/52/36 10/52/36 10/52/36 10/52/36
TRIG 3 13/129/27 11/82/25 15/225/27 162/974/267

50 38/320/70 38/222/68 38/225/71 206/1662/290
100 48/340/90 43/425/76 48/294/90 225/3077/286

BV 3 9/17/11 12/25/16 11/20/13 13/27/18
10 64/171/97 50/148/81 64/172/99 59/163/93

IE 200 5/59/7 6/13/8 5/59/7 6/61/8
500 5/11/7 6/13/8 6/13/8 6/13/8

TRID 3 14/33/18 10/26/17 14/33/18 15/84/21
200 31/68/39 30/66/37 31/68/39 36/78/42

BAND 3 7/64/12 9/20/13 7/64/12 7/64/12
50 19/670/26 15/278/23 19/670/26 F
100 18/712/27 16/373/26 18/712/27 F
500 18/677/26 16/339/27 18/677/26 F

LIN 1000 1/3/3 1/3/3 1/3/3 1/3/3
LIN1 10 1/3/3 1/3/3 1/3/3 1/3/3

The step length 𝛼
𝑘
in all methods is determined such that the

strong Wolfe-Powell conditions (31) and (32) hold with 𝛿 =
0.01 and 𝜎 = 0.1.

The test problems are drawn from [14]. The numerical
results of our tests are reported in Table 1.

The column problem represents the problem name in
[14], Dim represents the dimension of the problems. The
numerical results are given in the form of 𝐼/𝐹/𝐺, where 𝐼,
𝐹, and 𝐺 denote the numbers of iterations, function eval-
uations and gradient evaluations, respectively. The stopping
condition is ‖𝑔

𝑘
‖ ≤ 10−6. Since we want to compare the

performance of the different methods, in the numerical
results, we omit the problems if all the four methods perform
equally. The notation 𝐹 means that, for this problem, the
corresponding method fails.

5. Conclusions

In this paper, based on 𝛽DY
𝑘

and 𝛽DL
𝑘
, a new formula is

proposed to compute the parameter 𝛽
𝑘
of the conjugate

gradient methods.Themainmotivations are to improve both
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the convergence properties and numerical behavior of the
conjugate gradient method. For general conjugate gradient
methods, in order to get the global convergence results,
the methods are required to possess the following major
properties:

(1) the generated directions 𝑑
𝑘
are descent directions;

(2) the parameters 𝛽
𝑘
are nonnegative.

In addition, to ensure that the methods have robust and
efficient numerical behavior, the parameter 𝛽

𝑘
needs to

approach zero, when the small step 𝑠
𝑘
occurs.

From the convergence analysis of this paper, we known
that the directions 𝑑

𝑘
generated by MDL method are descent

directions, which is not true for DY or DL methods, and
the proposedMDLmethod is globally convergent for general
functions. In the previous section, we compare the numerical
performance of the MDL method with the DY, MHS, and
DL methods. From the convergence analysis and numerical
results, comparing with the DL, DY, and MHS method, we
can have the following.

(a) MDL method versus DL method: from the compu-
tational point of view, for most of the test prob-
lems, MDL method performs quite similarly with
DL method. There are 15 problems in which MDL
method outperforms the DLmethod and 18 problems
in which DL method outperforms the MDL method.
But, from the convergent point of view, the MDL
method outperforms the DL method.

(b) MDL method versus DY method: the convergence
properties ofMDLmethod are similar to DYmethod.
By comparing the numerical results of MDL method
with DY method, there are 27 test problems in which
MDL method outperforms the DY method and only
4 test problems in which DY method outperforms
the MDL method. Therefore, we could say that MDL
method is much better than the DY method in
numerical behavior.

(c) MDL method versus MHS method: they possess
similar convergence properties; the numerical results
show thatMDLmethod performs little better than the
MHS method.
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