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We consider simultaneously estimating the restored image and the spatially dependent regularization parameter which mutually
benefit from each other. Based on this idea, we refresh two well-known image denoising models: the LLT model proposed by
Lysaker et al. (2003) and the hybridmodel proposed by Li et al. (2007).The resultingmodels have the advantage of better preserving
image regions containing textures and fine details while still sufficiently smoothing homogeneous features. To efficiently solve the
proposed models, we consider an alternating minimization scheme to resolve the original nonconvex problem into two strictly
convex ones. Preliminary convergence properties are also presented. Numerical experiments are reported to demonstrate the
effectiveness of the proposed models and the efficiency of our numerical scheme.

1. Introduction

Image denoising is a fundamental problem in image pro-
cessing and computer vision. In many real-world applica-
tions, it forms a significant preliminary step for subsequent
image processing operations, such as object recognition,
medical image analysis, surveillance, andmanymore. During
acquisition and transmission, images are often corrupted by
Gaussian noise. In this problem, the degradation process is
modeled as

𝑓 = 𝑢exact + 𝜂, (1)
where𝑓, 𝑢exact, and 𝜂 represent the observed image, the origi-
nal image, and the additivewhiteGaussian noise, respectively.

The objective of image denoising is to compute a good
estimate of 𝑢exact from 𝑓. To obtain a reasonable approx-
imated solution from (1), the regularization method, gen-
erally used as a numerical technique for stabilizing inverse
problems, has been increasingly applied to image denoising
over the past decades. A large class of regularization based
denoising methods unifies under the following framework:

min
𝑢

𝐸 (𝑢) = 𝐹 (𝑢) + 𝛼𝑅 (𝑢) , (2)

where 𝑢 denotes the restored image to be estimated. In the
right-hand side of (2), 𝐹(𝑢) represents the fidelity term,

which measures the closeness of the estimate to the data. The
functional 𝑅(𝑢) is called the regularization term pushing 𝑢
to exhibit some a priori expected features. Parameter 𝛼 in (2)
is known as the regularization parameter, which balances the
tradeoff between the two terms.

One key topic in regularization methods is the choice of
the regularizer. Among many regularization based denoising
models, the total variation regularization, proposed byRudin,
Osher, and Fatemi (ROF) [1], has won tremendous success
due to its edge-preserving property. In the ROF model, the
restoration result 𝑢 is generated by solving the following
minimization problem:

min
𝑢

𝐸 (𝑢) = ∫
Ω

(𝑢 − 𝑓)
2

𝑑𝑥 + 𝛼𝑅ROF (𝑢) , (3)

where the TV-term 𝑅ROF(𝑢) = ∫
Ω

|𝐷𝑢| denotes the total
variation of 𝑢 (see [2] for more details) and Ω denotes the
image domain. A remarkable aspect of the ROF model is
that the TV-term does not penalize the discontinuities in 𝑢;
see, for example, [3]. This property allows us to restore the
edges of the original image. However, the main disadvantage
of the ROF model is the so-called staircase effect (smooth
regions are transformed into piecewise constant regions),
a phenomenon long observed in the literature [4–6]. As



2 Abstract and Applied Analysis

(a) (b) (c)

Figure 1: The numerical behavior of 𝑔∗
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2
; here 𝛼 = 0.05,𝑀 = 0.05, and 𝑟 = 7: (a) the original image, (b) 𝑔∗
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, and (c) 𝑔∗

2
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Figure 2: Original images: (a) synthetic image 1 (128 × 128), (b) synthetic image 2 (256 × 256), (c) “Lena” (256 × 256), and (d) “Barbara”
(256 × 256).

a consequence, the restoration result is unsatisfactory to the
eye due to the loss of texture details and the generation
of artificial edges that do not exist in the true image. To
overcome this effect, models based on high-order PDEs have
been proposed in the literature; see, for example, [7–11]. For
instance, Lysaker, Lundervold, and Tai [8] proposed a fourth-
order PDE model (termed as the LLT model) with the form

min
𝑢

𝐸 (𝑢) = ∫
Ω

(𝑢 − 𝑓)
2

𝑑𝑥 + 𝛼𝑅LLT (𝑢) , (4)

where 𝑅LLT(𝑢) = ∫
Ω

|∇2𝑢|𝑑𝑥 is a fourth-order filter. From
atheoretical point of view [12], it has been shown that fourth-
order PDEs are superior to second-order PDEs in some
aspects, including avoiding the staircase effect. However, this
type of filters usually blurs the edges of the original image
and suffers from the speckle effect in homogeneous regions.
Since the ROF model and the LLT model are of both merits
and drawbacks, it may be desirable to promote solutions
that simultaneously exhibit properties that are enforced by
both regularizers. This is the basic idea of [13] proposed by
Lysaker and Tai, in which they studied an iterative algorithm
based on combining the results generated by (3) and (4). But
their method needs to solve two separate PDEs and their

combination is not quite intuitive. Li et al. [14] proposed a
hybrid model in the following form:

min
𝑢

𝐸 (𝑢) = ∫
Ω

(𝑢 − 𝑓)
2

𝑑𝑥

+ 𝛼(∫
Ω

(1 − 𝑔) |𝐷𝑢| + ∫
Ω

𝑔
󵄨󵄨󵄨󵄨󵄨∇
2𝑢

󵄨󵄨󵄨󵄨󵄨 𝑑𝑥) ,

(5)

where the function 𝑔 is chosen as an edge detector 1/(1 +

𝛾 + 𝑘|∇𝐺
𝜎
∗ 𝑓|2) to control the relative weights of the two

regularizers (see [14] for details). By their selection of 𝑔, the
second-order filter plays the dominant role where |∇𝐺

𝜎
∗𝑓| is

large (regions including sharp features), whereas the fourth-
order filter plays the dominant role where |∇𝐺

𝜎
∗ 𝑓| is small

(homogeneous regions). Therefore, (5) reaps the benefits of
both regularizers. More related works on the combination of
the ROF model and the LLT model can be found in [15–17].

Another crucial issue in the regularization process is
the suitable selection of the regularization parameter. In
regularization models, the regularization parameter controls
the relative weights of the data fidelity and regularization
terms. However, due to the inhomogeneous distribution
of cartoon, textures, and small details in an image (in
terms of variance), a global constant parameter may not
be suitable for these features of different scales. Accord-
ing to the cartoon pyramid model studied in [18], as the
regularization parameter goes from small to large values,
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Figure 3: Results of different models for the synthetic image 1: (a) the noisy image, the restored images by (b) the ROF model, (c) the LLT
model, (d) the hybrid model, (e) our Model 1 (𝛼 = 0.1 and 𝑟 = 1), and (f) our Model 2 (𝛼 = 0.18 and 𝑟 = 1).

Table 1: Summarized results of the comparative experiment.

Figure 2(a) Figure 2(b) Figure 2(c) Figure 2(d)
ReErr

Noisy image 0.1064 0.1847 0.1913 0.1643
ROF model 0.0522 0.1279 0.0784 0.0925
LLT model 0.0633 0.1273 0.0807 0.0894
Hybrid model 0.0509 0.1224 0.0758 0.0879
Model 1 0.0361 0.1151 0.0751 0.0842
Model 2 0.0298 0.1132 0.0729 0.0827

SNR
Noisy image 9.00 6.43 5.49 6.42
ROF model 15.19 9.62 13.24 11.41
LLT model 13.51 9.66 12.99 11.71
Hybrid model 15.41 10.00 13.53 11.85
Model 1 18.39 10.53 13.61 12.23
Model 2 20.06 10.68 13.87 12.38

Time
ROF model 0.28 1.22 1.26 1.05
LLT model 1.33 4.63 1.73 3.06
Hybrid model 2.23 8.44 4.48 5.46
Model 1 2.87 6.36 5.18 4.65
Model 2 2.50 9.63 5.93 6.08
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Figure 4: Results of different models for the synthetic image 2: (a) the noisy image, the restored images by (b) the ROF model, (c) the LLT
model, (d) the hybrid model, (e) our Model 1 (𝛼 = 0.21 and 𝑟 = 7), and (f) our Model 2 (𝛼 = 0.35 and 𝑟 = 7).

Table 2: Summarized results of the proposed models for different
values of 𝐿 with our initialization and zero initialization.

L Model 1 Model 2
ReErr SNR Time ReErr SNR Time

Our initialization

3 0.0754 13.57 4.66 0.0731 13.85 7.10
6 0.0752 13.60 4.21 0.0730 13.86 5.71
10 0.0751 13.61 5.51 0.0729 13.87 6.19
15 0.0752 13.60 6.27 0.0729 13.86 7.74

Zero initialization

10 0.0780 13.28 6.27 0.0768 13.42 5.87
20 0.0758 13.54 15.93 0.0740 13.74 14.21
30 0.0753 13.58 29.83 0.0733 13.83 23.87
40 0.0753 13.59 49.03 0.0730 13.85 33.28

the corresponding solutions generated by the ROF model
range from undersmoothed (textures are preserved, while
noise remains almost unchanged in homogeneous regions) to
oversmoothed (noise is reduced well, but significant details
are lost). This suggests that a spatially dependent regular-
ization parameter including, instead of a single constraint,
a group of constraints adapted to different regions of the
image is desired to obtain higher quality results. To this end,
denoising methods with a spatially dependent regularization
parameter have been extensively studied; see, for example,

[18–22]. In these works, the automated selection strategies
of the regularization parameter are based on local variance
measures [18, 20–22] and the local statistical characteristics
of the noise [21, 22].

Note that, in models (3), (4), and (5), the selection
of the regularization parameter never accommodates the
information of the current restored image. This triggers us to
seek a new approach for regularization parameter estimation.
Our main motivation is to simultaneously estimate both
the restored image and the regularization parameter which
mutually benefit from each other during the denoising
procedure. We propose a general model with the following
form:

min
𝑢,𝑔

𝐸 (𝑢, 𝑔) = 𝐹 (𝑢) + 𝐹 (𝑔) + 𝑅 (𝑢, 𝑔) , (6)

where 𝑔 denotes a spatially dependent regularization param-
eter, 𝐹(𝑢) and 𝐹(𝑔) are, respectively, fidelity terms for the
two variables, and the binary function 𝑅(𝑢, 𝑔) represents a
regularizer. The advantages of (6) are presented as follows.
First, instead of a global constant regularization parameter,
a spatially dependent regularization parameter is more flex-
ible to image features of different scales. Second, since the
estimation of the two variables is derived simultaneously,
the regularization parameter is changing more reasonablly
by exploiting the more accuracy restored image instead of
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Figure 5: Results of different models for the image “Lena”: (a) the noisy image, the restored images by (b) the ROFmodel, (c) the LLTmodel,
(d) the hybrid model, (e) our Model 1 (𝛼 = 0.26 and 𝑟 = 3), and (f) our Model 2 (𝛼 = 0.36 and 𝑟 = 3).

the observed images corrupted by noise. Here we remark
that (6) is a general-purpose model which can incorporate
various classical methods. Specially we focus on the fourth-
order filter in (4) and the hybrid regularizer in (5).The refresh
models are named asModels 1 and 2, respectively.Model 1 can
suppress the speckle effect caused by the LLT model while
less overregularizing textures. Model 2 has the advantage
of better restoring textures and homogeneous regions while
preserving edges. To overcome the nonconvexity of our
models, we utilize an alternating minimization scheme to
resolve the original nonconvex problem into two strictly
convex ones. Thus, our models can be asymptotically solved.

Theoutline of the rest of the paper is as follows. In the next
section, we give notations and discretizations. In Section 3,
we introduce our models with some discussions. The fol-
lowing Section 4 presents the numerical scheme for solving
the proposed models. In Section 5, numerical experiments
are given to demonstrate the performance of the proposed
models. Finally, we conclude the paper in Section 6.

2. Notations and Discretizations

From now on, we will restrict our attention to the discrete
setting. We first introduce some notations. Without loss of
generality, we assume that all the images in this paper are

grayscale and have a square domain. Then we represent an
image 𝑢 as an 𝑛 × 𝑛matrix, where 𝑢

𝑖,𝑗
represents the intensity

value of 𝑢 at pixel (𝑖, 𝑗), for 𝑖, 𝑗 = 1, . . . , 𝑛. For the sake of
simplicity, we assume that the image is periodically extended,
and then the FFT can be adopted in our algorithm. It should
be pointed out that adaption to other boundary conditions is
not difficult in principle. In the rest of this paper, we let ‖ ⋅ ‖

2
,

‖ ⋅ ‖F, and ∘ denote the 2-norm, the Frobenius norm, and the
Hadamard product, respectively. Let 𝑋 denote the Euclidean
spaceR𝑛×𝑛.Theusual inner product andEuclidean normof𝑋
are denoted as ⟨⋅, ⋅⟩

𝑋
and ‖ ⋅ ‖

𝑋
, respectively. Denote by 𝑌 the

space 𝑋 × 𝑋 equipped with the inner product ⟨⋅, ⋅⟩
𝑌
leading

canonically to the norm ‖ ⋅ ‖
𝑌
, that is; for 𝑝 = (𝑝1, 𝑝2) ∈ 𝑌

and 𝑞 = (𝑞1, 𝑞2) ∈ 𝑌,

⟨𝑝, 𝑞⟩
𝑌
= ⟨𝑝1, 𝑞1⟩

𝑋

+ ⟨𝑝2, 𝑞2⟩
𝑋

,
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩𝑌 = √⟨𝑝, 𝑝⟩
𝑌
.

(7)

Moreover, for 𝑦 = (𝑦1, 𝑦2) ∈ 𝑌, |𝑦| denotes the 𝑛 × 𝑛 matrix
whose element |𝑦|

𝑖,𝑗
is equal to ‖𝑦

𝑖,𝑗
‖
2

with 𝑦
𝑖,𝑗

= (𝑦1
𝑖,𝑗
, 𝑦2
𝑖,𝑗
).

We denote the space 𝑌 × 𝑌 as 𝑍. The definitions of the inner
product ⟨⋅, ⋅⟩

𝑍
, the norm ‖ ⋅ ‖

𝑍
, and |𝑧| are analogous to those

of 𝑌.



6 Abstract and Applied Analysis

(a) (b) (c)

(d) (e) (f)

Figure 6: Results of different models for the image “Barbara”: (a) the noisy image, the restored images by (b) the ROF model, (c) the LLT
model, (d) the hybrid model, (e) our Model 1 (𝛼 = 0.28 and 𝑟 = 7), and (f) Model 2 (𝛼 = 0.39 and 𝑟 = 7).

Nowwe introduce a discretized version of somenecessary
operators. For 𝑢 ∈ 𝑋, we introduce forward and backward
difference operators as follows:

(
∘

𝐷
+

𝑥
𝑢)
𝑖,𝑗

= {
𝑢
𝑖,𝑗+1

− 𝑢
𝑖,𝑗
, 1 ≤ 𝑗 ≤ 𝑛 − 1,

𝑢
𝑖,1

− 𝑢
𝑖,𝑛
, 𝑗 = 𝑛,

(
∘

𝐷
+

𝑦
𝑢)
𝑖,𝑗

= {
𝑢
𝑖+1,𝑗

− 𝑢
𝑖,𝑗
, 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑢
1,𝑗

− 𝑢
𝑛,𝑗

, 𝑖 = 𝑛,

(
∘

𝐷
−

𝑥
𝑢)
𝑖,𝑗

= {
𝑢
𝑖,1

− 𝑢
𝑖,𝑛
, 𝑗 = 1,

𝑢
𝑖,𝑗

− 𝑢
𝑖,𝑗−1

, 2 ≤ 𝑗 ≤ 𝑛,

(
∘

𝐷
−

𝑦
𝑢)
𝑖,𝑗

= {
𝑢
1,𝑗

− 𝑢
𝑛,𝑗

, 𝑖 = 1,

𝑢
𝑖,𝑗

− 𝑢
𝑖−1,𝑗

, 2 ≤ 𝑖 ≤ 𝑛.

(8)

Second-order difference operators can be expressed by using
a recursive application of first-order difference operators; that
is, the operator

∘

𝐷
−+

𝑥𝑥
is defined by

(
∘

𝐷
−+

𝑥𝑥
𝑢)
𝑖,𝑗

:= (
∘

𝐷
−

𝑥
(
∘

𝐷
+

𝑥
𝑢))
𝑖,𝑗

. (9)

Other second order difference operators used in this paper
such as

∘

𝐷
+−

𝑥𝑥
,
∘

𝐷
++

𝑥𝑦
,
∘

𝐷
++

𝑦𝑥
,
∘

𝐷
−−

𝑥𝑦
,
∘

𝐷
−−

𝑦𝑥
,
∘

𝐷
−+

𝑦𝑦
, and

∘

𝐷
+−

𝑦𝑦
can be

similarly defined. Based on the definitions above, we can
introduce the discrete gradient operator. For 𝑢 ∈ 𝑋, ∇𝑢 is
a vector of 𝑌, which is given by

∇𝑢 = (
∘

𝐷
+

𝑥
𝑢,
∘

𝐷
+

𝑦
𝑢) . (10)

The discrete total variation of 𝑢 is then given by

𝑅ROF (𝑢) = ∑
1≤𝑖,𝑗≤𝑛

|∇𝑢|
𝑖,𝑗
. (11)

To discretize the fourth-order filter in the LLT model (4),
we have to introduce the discrete Hessian operator. Here we
adopt the definition in [23]. The discrete Hessian operator is
a mapping𝐻 : 𝑋 → 𝑍, and for 𝑢 ∈ 𝑋,𝐻𝑢 is defined by

𝐻𝑢 = (

∘

𝐷
−+

𝑥𝑥
𝑢
∘

𝐷
++

𝑥𝑦
𝑢

∘

𝐷
++

𝑦𝑥
𝑢
∘

𝐷
−+

𝑦𝑦
𝑢

) . (12)

Then, 𝑅LLT(𝑢) can be discretized as

𝑅LLT (𝑢) = ∑
1≤𝑖,𝑗≤𝑛

|𝐻𝑢|
𝑖,𝑗
. (13)

We also introduce two important operators: div : 𝑌 → 𝑋
and 𝐻∗ : 𝑍 → 𝑋, that is, the adjoint operator of −∇ and
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Figure 7: Zoomed-in local results corresponding to Figures 4(b)–4(f): (a) the original image, results of (b) the ROFmodel, (c) the LLTmodel,
(d) the hybrid model, (e) our Model 1, and (f) our Model 2.

𝐻, respectively. By analogy with the continuous setting, for
𝑢 ∈ 𝑋, 𝑦 ∈ 𝑌, and 𝑧 ∈ 𝑍, we want them to satisfy

⟨div 𝑦, 𝑢⟩
𝑋

= ⟨𝑦, −∇𝑢⟩
𝑌
, ⟨𝐻∗𝑧, 𝑢⟩

𝑋
= ⟨𝑧,𝐻𝑢⟩

𝑍
.
(14)

Then they are formulated as follows:

div 𝑦 =
∘

𝐷
−

𝑥
𝑦1 +

∘

𝐷
−

𝑦
𝑦2,

𝐻∗𝑧 =
∘

𝐷
+−

𝑥𝑥
𝑧11 +

∘

𝐷
−−

𝑦𝑥
𝑧12 +

∘

𝐷
−−

𝑥𝑦
𝑧21 +

∘

𝐷
+−

𝑦𝑦
𝑧22.

(15)

Finally, the composite operatorsΔ = div ⋅∇ and𝐻∗𝐻 are also
used.

3. The Proposed Models and Discussion

3.1. The Proposed Models. Arising from model (6) and
exploiting the benefits of the LLT model (4) and the hybrid
model (5), we consider and study the following models.

Model 1. One has

min
𝑢,𝑔∈𝑋

𝐸
1
(𝑢, 𝑔) =

1

2

󵄩󵄩󵄩󵄩𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

𝑋
+ 𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑔 −

𝑀

𝛼
⋅ 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑋

+ ∑
1≤𝑖,𝑗≤𝑛

𝑔2
𝑖,𝑗
(𝐾 (|𝐻𝑢|))

𝑖,𝑗
.

(16)

Model 2. One has

min
𝑢,𝑔
1
,𝑔
2
∈𝑋

𝐸
2
(𝑢, 𝑔
1
, 𝑔
2
)

=
1

2

󵄩󵄩󵄩󵄩𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

𝑋

+ 𝛼(
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑔
1
−

𝑀

𝛼
⋅ 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑋

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑔
2
−

𝑀

𝛼
⋅ 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑋

)

+ ∑
1≤𝑖,𝑗≤n

(𝑔
1
)
2

𝑖,𝑗
(𝐾 (|∇𝑢|))

𝑖,𝑗

+ (𝑔
2
)
2

𝑖,𝑗
(𝐾 (|𝐻𝑢|))

𝑖,𝑗
.

(17)

In the above two models, 𝛼 and 𝑀 are positive parameters,
1 represents the matrix whose elements are equal to 1, and
𝐾 : 𝑋 → 𝑋 denotes a discrete mean filter. More precisely,
we choose an odd integer 𝑟 and define an 𝑟-by-𝑟 window
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(a) (b) (c)

(d) (e) (f)

Figure 8: Zoomed-in local results corresponding to Figures 6(b)–6(f): (a) the original image, results of (b) the ROFmodel, (c) the LLTmodel,
(d) the hybrid model, (e) our Model 1, and (f) our Model 2.

centered at pixel (𝑖, 𝑗) (with a periodic extension at the
boundary); that is,

Ω𝑟
𝑖,𝑗

= {(𝑠, 𝑡) : min (|𝑠 − 𝑖| , 𝑛 − |𝑠 − 𝑖|) ≤
𝑟 − 1

2
,

min (
󵄨󵄨󵄨󵄨𝑡 − 𝑗

󵄨󵄨󵄨󵄨 , 𝑛 −
󵄨󵄨󵄨󵄨𝑡 − 𝑗

󵄨󵄨󵄨󵄨) ≤
𝑟 − 1

2
} ,

(18)

where 𝑠, 𝑡 = 1, . . . , 𝑛. Then for 𝑢 ∈ 𝑋, 𝐾(𝑢) is given by

(𝐾 (𝑢))
𝑖,𝑗

=
1

𝑟2
∑
(𝑠,𝑡)∈Ω

𝑟

𝑖,𝑗

𝑢
𝑠,𝑡
. (19)

It is immediately clear that if 𝑟 = 1, 𝐾 coincides with the
identity operator. We start our investigations of the proposed
models by the following lemma.

Lemma 1. For any 𝑢, V ∈ 𝑋, one has

∑
1≤𝑖,𝑗≤𝑛

𝑢
𝑖,𝑗
(𝐾 (V))

𝑖,𝑗
= ∑
1≤𝑖,𝑗≤𝑛

(𝐾 (𝑢))
𝑖,𝑗
V
𝑖,𝑗
. (20)

Proof. We define the following function 𝑘 : R2 → R:

𝑘 (𝑥, 𝑦) =

{{{{{
{{{{{
{

1

𝑟2
if min (|𝑥| , 𝑛 − |𝑥|) ≤

𝑟 − 1

2
,

min (
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 , 𝑛 −
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨) ≤
𝑟 − 1

2
,

0 else.

(21)

From the definition of 𝑘, it is immediate to see that 𝑘(𝑥, 𝑦) =
𝑘(−𝑥, −𝑦). Thus, we have

∑
1≤𝑖,𝑗≤𝑛

𝑢
𝑖,𝑗
(𝐾 (V))

𝑖,𝑗
= ∑
1≤𝑖,𝑗≤𝑛

𝑢
𝑖,𝑗

( ∑
1≤𝑠,𝑡≤𝑛

𝑘 (𝑖 − 𝑠, 𝑗 − 𝑡) V
𝑠,𝑡
)

= ∑
1≤𝑠,𝑡≤𝑛

Vs,𝑡( ∑
1≤𝑖,𝑗≤𝑛

𝑘 (𝑠 − 𝑖, 𝑡 − 𝑗) 𝑢
𝑖,𝑗
)

= ∑
1≤𝑠,𝑡≤𝑛

(𝐾 (𝑢))
𝑠,𝑡
V
𝑠,𝑡

= ∑
1≤𝑖,𝑗≤𝑛

(𝐾 (𝑢))
𝑖,𝑗
V
𝑖,𝑗
.

(22)

According to Lemma 1, we can rewrite the regularizers in
our models in another equivalent form. In (16), for example,
we rewrite

∑
1≤𝑖,𝑗≤𝑛

𝑔2
𝑖,𝑗
(𝐾 (|𝐻𝑢|))

𝑖,𝑗
= ∑
1≤𝑖,𝑗≤𝑛

(𝐾 (𝑔 ∘ 𝑔))
𝑖,𝑗
|𝐻𝑢|
𝑖,𝑗
. (23)

Next we study the existence result for the solution of our
models.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Contour plots corresponding to Figures 5(b)–5(f): (a) the ideal contour plot, results of (b) the ROF model, (c) the LLT model,
(d) the hybrid model, (e) our Model 1, and (f) our Model 2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Final values of the regularization parameters in the proposed models and weighting functions in the hybrid model corresponding
to Figures 4(d)–4(f) and 6(d)–6(f). (a) 𝑔 in the hybrid model, (b) 𝑔∗ in Model 1, (c) 𝑔∗

1
in Model 2, (d) 𝑔∗

2
in Model 2, (e) 𝑔 in the hybrid

model, (f) 𝑔∗ in Model 1, (g) 𝑔∗
1
in Model 2, and (h) 𝑔∗

2
in Model 2.
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Theorem 2. Assume that 𝛼 > 0, 𝑀 > 0, and 𝑓 ∈ 𝑋. Then
both Models 1 and 2 have a global minimizer.

Proof. First, under our assumption, bothmodels are bounded
from below, which implies that the minimization problems
are the correct setting.

It is immediate to see that the functions 𝐸
1
: 𝑋 × 𝑋 →

R and 𝐸
2

: 𝑋 × 𝑋 × 𝑋 → R are proper, coercive,
and continuous. Then, the existence of a global minimizer is
deduced by Weierstrass’ theorem [24].

We end this subsection with the following proposition
which describes the relationship between the variables in a
solution of our models.

Proposition 3. (i) Assume that (𝑢∗, 𝑔∗) ∈ 𝑋 × 𝑋 is a (local)
minimizer of Model 1. Then (𝑢∗, 𝑔∗) satisfies

𝑢∗ = arg min
𝑢

𝐸
1
(𝑢, 𝑔∗) ,

𝑔∗ = arg min
𝑔

𝐸
1
(𝑢∗, 𝑔) .

(24)

(ii) Assume that (𝑢∗, 𝑔∗
1
, 𝑔∗
2
) ∈ 𝑋 × 𝑋 × 𝑋 is a (local)

minimizer of Model 2. Then (𝑢∗, 𝑔∗
1
, 𝑔∗
2
) satisfies

𝑢∗ = argmin
𝑢

𝐸
2
(𝑢, 𝑔∗
1
, 𝑔∗
2
) ,

(𝑔∗
1
, 𝑔∗
2
) = argmin

𝑔
1
,𝑔
2

𝐸
2
(𝑢∗, 𝑔

1
, 𝑔
2
) .

(25)

Proof. (i) Under our assumption, there exists some 𝜖 > 0 such
that

𝐸
1
(𝑢∗, 𝑔∗) ≤ 𝐸

1
(𝑢, 𝑔) ∀𝑢, 𝑔 ∈ 𝑋

with 󵄩󵄩󵄩󵄩𝑢 − 𝑢∗
󵄩󵄩󵄩󵄩𝑋 ≤ 𝜖,

󵄩󵄩󵄩󵄩𝑔 − 𝑔∗
󵄩󵄩󵄩󵄩𝑋 ≤ 𝜖.

(26)

Then, we have

𝐸
1
(𝑢∗, 𝑔∗) ≤ 𝐸

1
(𝑢, 𝑔∗) ∀𝑢 ∈ 𝑋 with 󵄩󵄩󵄩󵄩𝑢 − 𝑢∗

󵄩󵄩󵄩󵄩𝑋 ≤ 𝜖,
(27)

which implies that 𝑢∗ is a local minimizer of the following
minimization problem:

min
𝑢∈𝑋

𝐸
1
(𝑢, 𝑔∗) =

1

2

󵄩󵄩󵄩󵄩𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

𝑋
+ ∑
1≤𝑖,𝑗≤𝑛

(𝐾 (𝑔∗ ∘ 𝑔∗))
𝑖,𝑗
|𝐻𝑢|
𝑖,𝑗
.

(28)

According to the nonnegativity of (𝐾(𝑔∗ ∘ 𝑔∗))
𝑖,𝑗
, we can

deduce that the objective function of (28) is strictly convex.
Then, 𝑢∗ is the unique global minimizer of (28). Similarly,
we can obtain that 𝑔∗ is the unique global minimizer of the
following strictly convex minimization problem:

min
𝑔∈𝑋

𝐸
1
(𝑢∗, 𝑔) = 𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑔 −

𝑀

𝛼
⋅ 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑋

+ ∑
1≤𝑖,𝑗≤𝑛

𝑔2
𝑖,𝑗
(𝐾 (

󵄨󵄨󵄨󵄨𝐻𝑢∗
󵄨󵄨󵄨󵄨))𝑖,𝑗.

(29)

Hence we complete the proof of (i).
(ii) Using the same technique, (ii) can be similarly

proved, and we omit the details.

3.2. Discussion on the ProposedModels. In this subsection we
discuss the strengths of the proposed models by investigating
the numerical behavior of the solution. Proposition 3 implies
that there is an interaction between the restored image and
the regularization parameter in a solution of our models,
which can achieve joint optimality. In other words, both
variables benefit from each other. Assume that (𝑢∗, 𝑔∗) and
(𝑢∗, 𝑔∗

1
, 𝑔∗
2
) are solutions of Models 1 and 2, respectively.

According to Proposition 3, 𝑔∗, 𝑔∗
1
, and 𝑔∗

2
can be calculated

directly from 𝑢∗. Since the minimization subproblems with
respect to 𝑔∗ and 𝑔∗

2
are actually the same, we just consider

𝑔∗
1
and 𝑔∗

2
for the sake of brevity. They are given by

(𝑔∗
1
)
𝑖,𝑗

=
𝑀

𝛼 + (𝐾 (|∇𝑢∗|))
𝑖,𝑗

,

(𝑔∗
2
)
𝑖,𝑗

=
𝑀

𝛼 + (𝐾 (|𝐻𝑢∗|))
𝑖,𝑗

.

(30)

We are interested in the numerical behavior of 𝑔∗
1
and 𝑔∗

2

corresponding to regions of 𝑢∗ with different scales (e.g.,
texture, flat, and ramp regions). Figure 1(a) shows a 256×256
synthetic image. The corresponding 𝑔∗

1
and 𝑔∗

2
are shown in

Figures 1(b) and 1(c), respectively, where 𝑢∗ is set to be the
original image. Form Figure 1, numerical behavior of 𝑔∗

1
and

𝑔∗
2
is summarized as follows.

(i) For texture regions of 𝑢∗, 𝑔∗
1
and 𝑔∗

2
are both small

(darker regions indicate smaller value).

(ii) For flat regions of 𝑢∗, 𝑔∗
1
and 𝑔∗

2
are both large.

(iii) For ramp regions of 𝑢∗, 𝑔∗
1
is inversely proportional

to the gradient of 𝑢∗, whereas 𝑔∗
2
is large.

Below we pay attention to the restored image 𝑢∗. As
we have mentioned in the Introduction, values of the reg-
ularization parameter control the relative weights of the
fidelity and regularization terms. More precisely, small values
lead to little regularization, whereas large values result in
overregularization. Based on the behavior analysis above, in
Model 1, textures of 𝑢∗ are not compromised due to the
corresponding small values of 𝑔∗, and the speckle effect
caused by the LLT model is removed from flat and ramp
regions of 𝑢∗ due to the corresponding large values of 𝑔∗.
Therefore, Model 1 can produce higher quality restoration
results than the LLT model. Model 2 inherits the advantages
of Model 1 and exhibits some new ones. Edges of 𝑢∗ are
well preserved by total variation regularization. At the same
time, the staircase effect is suppressed in ramp regions due to
the corresponding small values of 𝑔∗

1
(the fourth-order filter

plays the dominate role).Therefore, Model 2 incorporates the
strengths of both regularizerswhile avoiding their drawbacks.
Finally, we remark that, compared with the hybrid model
(5), Model 2 is more reasonable. Observe that (5) utilizes
a fixed weighting function to combine the two regularizers.
However, the weighting function is computed from the noisy
image, which leads to inaccuracy. On the other hand, the
regularization parameter in Model 2 depends on the restored
image, which is less affected by noise.
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4. Algorithms

In this section, we formulate the numerical scheme for
solving our models. Our basic idea is to use the alternating
minimization scheme which is described in Algorithms 1 and
2.

Next we would like to show the convergence of our
algorithms.

Theorem 4. (i) Let {(𝑢𝑘, 𝑔𝑘)} be the sequence derived from
Algorithm 1.Then {(𝑢𝑘, 𝑔𝑘)} converges to (𝑢̂, 𝑔) ∈ 𝑋×𝑋 (up to
a subsequence), and for any (𝑢, 𝑔) ∈ 𝑋 × 𝑋, one has

𝐸
1
(𝑢̂, 𝑔) ≤ 𝐸

1
(𝑢, 𝑔) , 𝐸

1
(𝑢̂, 𝑔) ≤ 𝐸

1
(𝑢̂, 𝑔) . (31)

(ii) Let {(𝑢𝑘, 𝑔𝑘
1
, 𝑔𝑘
2
)} be the sequence derived from

Algorithm 2.Then {(𝑢𝑘, 𝑔𝑘
1
, 𝑔𝑘
2
)} converges to (𝑢̂, 𝑔

1
, 𝑔
2
) ∈ 𝑋 ×

𝑋 × 𝑋 (up to a subsequence), and for any (𝑢, 𝑔
1
, 𝑔
2
) ∈ 𝑋 ×

𝑋 × 𝑋, one has
𝐸
2
(𝑢̂, 𝑔
1
, 𝑔
2
) ≤ 𝐸
2
(𝑢, 𝑔
1
, 𝑔
2
) ,

𝐸
2
(𝑢̂, 𝑔
1
, 𝑔
2
) ≤ 𝐸
2
(𝑢̂, 𝑔
1
, 𝑔
2
) .

(32)

Proof. (i) First, we can easily deduce the following inequality
from Algorithm 1:

𝐸
1
(𝑢𝑘+1, 𝑔𝑘+1) ≤ 𝐸

1
(𝑢𝑘+1, 𝑔𝑘) ≤ 𝐸

1
(𝑢𝑘, 𝑔𝑘) . (33)

Then the sequence {𝐸
1
(𝑢𝑘, 𝑔𝑘)} is bounded, and there exists a

constant𝑁 ≥ 0 such that

𝐸
1
(𝑢𝑘, 𝑔𝑘) ≤ 𝑁, ∀𝑘 ∈ N. (34)

The above inequality reads as

1

2

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘 − 𝑓

󵄩󵄩󵄩󵄩󵄩
2

𝑋

+ 𝛼
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑔𝑘 −

𝑀

𝛼
⋅ 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑋

+ ∑
1≤𝑖,𝑗≤𝑛

(𝑔𝑘)
2

𝑖,𝑗

(𝐾 (
󵄨󵄨󵄨󵄨󵄨𝐻𝑢𝑘

󵄨󵄨󵄨󵄨󵄨))𝑖,𝑗 ≤ 𝑁,

(35)

which implies that {(𝑢𝑘, 𝑔𝑘)} is uniformly bounded in𝑋×𝑋.
Then we can find a subsequence {(𝑢𝑛𝑘 , 𝑔𝑛𝑘)} ⊂ {(𝑢𝑘, 𝑔𝑘)} and
(𝑢̂, 𝑔) ∈ 𝑋 × 𝑋 such that they satisfy

(𝑢𝑛𝑘 , 𝑔𝑛𝑘)
𝑋×𝑋

󳨀󳨀󳨀󳨀→ (𝑢̂, 𝑔) . (36)

On the other hand, for any 𝑢 ∈ 𝑋, we have

𝐸
1
(𝑢𝑛𝑘+1 , 𝑔𝑛𝑘+1) ≤ 𝐸

1
(𝑢𝑛𝑘+1, 𝑔𝑛𝑘+1)

≤ 𝐸
1
(𝑢𝑛𝑘+1, 𝑔𝑛𝑘) ≤ 𝐸

1
(𝑢, 𝑔𝑛𝑘) .

(37)

Recall that the function 𝐸
1
: 𝑋 × 𝑋 → R is continuous; we

obtain

𝐸
1
(𝑢̂, 𝑔) ≤ 𝐸

1
(𝑢, 𝑔) , (38)

by letting 𝑘 tend to infinity. Similarly, for any 𝑔 ∈ 𝑋, we have

𝐸
1
(𝑢̂, 𝑔) ≤ 𝐸

1
(𝑢̂, 𝑔) . (39)

Hence we complete the proof of (i).
(ii) Using the same technique, (ii) can be similarly

proofed, and we omit the details.

It is obvious that (b) in Algorithm 1 and (b) in
Algorithm 2 can be easily solved. To solve (a) in Algorithm 1
and (a) in Algorithm 2, we use the alternating direction
method (ADM) [25], which is closely related to the aug-
mented Lagrangian method [23], the Douglas-Rachford
splitting algorithm [26], and the split Bregman method [27].
For the sake of brevity, we only present the ADM procedure
for solving (a) in Algorithm 2. The ADM procedure for
solving (a) in Algorithm 1 can be analogously derived. We
rewrite (a) in Algorithm 2 by introducing auxiliary variables
𝑝 and 𝑞 as follows:

min
𝑢∈𝑋,𝑝∈𝑌,𝑞∈𝑍

1

2

󵄩󵄩󵄩󵄩𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

𝑋
+ ∑
1≤𝑖,𝑗≤𝑛

(𝐾 (𝑔𝑘−1
1

∘ 𝑔𝑘−1
1

))
𝑖,𝑗

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨𝑖,𝑗

+ ∑
1≤𝑖,𝑗≤𝑛

(𝐾 (𝑔𝑘−1
2

∘ 𝑔𝑘−1
2

))
𝑖,𝑗

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨𝑖,𝑗

subject to 𝑝 = ∇𝑢, 𝑞 = 𝐻𝑢.

(40)

Then the problem fits the framework of the alternating
direction method. By using the Lagrangian multipliers 𝜆

1
∈

𝑌 and 𝜆
2
∈ 𝑍, the augmented Lagrangian function of (40) is

given by

𝐿 (𝑢, 𝑝, 𝑞, 𝜆
1
, 𝜆
2
) =

1

2

󵄩󵄩󵄩󵄩𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

𝑋

+ ∑
1≤𝑖,𝑗≤𝑛

(𝐾 (𝑔𝑘−1
1

∘ 𝑔𝑘−1
1

))
𝑖,𝑗

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨𝑖,𝑗

+ ∑
1≤𝑖,𝑗≤𝑛

(𝐾 (𝑔𝑘−1
2

∘ 𝑔𝑘−1
2

))
𝑖,𝑗

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨𝑖,𝑗

+ ⟨𝜆
1
, 𝑝 − ∇𝑢⟩

𝑌
+ ⟨𝜆
2
, 𝑞 − 𝐻𝑢⟩

𝑍

+
𝛽

2
(
󵄩󵄩󵄩󵄩𝑝 − ∇𝑢

󵄩󵄩󵄩󵄩
2

𝑌
+
󵄩󵄩󵄩󵄩𝑞 − 𝐻𝑢

󵄩󵄩󵄩󵄩
2

𝑍
) ,

(41)

where 𝛽 > 0 is the penalty parameter for the linear
constraints. Then the minimization of (40) is achieved by
an iterative process: in each iteration, we minimize the
augmented Lagrangian function (41) with respect to 𝑢, 𝑝, and
𝑞, given the other two updated in previous iteration, and then
update 𝜆

1
and 𝜆

2
. The computational procedure is presented

in Algorithm 3.
Now we make some remarks on the ADM procedure.

First, we observe that every step in Algorithm 3 has a closed-
form solution, and then the alternating direction method
can be efficiently implemented. Moreover, for a convex
objective function with linear constraints, the convergence
of the alternating direction method is guaranteed; see, for
example, [28, 29]. Second, to obtain an exact solution of (a)
in Algorithm 2, one needs to let 𝐿 (the maximum iteration
number of the ADM procedure) tend to infinity; that is, 𝑢𝑘 =
𝑢𝑘,∞. Since the regularization parameters are not optimal, in
practice, it is not necessary to compute 𝑢𝑘 exactly. For the
sake of computational efficiency, only several ADM iterations
are implemented. Third, aiming at faster convergence of
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Input: 𝑓, 𝛼,𝑀, and 𝑟.
Output: 𝑢𝑘.
Initialization: 𝑔0 = 0.
while not converged do
Step 1. Given 𝑔𝑘−1, computing 𝑢𝑘 by solving
min
𝑢∈𝑋

𝐸
1
(𝑢, 𝑔𝑘−1) =

1

2

󵄩󵄩󵄩󵄩𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

𝑋
+ ∑
1≤𝑖,𝑗≤𝑛

(𝐾 (𝑔𝑘−1 ∘ 𝑔𝑘−1))
𝑖,𝑗

|𝐻𝑢|
𝑖,𝑗
. (a)

Step 2. Given 𝑢𝑘, computing 𝑔𝑘 by solving

min
𝑔∈𝑋

𝐸
1
(𝑢𝑘, 𝑔) = 𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑔 −

𝑀

𝛼
⋅ 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑋

+ ∑
1≤𝑖,𝑗≤𝑛

𝑔2
𝑖,𝑗
(𝐾 (

󵄨󵄨󵄨󵄨󵄨𝐻𝑢𝑘
󵄨󵄨󵄨󵄨󵄨))𝑖,𝑗. (b)

end while

Algorithm 1: The alternating minimization method for solving Model 1.

Input: 𝑓, 𝛼,𝑀, and 𝑟.
Output: 𝑢𝑘.
Initialization: 𝑔0

1
= 0 and 𝑔0

2
= 0.

while not converged do
Step 1. Given 𝑔𝑘−1

1
and 𝑔𝑘−1

2
, computing 𝑢𝑘 by solving

min
𝑢∈𝑋

𝐸
2
(𝑢, 𝑔𝑘−1
1

, 𝑔𝑘−1
2

) =
1

2

󵄩󵄩󵄩󵄩𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

𝑋
+ ∑
1≤𝑖,𝑗≤𝑛

(𝐾 (𝑔𝑘−1
1

∘ 𝑔𝑘−1
1

))
𝑖,𝑗

|∇𝑢|
𝑖,𝑗

+ ∑
1≤𝑖,𝑗≤𝑛

(𝐾 (𝑔𝑘−1
2

∘ 𝑔𝑘−1
2

))
𝑖,𝑗

|𝐻𝑢|
𝑖,𝑗
. (a)

Step 2. Given 𝑢𝑘, computing 𝑔𝑘
1
and 𝑔𝑘

2
by solving

min
𝑔
1
,𝑔
2
∈𝑋

𝐸
2
(𝑢𝑘, 𝑔

1
, 𝑔
2
) = 𝛼(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑔
1
−

𝑀

𝛼
⋅ 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑋

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑔
2
−

𝑀

𝛼
⋅ 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑋

)

+ ∑
1≤𝑖,𝑗≤𝑛

(𝑔
1
)
2

𝑖,𝑗
(𝐾 (

󵄨󵄨󵄨󵄨󵄨∇𝑢𝑘
󵄨󵄨󵄨󵄨󵄨))𝑖,𝑗 + (𝑔

2
)
2

𝑖,𝑗
(𝐾 (

󵄨󵄨󵄨󵄨󵄨𝐻𝑢𝑘
󵄨󵄨󵄨󵄨󵄨))𝑖,𝑗. (b)

end while

Algorithm 2: The alternating minimization method for solving Model 2.

the ADM procedure, we initialize each iteration with the
auxiliary variables and the Lagrangian multipliers updated
in the previous iteration. Numerical examples will be given
in Section 5.2 to demonstrate the efficiency of our numerical
scheme.

5. Numerical Experiments

In this section, we provide numerical results to illustrate
the effectiveness of the proposed models. In Section 5.1, we
compare the performance of the proposed models with the
ROF model (3), the LLT model (4), and the hybrid model
(5). In Section 5.2, we give some criterions on choosing
the parameters in our algorithms. All the experiments are
performed underWindows 7 andMATLAB R2010a (Version
7.10.0.499) running on a desktop with an Intel Core i3-2130
CPU at 3.40GHz and 4GB memory.

5.1. Comparative Results. Four test images shown in Figure 1
are considered for the comparative experiment.The intensity
range of the original images is scaled to [0, 1]. The degraded
images are corrupted by white Gaussian noise with the noise

level 0.1, which are shown in Figures 3(a), 4(a), 5(a), and
6(a). The quality of the restored images is assessed using the
relative error (ReErr) and the signal-to-noise ratio (SNR).
They are defined as

ReErr =

󵄩󵄩󵄩󵄩𝑢 − 𝑢
𝑐

󵄩󵄩󵄩󵄩F
‖𝑢‖F

, SNR = 10 log
10

‖𝑢 − 𝑢‖F
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑐

󵄩󵄩󵄩󵄩F
, (42)

where 𝑢, 𝑢, and 𝑢
𝑐
are the original image, the mean intensity

value of 𝑢, and the restored image, respectively.
Now we present implementation details of the compara-

tive experiment. In our algorithms, parameters 𝑀 and 𝐿 are
fixed and set to be 0.07 and 10, respectively. For parameters 𝛼
and 𝑟, their values are reported in the corresponding figures.
For solving models (3), (4), and (5), we use the alternating
direction method (ADM) [22]. For a fair comparison, all
of the parameters in these three models are optimized to
achieve the best restoration with respect to the ReErr and the
SNR values. In all the ADM procedures, we set the penalty
parameter𝛽 to be 1 as a default value formost of digital images
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Input: 𝑓, 𝑔𝑘−1
1

, 𝑔𝑘−1
2

, 𝑟, 𝛽, and 𝐿.
Output: 𝑢𝑘, 𝑝𝑘, 𝑞𝑘, 𝜆𝑘

1
, and 𝜆𝑘

2
.

Initialization: 𝑝𝑘,0 = 𝑝𝑘−1, 𝑞𝑘,0 = 𝑞𝑘−1, 𝜆𝑘,0
1

= 𝜆𝑘−1
1

, and 𝜆𝑘,0
2

= 𝜆𝑘−1
2

.
while not converged and 𝑙 < 𝐿 do
Step 1. Given 𝑝𝑘,𝑙−1, 𝑞𝑘,𝑙−1, 𝜆𝑘,𝑙−1

1
, and 𝜆𝑘,𝑙−1

2
, computing 𝑢𝑘,𝑙 by

𝑢𝑘,𝑙 = F−1 (
F (𝑓 − div (𝜆𝑘,𝑙−1

1
+ 𝛽𝑝𝑘,𝑙−1) + 𝐻∗ (𝜆𝑘,𝑙−1

2
+ 𝛽𝑞𝑘,𝑙−1))

1 − 𝛽F(Δ) + 𝛽F(𝐻∗𝐻)
), (a)

whereF andF−1 denote the discrete Fourier transform and the inverse discrete Fourier
transform, respectively, and Fourier transforms of operators Δ and𝐻∗𝐻 are regarded as the
transforms of their corresponding convolution kernels.
Step 2. Given 𝑢𝑘,𝑙, 𝜆𝑘,𝑙−1

1
, and 𝜆𝑘,𝑙−1

2
, update 𝑝𝑘,𝑙 and 𝑞𝑘,𝑙 by the two-dimensional shrinkage

𝑝𝑘,𝑙
𝑖,𝑗

= max
{{
{{
{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∇𝑢𝑘,𝑙 −

𝜆𝑘,𝑙−1
1

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑖,𝑗
−

(𝐾(𝑔𝑘−1
1

∘ 𝑔𝑘−1
1

)
𝑖,𝑗

)

𝛽
, 0

}}
}}
}

(∇𝑢𝑘,𝑙 − (𝜆𝑘,𝑙−1
1

/𝛽))
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨∇𝑢𝑘,𝑙 − (𝜆𝑘,𝑙−1
1

/𝛽)
󵄨󵄨󵄨󵄨󵄨𝑖,𝑗

, (b)

𝑞𝑘,𝑙
𝑖,𝑗

= max
{
{
{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐻𝑢𝑘,𝑙 −

𝜆𝑘,𝑙−1
2

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑖,𝑗
−

(𝐾 (𝑔𝑘−1
2

∘ 𝑔𝑘−1
2

))
𝑖,𝑗

𝛽
, 0

}
}
}

(𝐻𝑢𝑘,𝑙 − (𝜆𝑘,𝑙−1
2

/𝛽))
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨𝐻𝑢𝑘,𝑙 − (𝜆𝑘,𝑙−1
2

/𝛽)
󵄨󵄨󵄨󵄨󵄨𝑖,𝑗

, (c)

respectively, where 0 ⋅ (0/0) = 0 is assumed.
Step 3. Given 𝑢𝑘,𝑙, 𝑝𝑘,𝑙, and 𝑞𝑘,𝑙, update 𝜆𝑘,𝑙

1
and 𝜆𝑘,𝑙

2
by

𝜆𝑘,𝑙
1

= 𝜆𝑘,𝑙−1
1

+ 𝛽 (𝑝𝑘,𝑙 − ∇𝑢𝑘,𝑙), (d)

𝜆𝑘,𝑙
2

= 𝜆𝑘,𝑙−1
2

+ 𝛽 (𝑞𝑘,𝑙 − 𝐻𝑢𝑘,𝑙), (e)
respectively.

end while

Algorithm 3: The alternating minimization method for solving (41).

with intensity range in [0, 1]. We terminate all the algorithms
by the following stopping criterion:

󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢
𝑖

󵄩󵄩󵄩󵄩F
󵄩󵄩󵄩󵄩𝑢𝑖−1

󵄩󵄩󵄩󵄩F
≤ 10−4. (43)

In Figures 3, 4, 5, and 6, we display the resulting images
restored by different models. The corresponding relative
errors, SNR values (dB), and computational time (in seconds)
are listed in Table 1. From these results, we find that our
models restore better images than the ROF model (3), the
LLT model (4), and the hybrid model (5), both visually and
quantitatively. In the images restored by the ROF model,
we observe that sharp edges are preserved, but the staircase
effect is clearly present (e.g., the homogeneous regions in
Figures 5 and 6). For the restored results of the LLT model,
the staircase effect is suppressed, but some speckle effect is
introduced in homogeneous regions (e.g., the background of
Figures 3, 4, 5, and 6). We also note that both models (3) and
(4) compromise details and textures due to using the global
constant regularization parameter. For the images restored
by the hybrid model, visual artifacts are almost suppressed,
but details are not recovered well (e.g., the ramp region in
Figure 3). This is due to the inaccurate estimation of their
weighting function from the observed image. Our meth-
ods, on the other hand, restore the homogeneous regions
significantly better while preserving more details. To better
understand the behavior of our methods, some zoomed-
in local results and contour plots are shown in Figures 7,

8, and 9. We can find that the homogeneous regions are
almost smooth (e.g., the background of Figure 3, the flat
and ramp regions in Figure 7, and the face of Barbara in
Figure 9). The contour plots given in Figure 8 also visually
illustrate the above observation. At the same time, details and
textures are preserved clearly without being overregularized
(e.g., the ramp region in Figure 3, the textures in Figure 7, and
the textures on the scarf in Figure 9). Furthermore, we find
that Model 2 performs better than Model 1 with respect to
preserving edges (e.g., the contours around the lips and nose
of Lena in Figure 8). In Figure 10, we show the final values of
the regularization parameters in our models compared with
the weighting functions in the hybrid model. It is clear that
Figures 10(a) and 10(e) are noisy and inaccurate, whereas
Figures 10(b)–10(d) and 10(f)–10(h) are less affected by noise.
Moreover, we observe that the values of the regularization
parameters are small in detail and texture regions, and they
are large in homogeneous regions. Therefore, our methods
are superior with respect to removing noise while preserving
details.

5.2. Parameter Study. In this section, we present some cri-
terions on choosing the parameters which are necessary to
start up our algorithms. In our experiments, the parameter
settings are the same as those in Section 5.1, except the testing
parameters.

The window size 𝑟 is used to control the smoothness
of the spatially dependent regularization parameter. We test
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Figure 11: SNR for results restored by our models with different window size 𝑟: (a) Model 1 and (b) Model 2.

our algorithms for different values of 𝑟 varying from 1 to 19.
Figure 11 shows the plots of the SNR values of the restored
images. We see from the plots that a small value of 𝑟 (leads
to a sharp regularization parameter) is suitable for images
with sharp features (e.g., 𝑟 = 1 for Figure 2(a) and 𝑟 =
3 for Figure 2(c)), whereas a moderate value of 𝑟 (leads to
a relatively smooth regularization parameter) is needed for
images containing textures (e.g., 𝑟 = 7 for Figures 2(b) and
2(d)). For large values of 𝑟 (𝑟 ≥ 9), we find that the changes
of the SNR values are not significant. However, if 𝑟 becomes
too large, then the regularization parameter is oversmooth,
which compromises image details.

The parameters𝑀 and 𝛼 jointly measure the values of the
spatially dependent regularization parameter. The difficulty
of tuning these parameters is that they depend not only on
the noise level but also on the images. For this reason, trial
by error for the two parameters is used. More precisely, we
simplify the tuning process by fixing𝑀 and searching for the
best 𝛼 of each image.

We also study the behavior of the proposed numerical
scheme with respect to the setting of 𝐿 and our initialization.
For the setting of Figure 2(c), Table 2 shows the summarized
results of our models for different values of 𝐿 with our
initialization and zero initialization (the auxiliary variables
and the Lagrangian multipliers are initialized to zero). We
see from Table 2 that when using zero initialization, only
sufficiently large 𝐿 (e.g., 𝐿 = 30 and 40) can provide
good restoration result with increasing computational time.
Our initialization, on the other hand, produces results as
effectively as zero initialization with slightly less computation
time. In addition, there is no considerable difference between
the relative errors and the SNR values for different values
of 𝐿. Since a too small or too large 𝐿 yields comparatively
high computational cost, a moderate 𝐿 (e.g., 𝐿 = 10) is
recommended in our algorithms.

6. Concluding Remarks

We have proposed two regularization models for image
denoising, in which both the restored image and the spatially
dependent regularization parameter are estimated simulta-
neously. By the construction of our models, both variables
mutually benefit from each other during the denoising
process, which can achieve joint optimality. The numerical
behavior of the regularization parameter and the strengths
of our models have been discussed in detail. The proposed
models, which are nonconvex, can be asymptotically solved
by the proposed alternating minimization scheme. Finally,
the numerical results indicated that our methods outperform
several popular methods with respect to both noise removal
and detail preservation.
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image restoration with local constraints,” Journal of Scientific
Computing, vol. 19, pp. 95–122, 2003.

[20] A. Almansa, C. Ballester, V. Caselles, and G. Haro, “A TV based
restoration model with local constraints,” Journal of Scientific
Computing, vol. 34, no. 3, pp. 209–236, 2008.

[21] Y.-Q. Dong, M. Hintermüller, and M. M. Rincon-Camacho,
“Automated regularization parameter selection in multi-scale
total variation models for image restoration,” Journal of Mathe-
matical Imaging and Vision, vol. 40, no. 1, pp. 82–104, 2011.

[22] K. Bredies, Y.-Q. Dong, and M. Hintermüller, “Spatially depen-
dent regularization parameter selection in total generalized
variationmodels for image restoration,” International Journal of
Computer Mathematics, vol. 90, no. 1, pp. 109–123, 2013.

[23] C.-L. Wu and X.-C. Tai, “Augmented Lagrangian method, dual
methods, and split Bregman iteration for ROF, vectorial TV, and
high order models,” SIAM Journal on Imaging Sciences, vol. 3,
no. 3, pp. 300–339, 2010.

[24] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis
and Optimization, Athena Scientic, Boston, Mass, USA, 2003.

[25] M. K. Ng, P. Weiss, and X. Yuan, “Solving constrained total-
variation image restoration and reconstruction problems via
alternating direction methods,” SIAM Journal on Scientific
Computing, vol. 32, no. 5, pp. 2710–2736, 2010.

[26] J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford
splittingmethod and the proximal point algorithm formaximal
monotone operators,”Mathematical Programming, vol. 55, no. 3,
pp. 293–318, 1992.

[27] T. Goldstein and S. Osher, “The split Bregman method for L1-
regularized problems,” SIAM Journal on Imaging Sciences, vol.
2, no. 2, pp. 323–343, 2009.

[28] M. Ng, F. Wang, and X. Yuan, “Inexact alternating direction
methods for image recovery,” SIAM Journal on Scientific Com-
puting, vol. 33, no. 4, pp. 1643–1668, 2011.

[29] B. He and X. Yuan, “On the 𝑂(1/𝑛) convergence rate of the
Douglas-Rachford alternating directionmethod,” SIAM Journal
on Numerical Analysis, vol. 50, no. 2, pp. 700–709, 2012.


