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We consider the following class of three point boundary value problem 𝑦
󸀠󸀠
(𝑡)+𝑓(𝑡, 𝑦) = 0, 0 < 𝑡 < 1, 𝑦

󸀠
(0) = 0, 𝑦(1) = 𝛿𝑦(𝜂), where

𝛿 > 0, 0 < 𝜂 < 1, the source term𝑓(𝑡, 𝑦) is Lipschitz and continuous.We use monotone iterative technique in the presence of upper
and lower solutions for both well-order and reverse order cases. Under some sufficient conditions, we prove some new existence
results. We use examples and figures to demonstrate that monotone iterative method can efficiently be used for computation of
solutions of nonlinear BVPs.

1. Introduction

In recent years, multipoint boundary value problems have
been extensively studied by many authors ([1–5] and the ref-
erences there in). Multipoint BVPs have lots of applications
in various branches of science and engineering; for example,
Webb [6] studied a second-order nonlinear boundary value
problem subject to some nonlocal boundary conditions,
which models a thermostat, and Zou et al. [7] studied the
design of a large size bridge with multipoint supports.

It is well known that one of the most important tools for
dealing with existence results for nonlinear problems is the
method of upper and lower solutions. The method of upper
and lower solutions has a long history and some of its ideas
can be traced back to Picard [8]. Later, it was extensively
studied by Dragoni [9].

Recently, there have been numerous results in the pres-
ence of an upper solution 𝑢

0
and a lower solution V

0
with

𝑢
0

≥ V
0
. But, in many cases, the upper and lower solutions

may occur in the reversed order also, that is, 𝑢
0
≤ V
0
. Cabada

et al. [10] considered the monotone iterative method for the
following BVP:

𝑦
󸀠󸀠
= 𝑓 (𝑡, 𝑦) , 𝑦

󸀠

(𝑎) = 0 = 𝑦
󸀠

(𝑏) (1)

with reversed ordered upper and lower solutions. So far, there
have been some results in the presence of reverse ordered

upper and lower solutions [10–13]. Xian et al. [14] considered
the following second-order three point BVP:

𝑦
󸀠󸀠

(𝑡) + 𝑓 (𝑡, 𝑦) = 0, 0 < 𝑡 < 1,

𝑦 (0) = 0, 𝑦 (1) − 𝛿𝑦 (𝜂) = 0,
(2)

where 𝑓(𝐼 × 𝑅, 𝑅), 𝐼 = [0, 1], 0 < 𝜂 < 1, 0 < 𝛿 < 1. They used
the fixed point index theory with non-well-ordered upper
and lower solutions.

Recently, Li et al. [15] studied the existence and unique-
ness of solutions of second-order three point BVP

𝑦
󸀠󸀠
+ 𝑓 (𝑡, 𝑦) = 0, 0 < 𝑡 < 1,

𝑦
󸀠

(0) = 0, 𝑦 (1) = 𝛿𝑦 (𝜂) , 0 < 𝜂 < 1, 𝛿 > 0

(3)

with upper and lower solutions in the reversed order via the
monotone iterative method in Banach space.

The present work proves some new existing results for
three point BVPs. Our technique is based on Picard-type
iterative scheme and is quite simple and efficient from com-
putational point of view. We believe that it can be very well
adapted for this type of problem. In this paper we consider
the following three point BVP:

𝑦
󸀠󸀠

(𝑡) + 𝑓 (𝑡, 𝑦) = 0, 0 < 𝑡 < 1,

𝑦
󸀠

(0) = 0, 𝑦 (1) = 𝛿𝑦 (𝜂) ,

(4)
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where 𝑓(𝐼 × 𝑅, 𝑅), 𝐼 = [0, 1], 0 < 𝜂 < 1, 𝛿 > 0. We have
allowed sup(𝜕𝑓/𝜕𝑦) to take both negative and positive values.

The paper is divided into 4 sections. In Section 2, we
construct Green’s function and establish maximum and anti-
maximum principle. In Section 3, we generate monotone
sequences by using results of Section 2 with upper and lower
solutions as initial iterates ordered in one way or the other.
We prove our final result of existence. In Section 4, we show
that the monotone iterative scheme is a powerful technique.
For that by using iterative scheme proposed in this paper we
have computed themembers of sequences in both cases (well-
ordered and non-well-ordered case).

2. Preliminaries

2.1. Construction of Green’s Function. To investigate (4), we
consider the following linear three point BVP:

−𝑦
󸀠󸀠

(𝑡) − 𝜆𝑦 (𝑡) = ℎ (𝑡) , 0 < 𝑡 < 1,

𝑦
󸀠

(0) = 0, 𝑦 (1) = 𝛿𝑦 (𝜂) + 𝑏,

(5)

where ℎ ∈ 𝐶(𝐼) and 𝑏 is any constant. In this section, we
construct the Green’s function. We divide it into two cases.

Case I (𝜆 > 0). Let us assume that

(𝐻
0
) 0 < 𝜆 ≤ 𝜋

2
/4, sin√𝜆 − 𝛿 sin√𝜆𝜂 ≥ 0, 𝛿 cos√𝜆𝜂 −

cos√𝜆 > 0.

It is easy to see that (𝐻
0
) can be satisfied.

Lemma 1. Green’s function for the following linear three point
BVP

𝑦
󸀠󸀠

(𝑡) + 𝜆𝑦 (𝑡) = 0, 0 < 𝑡 < 1,

𝑦
󸀠

(0) = 0, 𝑦 (1) = 𝛿𝑦 (𝜂) ,

(6)

is given by

𝐺 (𝑡, 𝑠) =
1

√𝜆 (𝛿 cos√𝜆𝜂 − cos√𝜆)

×

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

[sin√𝜆 (1 − 𝑠)

+𝛿 sin√𝜆 (𝑠 − 𝜂)] cos√𝜆𝑡, 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜂,

cos√𝜆𝑠 sin√𝜆 (1 − 𝑡)

+𝛿 cos√𝜆𝑠 sin√𝜆 (𝑡 − 𝜂) , 𝑠 ≤ 𝑡, 𝑠 ≤ 𝜂,

sin√𝜆 (1 − 𝑠) cos√𝜆𝑡, 𝑡 ≤ 𝑠, 𝜂 ≤ 𝑠,

cos√𝜆𝑠 sin√𝜆 (1 − 𝑡)

+𝛿 cos√𝜆𝜂 sin√𝜆 (𝑡 − 𝑠) , 𝜂 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(7)

and if 𝐻
0
holds then 𝐺(𝑡, 𝑠) ≥ 0.

Proof. See proof of Lemma 2.1 in [15].

Lemma 2. When 𝜆 > 0, 𝑦 ∈ 𝐶
2
(𝐼) is a solution of boundary

value problem (5) and is given by

𝑦 (𝑡) =
𝑏 cos√𝜆𝑡

cos√𝜆 − 𝛿 cos√𝜆𝜂
− ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠. (8)

Proof. See proof of Lemma 2.3 in [15].

Remark 3. Particulary𝑦 ∈ 𝐶
2
(𝐼) is a solution of the boundary

value problem (5) if and only if 𝑦 ∈ 𝐶(𝐼) is a solution of the
integral equation

𝑦 (𝑡) =
𝑏 cos√𝜆𝑡

cos√𝜆 − 𝛿 cos√𝜆𝜂
− ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠. (9)

Case II (𝜆 < 0). Assume that

(𝐻
󸀠

0
) 𝜆 < 0, 𝛿 cosh√|𝜆|𝜂 − cosh√|𝜆| < 0, sinh√|𝜆| −

𝛿 sinh√|𝜆|𝜂 ≥ 0.

It is easy to see that (𝐻󸀠
0
) can be satisfied.

Lemma 4. Green’s function for the following three point BVP

𝑦
󸀠󸀠

(𝑡) + 𝜆𝑦 (𝑡) = 0, 0 < 𝑡 < 1,

𝑦
󸀠

(0) = 0, 𝑦 (1) = 𝛿𝑦 (𝜂) ,

(10)

for 𝜆 < 0 is given by

𝐺 (𝑡, 𝑠)

=
1

𝐷
𝜆

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

[sinh√|𝜆| (1 − 𝑠)

+𝛿 sinh√|𝜆| (𝑠 − 𝜂)] cosh√|𝜆|𝑡, 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜂,

cosh√|𝜆|𝑠 sinh√|𝜆| (1 − 𝑡)

+𝛿 cosh√|𝜆|𝑠 sinh√|𝜆| (𝑡 − 𝜂) , 𝑠 ≤ 𝑡, 𝑠 ≤ 𝜂,

sinh√|𝜆| (1 − 𝑠) cosh√|𝜆|𝑡, 𝑡 ≤ 𝑠, 𝜂 ≤ 𝑠,

cosh√|𝜆|𝑠 sinh√|𝜆| (1 − 𝑡)

+𝛿 cosh√|𝜆|𝜂 sin√|𝜆| (𝑡 − 𝑠) , 𝜂 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(11)

where 𝐷
𝜆

= √|𝜆|(𝛿 cosh√|𝜆|𝜂 − cosh√|𝜆|) and if 𝐻󸀠
0
holds

then 𝐺(𝑡, 𝑠) ≤ 0.

Proof. Proof is same as given in Lemma 1.

Lemma 5. When 𝜆 < 0, 𝑦 ∈ 𝐶
2
(𝐼) is a solution of boundary

value problem (5) and is given by

𝑦 (𝑡) =
𝑏 cosh√|𝜆|𝑡

cosh√|𝜆| − 𝛿 cosh√|𝜆| 𝜂
− ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠.

(12)

Proof. Proof is same as given in Lemma 2.
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2.2. Maximum and Antimaximum Principle

Proposition 6 (antimaximum principle). Let 0 < 𝜆 ≤ 𝜋
2
/4,

sin√𝜆 − 𝛿 sin√𝜆𝜂 ≥ 0, 𝛿 cos√𝜆𝜂 − cos√𝜆 > 0, 𝑏 ≥ 0, and
ℎ(𝑡) ∈ 𝐶[0, 1] is such that ℎ(𝑡) ≥ 0; then 𝑦(𝑡) is nonpositive on
𝐼.

Proposition 7 (maximum principle). Let 𝜆 < 0, sinh√|𝜆| −

𝛿 sinh√|𝜆|𝜂 ≥ 0, 𝛿 cosh√|𝜆|𝜂 − cosh√|𝜆| < 0, 𝑏 ≥ 0 and
ℎ(𝑡) ∈ 𝐶[0, 1] is such that ℎ(𝑡) ≥ 0; then 𝑦(𝑡) is nonnegative on
𝐼.

3. Three Point Nonlinear BVP

Based on maximum and antimaximum Principle we develop
theory to solve the three point nonlinear BVP and divide it
into the following two subsections.

3.1. Reverse Ordered Lower and Upper Solutions

Theorem 8. Let there exist V
0
, 𝑢
0
in 𝐶
2
[0, 1] such that 𝑢

0
≤ V
0

and satisfies

− 𝑢
󸀠󸀠

0
(𝑡) ≥ 𝑓 (𝑡, 𝑢

0
) , 0 < 𝑡 < 1,

𝑢
󸀠

0
(0) = 0, 𝑢

0
(1) ≥ 𝛿𝑢

0
(𝜂) ,

(13)

− V
󸀠󸀠

0
(𝑡) ≤ 𝑓 (𝑡, V

0
) , 0 < 𝑡 < 1,

V
󸀠

0
(0) = 0, V

0
(1) ≤ 𝛿V

0
(𝜂) .

(14)

If 𝑓 : 𝐷 → 𝑅 is continuous on𝐷 := {(𝑡, 𝑦) ∈ [0, 1]×𝑅
2
: 𝑢
0
≤

𝑦 ≤ V
0
} and there exists 𝑀 ≥ 0 such that for all (𝑡, 𝑦), (𝑡, 𝑤) ∈

𝐷,

𝑦 ≤ 𝑤 󳨐⇒ 𝑓 (𝑡, 𝑤) − 𝑓 (𝑡, 𝑦) ≤ 𝑀(𝑤 − 𝑦) , (15)

then the boundary value problem (5) has at least one solution
in the region𝐷. Further, if ∃ a constant 𝜆 such that𝑀−𝜆 ≤ 0

and (𝐻
0
) is satisfied, then the sequences {𝑢

𝑛
} generated by

− 𝑢
󸀠󸀠

𝑛+1
(𝑡) − 𝜆𝑢

𝑛+1
= 𝐹 (𝑡, 𝑢

𝑛
) ,

𝑢
󸀠

𝑛+1
(0) = 0, 𝑢

𝑛+1
(1) = 𝛿𝑢

𝑛+1
(𝜂) ,

(16)

where 𝐹(𝑡, 𝑢
𝑛
) = 𝑓(𝑡, 𝑢

𝑛
) −𝜆𝑢

𝑛
, with initial iterate 𝑢

0
converge

monotonically (non-decreasing) and uniformly towards a solu-
tion 𝑢(𝑡) of (5). Similarly, using V

0
as an initial iterate leads to a

nonincreasing sequences {V
𝑛
} converging to a solution V(𝑡). Any

solution 𝑧(𝑡) in 𝐷 must satisfy

𝑢 (𝑡) ≤ 𝑧 (𝑡) ≤ V (𝑡) . (17)

Proof. From (13) and (16) (for 𝑛 = 0)

−(𝑢
0
− 𝑢
1
)
󸀠󸀠

− 𝜆 (𝑢
0
− 𝑢
1
) ≥ 0,

(𝑢
0
− 𝑢
1
)
󸀠

(0) = 0, (𝑢
0
− 𝑢
1
) (1) ≥ (𝑢

0
− 𝑢
1
) (𝜂) .

(18)

Since ℎ(𝑡) ≥ 0 and 𝑏 ≥ 0, by using Proposition 6, we have
𝑢
0
≤ 𝑢
1
.

In view of 𝜆 ≥ 𝑀, from (16) we get

−𝑢
󸀠󸀠

𝑛+1
(𝑡) ≥ − (𝑀 − 𝜆) (𝑢

𝑛+1
− 𝑢
𝑛
) + 𝑓 (𝑡, 𝑢

𝑛+1
) (19)

and if 𝑢
𝑛+1

≥ 𝑢
𝑛
, then

−𝑢
󸀠󸀠

𝑛+1
(𝑡) ≥ 𝑓 (𝑡, 𝑢

𝑛+1
) . (20)

Since 𝑢
0
≤ 𝑢
1
, then from (20) (for 𝑛 = 0) and (16) (for 𝑛 = 1),

we get

−(𝑢
1
− 𝑢
2
)
󸀠󸀠

− 𝜆 (𝑢
1
− 𝑢
2
) ≥ 0,

(𝑢
1
− 𝑢
2
)
󸀠

(0) = 0, (𝑢
1
− 𝑢
2
) (1) ≥ (𝑢

1
− 𝑢
2
) (𝜂) .

(21)

From Proposition 6 we have 𝑢
1
≤ 𝑢
2
.

Now from (14) and (16) (for 𝑛 = 0)

−(𝑢
1
− V
0
)
󸀠󸀠

− 𝜆 (𝑢
1
− V
0
) ≥ 0,

(𝑢
1
− V
0
)
󸀠

(0) = 0, (𝑢
1
− V
0
) (1) ≥ 𝛿 (𝑢

1
− V
0
) (𝜂) .

(22)

Thus, 𝑢
1
≤ V
0
follows from Proposition 6.

Now assuming that 𝑢
𝑛+1

≥ 𝑢
𝑛
, 𝑢
𝑛+1

≤ V
0
, we show that

𝑢
𝑛+2

≥ 𝑢
𝑛+1

and 𝑢
𝑛+2

≤ V
0
for all 𝑛. From (16) (for 𝑛 + 1) and

(20), we get

−(𝑢
𝑛+1

− 𝑢
𝑛+2

)
󸀠󸀠

− 𝜆 (𝑢
𝑛+1

− 𝑢
𝑛+2

) ≥ 0,

(𝑢
𝑛+1

− 𝑢
𝑛+2

)
󸀠

(0) = 0,

(𝑢
𝑛+1

− 𝑢
𝑛+2

) (1) ≥ 𝛿 (𝑢
𝑛+1

− 𝑢
𝑛+2

) (𝜂) ,

(23)

and hence from Proposition 6 we have 𝑢
𝑛+1

≤ 𝑢
𝑛+2

.
From (16) (for 𝑛 + 1) and (14) we get

−(𝑢
𝑛+2

− V
0
)
󸀠󸀠

− 𝜆 (𝑢
𝑛+2

− V
0
) ≥ 0,

(𝑢
𝑛+2

− V
0
)
󸀠

(0) = 0, (𝑢
𝑛+2

− V
0
) (1) ≥ 𝛿 (𝑢

𝑛+2
− V
0
) (𝜂) .

(24)

Then, from Proposition 6, 𝑢
𝑛+2

≤ V
0
and hence we have

𝑢
1
≤ 𝑢
2
≤ ⋅ ⋅ ⋅ ≤ 𝑢

𝑛
≤ 𝑢
𝑛+1

≤ ⋅ ⋅ ⋅ ≤ V
0
, (25)

and starting with V
0
it is easy to get

V
1
≥ V
2
≥ ⋅ ⋅ ⋅ ≥ V

𝑛
≥ V
𝑛+1

≥ ⋅ ⋅ ⋅ ≥ 𝑢
0
. (26)

Finally, we show that 𝑢
𝑛
≤ V
𝑛
for all 𝑛. For this, by assuming

𝑢
𝑛
≤ V
𝑛
, we show that 𝑢

𝑛+1
≤ V
𝑛+1

. From (16) it is easy to get

−(𝑢
𝑛+1

− V
𝑛+1

)
󸀠󸀠

− 𝜆 (𝑢
𝑛+1

− V
𝑛+1

) ≥ 0,

(𝑢
𝑛+1

− V
𝑛+1

)
󸀠

(0) = 0,

(𝑢
𝑛+1

− V
𝑛+1

) (1) ≥ 𝛿 (𝑢
𝑛+1

− V
𝑛+1

) (𝜂) .

(27)

Hence, from Proposition 6, 𝑢
𝑛+1

≤ V
𝑛+1

. Thus we have

V
0
≥ V
1
≥ V
2
≥ ⋅ ⋅ ⋅ ≥ V

𝑛
≥ V
𝑛+1

≥ ⋅ ⋅ ⋅ ≥ 𝑢
𝑛+1

≥ 𝑢
𝑛
≥ ⋅ ⋅ ⋅ ≥ 𝑢

2
≥ 𝑢
1
≥ 𝑢
0
.

(28)
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So, the sequences 𝑢
𝑛
and V
𝑛
aremonotonically nondecreasing

and nonincreasing, respectively, and are bounded by 𝑢
0
and

V
0
. Hence by Dini’s theorem they converge uniformly. Let

𝑢(𝑡) = lim
𝑛→∞

𝑢
𝑛
(𝑡) and V(𝑡) = lim

𝑛→∞
V
𝑛
(𝑡).

Using Lemma 2, the solution 𝑢
𝑛
of (16) is given by

𝑢
𝑛
=

𝑏 cos√𝜆𝑡

cos√𝜆 − 𝛿 cos√𝜆𝜂
− ∫

1

0

𝐺 (𝑡, 𝑠) (𝑓 (𝑡, 𝑢
𝑛
) − 𝜆𝑢

𝑛
) 𝑑𝑠.

(29)

Then, by Lebesgue’s dominated convergence theorem, taking
the limit as 𝑛 approaches to∞, we get

𝑢 (𝑡) =
𝑏 cos√𝜆𝑡

cos√𝜆 − 𝛿 cos√𝜆𝜂
− ∫

1

0

𝐺 (𝑡, 𝑠) (𝑓 (𝑡, 𝑢) − 𝜆𝑢) 𝑑𝑠,

(30)

which is the solution of boundary value problem (5).
Any solution 𝑧(𝑡) in 𝐷 can play the role of 𝑢

0
(𝑡); hence,

𝑧(𝑡) ≤ V(𝑡) and similarly one concludes that 𝑧(𝑡) ≥ 𝑢(𝑡).

3.2. Well-Ordered Lower and Upper Solutions

Theorem 9. Let there exist V
0
, 𝑢
0
in 𝐶
2
[0, 1] such that 𝑢

0
≥ V
0

and satisfies

− 𝑢
󸀠󸀠

0
(𝑡) ≥ 𝑓 (𝑡, 𝑢

0
) , 0 < 𝑡 < 1,

𝑢
󸀠

0
(0) = 0, 𝑢

0
(1) ≥ 𝛿𝑢

0
(𝜂) ,

− V
󸀠󸀠

0
(𝑡) ≤ 𝑓 (𝑡, V

0
) , 0 < 𝑡 < 1,

V
󸀠

0
(0) = 0, V

0
(1) ≤ 𝛿V

0
(𝜂) .

(31)

If 𝑓 : 𝐷
0

→ 𝑅 is continuous on 𝐷
0
:= {(𝑡, 𝑦) ∈ [0, 1] × 𝑅

2
:

V
0
≤ 𝑦 ≤ 𝑢

0
} and there exists 𝑀 ≥ 0 such that for all (𝑡, 𝑦),

(𝑡, 𝑤) ∈ 𝐷
0

𝑦 ≤ 𝑤 󳨐⇒ 𝑓 (𝑡, 𝑤) − 𝑓 (𝑡, 𝑦) ≥ −𝑀(𝑤 − 𝑦) , (32)

then the boundary value problem (5) has at least one solution
in the region 𝐷

0
. If ∃ a constant 𝜆 < 0, such that 𝜆 + 𝑀 ≤ 0

and (𝐻
󸀠

0
) is satisfied, then the sequences {𝑢

𝑛
} generated by

− 𝑢
󸀠󸀠

𝑛+1
(𝑡) − 𝜆𝑢

𝑛+1
= 𝐹 (𝑡, 𝑢

𝑛
) , 𝑢

󸀠

𝑛+1
(0) = 0,

𝑢
𝑛+1

(1) = 𝛿𝑢
𝑛+1

(𝜂) ,

(33)

where𝐹(𝑡, 𝑢
𝑛
) = 𝑓(𝑡, 𝑢

𝑛
)−𝜆𝑢
𝑛
, with initial iterate 𝑢

0
, converge

monotonically (nonincreasing) and uniformly towards a solu-
tion 𝑢̃(𝑡) of (5). Similarly, using V

0
as an initial iterate leads to

a nondecreasing sequences {V
𝑛
} converging to a solution Ṽ(𝑡).

Any solution 𝑧̃(𝑡) in 𝐷
0
must satisfy

Ṽ (𝑡) ≤ 𝑧̃ (𝑡) ≤ 𝑢̃ (𝑡) . (34)

Proof. Proof follows from the analysis of Theorem 8.

4. Numerical Illustration

To verify our results, we consider examples and show that
there exists at least one value of 𝜆 ∈ R \ {0} such that iterative
scheme generates monotone sequences which converge to
solutions of nonlinear problem.Thus, these examples validate
sufficient conditions derived in this paper.

Example 10 (reverse order). Consider the boundary value
problem

−𝑦
󸀠󸀠

(𝑡) =
𝑒
𝑦

32
−

1

64
, 0 < 𝑡 < 1,

𝑦
󸀠

(0) = 0, 𝑦 (1) = 2𝑦 (
1

3
) .

(35)

Here,𝑓(𝑡, 𝑦) = (𝑒
𝑦
/32)−(1/64), 𝛿 = 2, 𝜂 = 1/3.This problem

has V
0
= 1 and 𝑢

0
= −1 as lower and upper solutions; that is, it

is non-well-ordered case.The nonlinear term is Lipschitz in 𝑦

and continuous for all value of 𝑦, and Lipschitz constants are
𝑀 = 𝑒/32. For 0.0849463 ≤ 𝜆 ≤ 𝜋

2
/4 we can see that (𝐻

0
)

will be true. To verify (𝐻
0
), in Figure 1 we plot inequalities

assumed in (𝐻
0
). From Figures 2, 3, and 4, we plot members

of monotone sequences 𝑢
𝑛
, V
𝑛
for different values of 𝜆.

Example 11 (well order). Consider the boundary value prob-
lem

−𝑦
󸀠󸀠

(𝑡) =
1

32
[
𝑒
2

4
−
sin 𝑡

4
− 2 (𝑦 (𝑡))

3

] ,

𝑦
󸀠

(0) = 0, 𝑦 (1) =
1

3
𝑦 (

1

2
) .

(36)

Here, 𝑓(𝑡, 𝑦) = (1/32)[(𝑒
2
/4) − (sin 𝑡/4) − 2(𝑦(𝑡))

3
], 𝛿 = 1/3,

𝜂 = 1/2. This problem has V
0
= −1 and 𝑢

0
= 1 as lower and

upper solutions; that is, it is well-ordered case. The nonlinear
term is Lipschitz in 𝑦 and continuous for all value of 𝑦, and
Lipschitz constants are 𝑀 = 3/16. For 𝜆 ≤ −0.1875, we can
see that (𝐻󸀠

0
) will be true. To verify (𝐻

󸀠

0
), in Figure 5 we plot

inequalities assumed in (𝐻
󸀠

0
). FromFigures 6, 7, and 8,we plot

members ofmonotone sequences 𝑢
𝑛
, V
𝑛
for different values of

𝜆.

5. Conclusion

The monotone iterative technique coupled with upper and
lower solutions is a powerful tool for computation of solu-
tions of nonlinear three point boundary value problems. It
proves the existence of solutions analytically and gives us
a tool so that numerical solutions can also be computed
and then some real-life problems, for example, bridge design
problem, thermostat problem, and so forth, can be solved.
We have plotted sequences for both 𝜆 > 0 and 𝜆 < 0.
The plots are quite encouraging and will motivate researchers
to explore further possibilities. Employing this technique,
Mathematica/Maple/MATLABuser-friendly packages can be
developed (see [16]).



International Journal of Differential Equations 5

0.0
0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

2.0

1

3
sin − 2 sin √𝜆√𝜆[ ] [ ]( )

1

3
2 cos √𝜆 − cos √𝜆[ ][ ]( )

Figure 1: Plot of sin√𝜆 − 𝛿 sin√𝜆𝜂 and 𝛿 cos√𝜆𝜂 − cos√𝜆.
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Figure 2: Plot of 𝑢
𝑛
(red) and V

𝑛
(blue), 𝑛 = 0, 1, 2, 3, 4 for 𝜆 = 0.9.
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Figure 3: Plot of 𝑢
𝑛
(red) and V

𝑛
(blue), 𝑛 = 0, 1, 2, 3, 4 for 𝜆 = 1.
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Figure 4: Plot of 𝑢
𝑛
(red) and V

𝑛
(blue), 𝑛 = 0, 1, 2, 3, 4 for 𝜆 = 2.3.
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Figure 5: Plot of 𝛿 cosh√|𝜆|𝜂 − cosh√|𝜆| and sinh√|𝜆| −

𝛿 sinh√|𝜆|𝜂.
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Figure 6: Plot of 𝑢
𝑛
(blue) and V

𝑛
(red), 𝑛 = 1, 2, 3, 4, 5 for 𝜆 = −0.2.
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Figure 7: Plot of 𝑢
𝑛
(blue) and V

𝑛
(red), 𝑛 = 1, 2, 3, 4, 5 for 𝜆 = −1.
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Figure 8: Plot of 𝑢
𝑛
(blue) and V

𝑛
(red), 𝑛 = 0, 1, 2, . . . , 20 for 𝜆 =

−20.
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