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We consider the exponential stabilization for Timoshenko beam with distributed delay in the boundary control. Suppose that the

controller outputs are of the form o u, (¢) + B, 1, (t —7) + LOT gi(u, (t+n)dnyand o, u, (t) + Bou, (t— 1) + LOT Go(mu,(t +1)dn; where
u, (¢) and u,(t) are the inputs of boundary controllers. In the past, most stabilization results for wave equations and Euler-Bernoulli
beam with delay are required ot; > 3; > 0,i = 1, 2. In the present paper, we will give the exponential stabilization about Timoshenko
beam with distributed delay and demand to satisty the lesser conditions for «;, §;,i = 1,2.

1. Introduction

Since the extensive applications of Timoshenko beam in
high-Tech, the stabilization problem has been a hot topic
in the mathematical control theory and engineering; for
instance, see [1-5] and the references therein. In many
literature, the control delay problem has been neglected. Due
to extensive applications of the system with delay, more and
more scholars devoted to study the stabilization of the system
with controller delay. It is well known that time delay caused

by controller memory usually takes the form LOOO da(s)u(t +
s), where «(s) is a bounded variation function (or matrix-
valued function) and u(t) is the control input. If the control
is in the space L}, _(R), then the memory controller will take
the form

JO da(s)u(t+s)=au(t)+ pu(t-1)

1
0
+J gs)u(t+s)ds.

Based on this reason, Xu et al. (see [6]) studied firstly
stabilization of the 1-d wave systems with delay of the
form au(t) + fu(t — 7). They proved that the system with

control delay is exponential stable if « > 5 > 0 and unstable
if B > a. Nicaise and Pignotti in [7] studied the stability and
instability of the wave equation with delay in boundary and
internal distributed delay. Nicaise and Valein in [8] extend
the 1-d wave equation to the networks of 1-d wave equations.
Shang et al. in [9] studied Euler-Bernoulli beam and showed
that B > 0 is not necessary, but the condition & > |f] is
necessary. For the case of distributed delay, that is, § >

0 and _[i |g(1)|dn # 0, Nicaise and Pignotti in [10] discussed
a high dimensional wave equation. Under the condition

0
that o > I_T lg(m)|dn #0, they proved the velocity feedback
control law also stabilizes exponentially the system.

From above we see that «, 3, and g(#) are determined
by the controller. We cannot determine whether or not « >
B > 0including « > |f] in practice. Under the assump-
tion of state being measurable, Shang and Xu in [11]
designed a dynamic feedback controller for cantilever Euler-
Bernoulli beam that stabilizes exponentially the system for
any real |«| # |B|. Recently Han and Xu in [12] extended this
result to the case of output being measurable; they showed
that a state observer can realize the state reconstruction from
the output of the system. Xu and Wang in [13] discussed the
Timoshenko beam with boundary control delay, and they
also stabilized the system by a dynamic feedback controller.



Note that the difference between [11, 13], one is a system
of single input and single output, the other is a system
of 2 inputs and 2 outputs. Such discussion will lead us
to extend the method to a general system of multiinput
and multioutput. So far, however, there is no result for
any «, 3, and g(n) about Timoshenko beams. In this paper,
we still consider Timoshenko beam with boundary control
distributed delay. We will seek for a dynamic feedback control
law that exponentially stabilizes the Timoshenko beam with
distributed delay under certain conditions.

The rest is organized as follows. In Section 2, we will
describe the design process of controllers, including predict
system and generation of signal, and then state the main
results of this paper. In Section 3, we will give the represen-
tation of the transform system. In Section 4, we will prove
our first result on the stabilization of the original system. In
Section 5, we will prove the second result on the exponential
stabilization of the induced system. In Section 6, we conclude
the paper.

2. Design of Controllers and Main Results

Let w(x,t) be the displacement and ¢(x,t) the rotation
angle of the beam. The motion of a cantilever beam is
governed by the following partial differential equations:

pwy (x,1) = K (e — @) (x,1) =0,

x€(0,1), t>0,
Loy (x,1) = Elg,., (x,t) = K (w, — 9) (x,1) = 0,
x€(0,1), t>0,
w(0,t) =9 (0,6) =0, t>0, (2)

K (w, - ) (L) =v (),
Elp, (1,t) = v, (t),

w (x,0) = wy (x),

w, (x,0) = wy (x),

Px0)=9y(x), ¢ (x0)=¢ (x),

where v,(t) and v, () are the control force and torque from
the controllers, respectively. If the controllers have no mem-
ory, namely, u j(t) = vj(t), j =1,2, where u,(t) are controller
inputs, this model had been studied in [14]. If the controllers
have memory, then the Timoshenko beam became

PWrt (x,t) - K (wxx - (Px) (x,t) =0,
x€(0,1), t >0,
Ip(Ptt (x’ t) - EI(pxx (x’ t) -K (wx - (P) (X, t) =0,
x€(0,1), t>0,

w(0,t) =¢(0,t) =0, t>0,
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K (w, — ) (1,t) = aquy (t) + Py, (t—17)
0
+ L g1 () (¢ + 1) dn,
Elg, (1,t) = ayu, () + Bou, (t — 1)

+ JOT g, () uy (t+1)dn,

w(x,0) = w, (x), w, (x,0) = w, (x),

(Y (xr 0) =@ (x) > (0% (.X, O) =¢; (X) >

1231 0) = f1 @), U, 0) = fz @), 0¢€(-1,0),
(3)

where 7 is the delay time, o, 3; € R (i = 1,2) are the
controller parameters, and g;() € L*[-1,0], j = L2,
and f;(0),0 € (-71,0) (i = 1,2) are bounded measurable
functions that are memory values of controllers. When g; =
0, j = 1,2, (3) is just the model in [13].

We suppose that the state of (3) is measurable; that
is, (w(x, 1), p(x, 1), w,(x,1), p,(x,t)) is measurable. We intro-
duce an auxiliary system as follows:

w, (x,s,t) =2 (x,s1t), x€(0,1), s€(0,7),

P, (x,51) =¥ (x,51), x€(0,1), s€(0,1),

25 (xs S, t) = E (ﬂjxx (x) S, t) - @x (x) S, t)) >
1%

- EI _ K __ -
¥, (x,8,1) = T P (x,s,t) + T (@, (x,5,t) =P (x,5,1)),
p p
w(0,s,t) =9 (0,5,t) =0, s€(0,7),

K(w, - @) (1,s,t)=Pu, t+s—1)

+J gy () uy (t +5+1n)dn,

s€(0,1),
Elp, (1,s,t) = Bou, (t+5s—1)
+J_ 92 () (£ + 5+ 1) dn,
s€(0,7), t>0,

w(x,0,t) =w(x,t), zZ(x,0,t) = w, (x,1),
x €(0,1),
@t (-x) 0) t) = q)t (.X, t)a

x €(0,1),t>0.

¢ (x,0,t) = @ (x,1),

(4)

Equation (4) is a partial state predictor.
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Denote the state of (4) at the moment s = 7 by

(py (3, 1), py (3, 8) gy (x,1) .G, (x, 1)) )
= (0 (x,1,1),9(x,7,1),2(x,7,t), ¥ (x,7,1)).

Using (3) we can verify that the functions group (p,(x,1t),
DPa(x,1),q; (x, 1), q,(x, 1)) satisfy the following partial differ-
ential equations:

Pre (%,8) = g1 (%, 1) + ay (x) uy () + ay(x) uy(£),
x € (0,1), t>0,

Doy (x,8) = gy (x, 1) + a5 (x) uy () + a,(x) u,y(£)

x€(0,1), t>0,
K
qi (x,1) = ; (pl,xx - Pz,x) (2, 8) + by (x) uy (2)

+b, (x)uy (),

EI K
Gy (x,1) = I_p2,xx (1) + T (Prx = P2) (,1)
P p

+ by () uy (t) + by (x) uy (1),

P 0,t) = 2] 0,t) = q 0,t) = 92 0,t) =0,
t>0,

K(Pl,x - p2) (Lt) = ﬁlul (t) > t>0,

EIPZ,x (1>t) = ﬁz”z (t)’ t> O)

0

Pr(6.0) = By (w0 wn9) (9= |y () £, (s

0
- J a, (x,s) f, (s)ds,

0

P2 (%,0) = E; (wo, po» wy, 1) (%) = J as (x,5) f, (s)ds

0

- J_ ay (x,8) f, (s)ds,
0
4, (x,0) = E5 (wg, 9, wy, ¢y) (%) + ,[, by (x,s) fi (s)ds

0
+ J b, (x,s) f, (s)ds,

0
0, (0) = E, (w0 90, 01,90) (9 + | by (5.9 £, 5) s

0
+ J by (x,5) f, (s)ds,

(6)

where a;(x,7),b,(x,1),a;(x),b(x) i = 1,2,3,4) are mea-
surable function and E; (i = 1,2,3,4) are bounded linear

operatorson [H 10, 1] x L?[0, 1]]2; they are determined later.

Equation (6) is a system without delay, but the controls
appear in the system interior and boundary. First we consider
the stabilization problem of (6). Let us consider the energy
functional of (6)

1 2
E(t) = 5 "(PvPz)"VIl((o,nxvg,(o,l)

1 2
+ E||(Q1a92)||L§,(0,1)xLz,p(0>1)

1 1
> L K|p,, (6.t) - py (. 1) Pdx
. %)
+ = J El|p,. (x,1)| dx
2 Jo i
1 (! 2
3 J plgs (x, )| dx
0

1

1
2
+5 L L|g, (x,t)[ dx.

A direct calculation gives

dE (¢)
dt

=u (1) [/31‘11 (1,1)

! !

¢ | Ko p) [a] 0 -ay (0] dx
1

+ L Elp, . (x,t) aj (x) dx
1

+[ a0 0 dx

+ j 1,q, (x,1) by (x) dx] (8)
0

1
+u, (F) [/32% (1,1) + L K(pix—p2)
X [a; (x)—ay (x)] dx

1
+ J Elp, . (x,t) a"l (x)dx
0

1
+ J pq, (x,1) b, (x) dx
0

1
+ J 1,q, (x,1) by (x)dx | .
0
Set
U, (P> P2 91> 92)
= fia: (1,1)

1
+ L K (pyy (x5 = p, (5,1)) (a) (x) - a5 (x)) dx



1

1
+ J pq; (x,1) by (x)dx + J Elp, , (x,t) a; (x)dx
0 0

1
+ L 1,9, (x,1) by (x) dx;

U, (P1> P2 91> 92)
= B2, (1,1)

1
+ L K (pyx (1) = py (x,1)) (a; (x) — ay (x)) dx
1 1
+ J pqy (x, 1) by (x) dx + J Elp, . (x,t) afl (x)dx
0 0
1
. L L, (x,6) by (x) dx. )

We take the feedback control law as

~U, (p1> P2 41> 42) >
~U, (1 P91 %2) -

u (t) =

u, (t) =

(10)

Then, the closed loop system associated with (6) is

Pre (1) = g, (x,1) = a, (X) Uy (P> P2, 41> 95)

~a, ) U, (1> P2 41 92) »
x€(0,1), t>0,
Par (1) = G, (x,1) = a3 () Uy (p1 P2> 12 42)

~a; () U, (1, P2 91 92) »
x€(0,1), t>0

K
Gr (1) = ; (pl,xx - Pz,x) (1) = b (x) Uy

X (P1> P2 91> 92) = by () Uy (Pr> P2 41592 »

Ep2xx(x,t)+ (P1x = P2) (1)

I I
= by (x)U, (p1> P2 915 92)
~ b, () Uy (P> P2 91> 92) »

day (1) =

p1(0,t) = p,(0,¢) =g, (0,t) =g, (0,£) =0, t>0,
K(pi.—p2) (L) = =BU, (p1s P2s 915 92)» >0,
Elp, ., (1,1) = =,U, (PvPr9a)> >0,

0
p1 (x,0) = E; (o, po> wi 9y) (%) = J, a, (x,s) fy (s)ds

0
- J_ a, (x,s) f; (s)ds,
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0
P2 (x,0) = E, (o, o> wy, 1) (%) = Jl a3 (x,s) f, (s)ds

0
- J, a, (x,5) f (s)ds,

0

g1 (x,0) = E5 (wg, 9, wy, ¢1) (%) + J by (x,s) fi (s)ds

=T

0
+| bs f s
0
0, (1.0) = Eq (w0 0) () + | b9 £, () ds

0
+ J_ by (x,s) f1 (s)ds.
(11)

We estimate the error of the system (3) with control (10) and
the system (11).

Let (w(x, 1), (x, 1), w,(x, 1), ¢,(x, 1)) be the solution to
(3) with control signals (10) and let function group (p,(x, ),
P, (x,1),q, (x, 1), g5(x, 1)) be the solution to (11). Set W(x, t)
= (W g(xt) and Wint) = (w0 g x 1),
and set P(x,t) = (p,(x,1), po(x, 1)) and Q(x,t) = (q,(x,1),
g (x,1)).

To discuss the stability (W(x,t), W,(x,t)), we consider
the error both solutions in the energy space

2
|P(,t) =W(,t+ T)||V11<(0’1)Xv};1(0,1)
5 (12)
+ Q1) = Wit + T)||L§7(0,1)xL2,p(0,1)'

In this paper, we will prove the following results.

Theorem 1. Let (W(x,t), W,(x,t)) be the solution to (3) with
controls (10) and let (P(x,t),Q(x,t)) be the solution to the
closed-loop system (11). If the system (11) is asymptotically
(exponentially) stable, then the system (3) also is asymptotically
(exponentially) stable.

Theorem 2. Suppose that K/p+ EI/I,. Let y,,n € N be the
eigenvalues of the free system (the system (2) without controls).
Set

gD = J g, () e VB gy,

(13)
&) = J g, () eV .
Then the following assertions are true:
(1) when
inf & + oclefiT b Eﬁll) >0,
mlp
s (14)
1nf—2+oce”"” N> o,
p

the system (11) is exponentially stable;
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(2) ifforall n e N,

&er” ”"+Ef,1) >0
(15)
&+ae” n >0
p
but
. ﬁl T/t (1)
12f—+oce’ Bnp &7 =0,
(16)
| P2 itV @)
ngf I—+ocze T B =0,

P

then the system (11) is asymptotically stable.

In the following sections, we will prove our results.
In Section3, we will determine functions a;(x),b;(x),
a;(x,5),b;(x,s) (i = 1,2,3,4). In Section 4, we will prove
Theorem 1. In Section 5, we pay our attention to the proof of
Theorem 2.

3. Representation of the System (6)

In this section, we will obtain the expressions for the func-
tions a;(x), b(x), a;(x,s),b(x,s) (i = 1,2,3,4) appearing in
system (6) using (3) and (4).

We begin with introducing two useful lemmas.

Lemma 3 (see [13]). Define the differential operator in
Li(O, 1) x L% (0,1) as follows:
P

Z (w,9) = (—% (w" (x) - ¢’ (x)),_%)" (x)

P

’ (17)
_g (w' (x) —(p(x))> :
with domain
D (&)
) w(0)=¢(0)=0,
_ <[(w(x) @iﬁ)(;lf) (0,1) | K (w ,(1)_¢(1))=0)}_
Elp’' (1) =0
(18)

ThenZis a positive define operator with compact resolvent
in LZP(O, 1) x LZI (0, 1); its eigenvalues are
P

0 <y <pp <ooo <y <o (19)
and the eigenfunctions ®,(x) = (w,(x), <pn(x))T corresponding
to y, are real functions and form a normalized orthogonal
basis for Li,(O, 1) x LZIP(O, 1).

Lemma 4 (see [13]). Let D, (x) = (w,(x),¢,(x)) be the
normalized eigenfunction corresponding to the eigenvalue
U, of L. Then it holds that

1 2 ! 2
J K|w,'l (%) -9, (x)| dx + J EI'(/),’I (x)| dx = u,,
0 0
0 <inf {plw, OF + L, [} (20)
< sgp {p]wn (1)|2 + 'ngon (l)|2} < 0.

Now let us return to (3). We write the equation in (3) into
the vector form

Ky K

wy, (x,t)>_ p _; * <w(x,t)> B

(% (x, 1) Ko, Ely K J\gGet) =0
Ip Ip 1

(21

and the boundary conditions are ( l;’((gf)) ) =0, and
Ko, -K)\[w(x,t)
( 0 EIax> ((p(x, t) >x=1
Cfay 0N [u (@) Bi 0\ (u (t-1)
=(3 w) (@) (0 p) (i D) e
+J° <91(f1) 0 )(ul(tw))
=\ 0 gy () \uy(t+n)
The initial datum are
(w (x, O)) _ (wo (x)) <wt (x, 0)) _ (w1 (x))
¢ (x,0) @ (x) )’ ¢, (x,0) ¢ (x))°
(23)

Set W(x,t) = (w(x,1), (x, T and U(t) = (ul(t),uz(t))T.
Define 2 x 2 matrices

ve(ia) e (08)

As )= (gl(gn) 92?’7))

and define an operator B from R? to H™(0,1) x H(0, 1),
where H™(0,1) = (V1(0,1))" is dual space,

_[(d(x-1) 0
B‘( 0 8(x—1)>’ 25)
and define an operator I'y, from H%*(0,1) x H*(0,1) to R? by
_(K(w' ) -9@)
TW = ( EIy (1) ) (26)

where W(x) = (w(x),(P(X))T-



With help of these notations, we can rewrite (3) into

‘/‘Itt (xa t) + gW (xa t)
0

=B<A1U(t)+A2U(t—T)+J

-7

A, (@)U 4 )dn),
t>0,

W (0,1) =0, LW (1,t) =0,

W (x,0) = W, (x) = (wp (x), ¢ (x)) "

W, (x,0) = W, (x) = (w, (x), ¢, (%))

(27)
and (4) into
Ws(x,s,t)=V(x,s,t),
V. (x,5,t) + ZW (x,5,t) = BA,U (t + 5 — 1)
+BJ A (U (t+s+n)dn,
W (0,s,t) =0, W (1,5,t) = 0,
W (x,0,8) = W (x,1),
V (x,0,t) = W, (x,1),
(28)

where W(x,s,t) =

(Z(x,5,1), F(x, 5, 1))
We define two families of the bounded linear operators
on L2(0,1) x L} (0,1) by

(@ (%, 5,), p(x, 5, 1)), V(x,5,8) =

Cos (tZL)F = Z cos /it (F, (Dn)Lf,xLZ, D,
p

=1
) (29)
) & sin /it
Sin (t%) F = ; = (F, CD")Li i, ®,.
Clearly, the following equalities hold, for any t € R,
t
Sin (t&) = J Cos (tZ) dt,
' (30)

d .
= (Cos (t2)) = ~ZSin (t7).

It is easy to know that the vector-valued function

W(x,t) = Cos(tZL)W, + Sin (tZ£) W,

+ JtSin((t—s).Q)B[AlU(s)+A2U(s—‘r)] ds
0

t 0
+J Sin((t—s).Sf)BJ A5 (n)U (s+n)dnds
0 -T
(31)
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is differentiable with respect to t and

W, (x,t) = =L Sin(tZ) W, + Cos (tZ£) W,

+ Jt Cos ((t—s) Z)B[A U (s)+A,U (s —1)] ds
0

t 0
+J Cos((t—s)g)BJ A5 (n)U (s+n)dnds.

0 -T
(32)

Further, W(x, t) satisfies (27).
Similarly, we know the vector-valued function

W (x, s, 1)

= Cos (sL)W (-, t) + Sin (sZ) W, (-, 1)

+ JsSin((s -r)ZL)BAU(t+r—1)dr
0

+ JSSin((s - r)i”)BJ_rA3 (MU (t+r+n)dndr,
0 -T
(33)
V (x,5,1)

= -ZSin(sL)W (- t) + Cos (sL) W, (-, 1)

; JscOs((s-r)g)BAZU(tw—r)dr
0

+JSC05((s—r)3)BJ rA3(17)U(t+r+r])d17dr.
0 -T
(34)

satisfy (28).
Set
P(x,t) =W (x,7,1), Qx,t)=V(x1,t). (35)
Then we have

P(x,t)\ _ Cos(t¥) Sin(r¥) W (x,t)
Qx,t)) ~ (—$Sin(‘l’3) Cos (12) )\ W, (x,t)

T(Sin((t-r)%)
L Cos((t—-1)2)

T(Sin((t-r)2)
* L <COS((T—1’) 3))

xBJi A;(n)U (t +7+n)dndr.

>BA2U(t+r—T)dr

(36)
Thus,

P (x,t)\ _ Cos(t¥) Sin(t¥) W, (x,1)
(Qt (x, t)> - (—3 Sin (r¥) Cos (Ti”)) <th (x, t))

* LT (—éossil(f Z(; i)r;i)‘f)>

X BAU (t+r—71)dr
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>—<Sin(f‘g)>BA2U(t—r)

0
* (BAZU t)) ~\ Cos (%)

. & 0
~(mED) B[ AU e

T( Cos((t-r)2)
* L <—$Sin((1 -9 52)) B

xj Ay (U (t+7+n)dndr

Note that
W, (x,t)
Wit (x.7)
(0 I\(Wi(x,1)
“\-Z 0)\W, (x,1)

0
0
" <B<A1U(t)+A2U(t—T)+J A3(17)U(t+;1)d17>>'

=T

O (Sin((r+7)Z) (38)
B ER) ENORCES
(37) So it holds that
(Pt (x,t)) B ( 0 I) (P(x,t))
Q (xt)) \-Z 0/\Q(x1)
Sin (r) BAU (1) + [ Sin (7 + 1) £) BA; (1) U (1) dy (39)
+ .
Cos (t2) BAU (1) + [ Cos (v +17) ) BA; (n) U (t) dn + BA,U (1)
Therefore, we have equations Since all entries of B are meaningful as linear functional
1 2
P (x,t) = 1) + Sin (t.%) BA ,U (t on H'(0,1), so for any Z = (zy,2,) € R®and ®,(x) €
: (x,1) = Q(x,t) + Sin (7£) BA U (t) HY(0,1) x H(0,1),
0
+ J_T Sin((7+7)Z)BA;(n)U (t)dn, (BZ, CDn)Li)(O,l)xLZIP(O,l)
1 1
Qt(x,t)= —3P(x,t)+COS(T§Z)BA1U(t) (40) :ZIJ p5(x—1)wn(x)dx+zzj IPS(X—l)(Pn(x)dX
0 0
0
+ | Cos((r+m) 2)BA, ()U @ dn = pz1w, (1) + L2y, (1) = [21,2,] [pw, (1.9, (D]
- (43)
P (O) t) = Q (Oa t) = O) 1—‘NP (') t) = AZU (t)
o . Therefore, we have the following results.
and initial conditions
P (x,0) = Cos (L)W, + Sin (L) W, Theorem 5. Let {p,;n € N} be the list of all eigenvalues of &£.
. Then the functions that appear in (6) are
- J Sin (sZ) BA, f (s)ds -
- (41) a; (x) = prn (D w, (x)
n=1

+J0 Js Sin((r-s+1)%)

-T J-T

x BA 5 (1) f (s)dnds,
Q(x,0) = - ZSin (L)W, + Cos (1£) W,

0

+ J Cos (sZ)BA, f (s)ds

+ JO r Cos((t—s+1n)Z)BA;(n) f (s)dnds,
' (42)

where f(s) = (f; (S),fz(S))T-

sin T~/
X ((xl

\/m
0 i
+ j 91 (n) Wﬁlﬂ)

a,(x) =1, ¢, w, (x)
n=1

sin T /p,
n

0 in
+ J g () wdn),



a5 (x) = p Y w, (1) @, (x)
n=1

Sin T+ /p

\/tu_n
0 i
+ J 91 (n) %do,

a4 (x) = pZ(Pn (1) (Pn (x)
n=1

sin T+/y,,
x| ay———

Vb
0 .
+ J 9. (1) W@)

by (x) = pY w, (1) w, (x)
n=1

X <oc1 CoS T/,
0
+ J 91 (1) cos (z +1) «/Edn) ,
by (¥) = 1, ) ¢, (D) w, (x)
n=1
X <a2 cos TA/u,,
0
+ J 92 (1) cos (7 +1) x/Edrl) ,

by (x) = p Yy w, (1) 9, (x)

n=1
X <oc1 Cos TA/H,,
0
+ J g1 () cos (7 +1) \/PTndﬂ) ,
b4 (X) = pZ(Pn (1) (Pn (.X)
n=1
X <oc2 cos TA/u,,
0
+ J 92 (1) cos (z +1) \/Edn) ,

a, (x,s) = prn D w, (x)

n=1
sin s+/i,,
x{ B
(1 Vi

—JS 4.(1) sin(t-s+7) \/Edn))

Vb
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a2 (X, S) = Ipz(Pn (1) wn (.X')
n=1

x(ﬁ sin s+/z,
"V

o sin (7 - s+1) i, )

ng(n) NS dn |,
ay (x,8) = py w, (1) ¢, (x)

n=1
sin s+/H,,
X<ﬁ R
o sin (7 - s+1) i,
Lgl () N dn),

a,(x%,5) =1, ¢,(1) ¢, (x)
n=1

sin s+/p,,
e

- I 92 (n)

sin(r-s+7) \/Edq)
T ;

b, (x,5) = Piwn (1w, (x)
(ot
+ L g1 () cos (t = s +7) x@dn) ,
b, (x,s) = Ipiw (D w, (x)
S
+ L 92 (1) cos (T = s + 1) Wndn> ,
by (x,5) = piwn (1) ¢, (x)
(o
+ I g1 () cos (v = s +7) \@dﬂ> »

b4 (x’ S) = Ipz(Pn (1) Pn (X)
n=1

X <[32 cos s/,

+ L 92 (1) cos (T = s + 1) W_ndn> ,
(44)
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and the linear operators are

E, (wo’ Po> Wy» (/’1) (x)

n

= OZO: [cos T/, (Wp, @) + (Wl,d)n)] w, (x),
n=1

sin T+/i,,
N
E, (wO’ Po> W15 (/’1) (%)
-8 [
n=1

sin T+/i,,
+——— (W, (Dn)] @, (x),
Vi,

E; (‘Uo’ Po> W1» ‘Pl) (x)
= > [~V sint Vi, (W, @,)
n=1
+cos T/t (W, @) ] w, (x),

E, (wo’ Po> W1» ‘P1) (x)

M8

[= Vit sin T/, (Wo, @)

11
—_

n

+cos T/th, (W, @,)] ¢, (%),
(45)

4. The Proof of Theorem 1

In this section, we will prove Theorem 1. Here we mainly
estimate the error:

2
1P, ) =W £+ Dl o,1xv2, 0,1)

X (46)
+]|QG. 1) - W, t + T)||L§,(0,1)><L21p(0,1)'

According to the calculation in Section 3, we have
P(x,t) - W (x,t +1)

= —JTSin((T—r)g)BAlU(t+r)dr
0

T 0
—J Sin((‘r—r)g)BJ Ay (MU (t+r+n)dndr,
0 -7

(47)
Q(x,t) =W, (x,t+ 1)
=—JTCOS((T—r)g)BAIU(t+T)dT
0
T 0
—J Cos((‘r—r)g)BJ A (n)U (¢t +r+n)dydr.
0 -T
(48)

So,

2
"P(’ t) - W(’ t+ T)”Vll((O,I)XVéI(O,l)

+]QC. ) =W, (-t + T)“ig(o,l)xﬁ,p(o,l)

< 4(“1P)22|wn (l)lz
n=1

T 2
X J- sin v/, (T —1)u, (r +t)dr

0

+ 4(a21P)ZZ|(pn (1)|2
n=1

2
X

Jrsin\/Z(T—r)uz(r+t)dr
0

o 2
+4p” Y |w, (1)]
n=1

2
X

J: sin A/, (T — 1) (J_OT g (Mu, (r+t+n) dq) dr

200 2
+41p§1|¢n(1)|

2
X

LT sin A/, (T — 1) (J_OT g (M uy (r+t+mn) dr]) dr

+ 40, p)" Y |, (]
n=1

2
X

JT cos i, (t — ru,(r + t)dr
0

+ 4(0c21p)22|q)n (1)|2
n=1

2
X

.[T cos v/, (T — Nu,(r + t)dr
0

+4p” Y |w, (O
n=1

2
X

LT cos \/ih, (T = 1) (JOT g (M u, (r+t+mn) dn) dr

+4I2y o, (V]
n=1

2
X

T 0
L cos /i, (T —7) (J_ng (Mu, (r+t+n) dn)dr
(49)
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N} is a Riesz basis
there positive

Note that {cos /g, t,sin /i, t;n €
sequence for 12[0,7]. ‘Thus,

constants M; (i = 1,2, 3,4) such that

exist

2
IPC8) =Wt + Dl o,wvt 01)
2
+ QG 1) = W (t + T)"L2P(0,1)><L2Ip(0,1)

T T
< M,> L |uy (r + O dr + M,? L |u, (r + 1) dr

2

dr

7|0
+ My L “_ g1 (), (¢ + 7+ ) dy

2

7|0
+M42L Jﬁ 9> () uy (t+7-+n)dy| dr

sMIZJ- |, (r+t)|2dr+M22J |u, (r + 1) dr
0 0
3 2 0 ) t+1 5
+ My J_ |91 (m)|"dn L_ |y (5)]"ds

0 t+1
+ M, 7 Jl |9, (17)|2dr] L |u, (s)|2ds.
(50)

Let (P(x,t),Q(x,t)) be the solution to (11), and E(t) be its
energy functional; then we have

E() = 1P (0.Q )1,

dE () GV

dt

Therefore, we have

= -UL(P,Q) (1) -U; (P,Q)(1).

J WU (¢ + P)l2adr
0

t+T
- J (U} (P,Q (1) + U3 (P,Q) (r)) dr
¢ (52)

“EW)-E(t+1),

LT WUt = P)l2adr = E(t - 1) E(2).

So, we can get
2
|PC,t) —W(, t + T)”V,i(O»l)XVé,(O,l)
2
+[QC. 1) - WGt + T)"LZP(O,I)XLZIP(O,I)

< max {MZHE@®) - E(t+7)] (53)

=1,

+max {M;’} 7* JO (lg: (DI* + 9> ()I*) dy

x[E(t-T1)-E(t+71)].

Abstract and Applied Analysis

If (P(x,t),Q(x,t)) is exponential stable, there exists a
positive constant ¢ > 0 such that E(t) < E(0)e . We can
obtain the following result from above:

2
”P(') t) - W(') L+ T)IIVé(O,l)xVéI(O,l)
2 — t7
+ ”Q GO =W (ot + T)"LZP(O,I)XLZI ©1) S Me™7,
p
(54)
where M is a positive constant. So (W(x,t), W,(x,t)) also

decays exponentially.

5. The Proof of Theorem 2

In this section, we will discuss the stability of system (11). At
first we consider L* well posed of the system (6). For the sake
of simplicity, we use the vector form of (6); that is,

P (x,t) = Q(x,t) + Sin (&%) BA U (t)

0
v [ sin((ren)2)BAL (DU ©dn,

Q; (x,t) = = ZLP(x,t) + Cos (&) BA U (t)

0 55
+J_ Cos ((t+1n) £)BA5(n)U (t) dy, ©5)

INP (1) = AU (1),
P(0,t) =Q(0,t) =0,
P(x,0) = P, (x), Q(x,0) = Qy (x).
The observation system corresponding to (55) is

W, (x,t) =V (x,t), x€(0,1), t>0,
Vi(x,t) ==-LW (x,t), x€(0,1), t>0,
W(x,O) :W()a

V(x,0) =V,
1

WO =iz + | K, an-p@n)

X (a{ (x) —a, (x)) dx

1
+ J Elg, (x,t) a; (x)dx
0

1 1
+ J pz (x,t) by (x)dx + J Ly (x,1) by (x) dx;
0 0

1
720 = By (L0 + | K (w, ()= p (5.0)
X (aé (x) —ay, (x)) dx

1
+ J Elp, (x,t) a; (x)dx
0

+ Jl pz (x,1) by (x) dx + jl Ly (x,t) b, (x) dx,
0 0 (56)
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where W(x,t) = (w(x,t),(p(x,t))T and V(x,t) = (z(x,1),
y(x 1)

We can write the observation as

y () = Bz (L,t) + <W 1), (al’aS)T>Vk1

1
XV,

+ (V1) (b))

LixLZIP’
. (57)
72 = By (L0 + (W 0), (@) ),y

+ (V1) (bynby)")

I2xI? °
Py

Since

<al (x) a (x))

as (x) ay (x)
= Sin (Tg) BA]
0
N j Sin (7 +1) Z) BA; () dn.

<b1 (x) b, (x)>
b3 (x) b4 (x)

= Cos (&) BA,
0
+ LT Cos((t+1n) L)BA; () dy,
Y () = C(W,V) = A,V (1,6)

+|A, L sin(r2)B

+ L jo Sin((7 + q)g)BA3(q)d;7] LW (1)

+|A,Cos(tZ)B

+ JOT Cos ((t+1) Z) BA; (1) dn]*V(t),

(58)

Taking the Laplace transform for above equation leads to,
for any RA > 0,

AP (x) = Q(x) + Sin () BA ,U ())

0
. J Sin ((t+7) %) BA, (7) U (V) dn,
x €(0,1),
AQ(x) = — ZLP(x) + Cos (1<£) BA,U (L)
0
+ [ cos((r+n)2) BAs (U W

IyP (1) = AU V),
P(0,£) =Q(0,8) = 0,

11
Y(A) = A,Q(1)
+ [AIS’]/Z Sin (<) B
0 *
+ PV j Sin((t + ;7)3)3/\3(;1)(1;7] FY2p ()

+ [Al Cos(t&)B

0 *
+ I_ Cos((t + n)Z)BA3(11)d11] Q®).
(59)
We have the following results by solving (59):
(A +Z)px)
= [/\ ( Sin (%) BA |
0
+ J_T Sin((t+#)<%)BA5(n) d’l>
+ Cos (7€) BA
0
+ J Cos ((r+1) Z£) BA; (n)dn
+BA2] U@,

Y(A) = [/\ ( Sin (1) BA,

+ J_OT Sin((t+#1)%)BA5(n) d17>

+ Cos (&) BA | + J-_OT Cos((t+1n) Z)BA;(n)dy

*

+ BA 2] P.
(60)

So we can get
Y(A) = [A < sin (1) BA |
0
| sin((en) 2)5A ()

0
+Cos (t&)BA | + J_T Cos ((t+1) &) BA 5 () dn

+ BAZ] (A2 + 3)_1
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X [A ( Sin (1£) BA

+ jo Sin (¢ +1) 2) BA () )

+ Cos (1£) BA 4

+ JO Cos ((t+n) &) BA 5 (17) dny+ BA 2] U,

(61)

and hence the transform matrix is

H) = [A < Sin (t&) BA |

+ jo sin (+-+.1) 2) BA (n) )

+ Cos (1£) BA

+ JOT Cos((t+n) Z)BA;(n)dy

+ BAZ] (AZ + 3)_1
X [)L < Sin (&) BA |
0
+| sin((een) 2050 () dn)
+ Cos (1£) BA |

+ jor Cos ((r + 1) &) BA , () dn + BAZ] .

(62)
Forany Z = (z,,2,) € C*, we can get
(HA) Z,Z)e2
n:I/\2 + Mﬂ
X ([/\ Sin (&) BA |
(63)

" jOT Sin ((r + 1) %) BA, (1) d;1>

+ Cos (1£) BA | + JO Cos((t+1) 2)

2

XBA 5 () dn + BAZ] Z,®n>

2 2
LPXLIP

Abstract and Applied Analysis

We can easily get
(BAZZ) (Dn)Lf’xLZIP = ﬁlzlpwn (1) + ﬁZZZIp(Pn (1) 5

(Sin(r£)BA , Z, q)n)L;

xL2
Tp

_ Sin (/)
Vi
(Cos(z£)BA,Z,®,,)

[oclzlpwn 1) + %2,1,9, (1)] ,

LixLzlp
= Cos (71, [‘xlzlpwn (1) + 2,19, (1)] >

0
(J Sin(r + ) ZBA ;(n)dnZ, CDn>
T ijxLzlp

[ Sl )
. N

x [g, (1) z,pw, (1) + g, () 21,0, (V)] dn,

0
(J Cos(t + 1) ZBA ;(n)dnZ, CDn>
-T Li)xLZIP

= [ costern) vim)

x (g1 (1) zpw,, (V) + g, (1) 2,19, (1)] dn.
(64)

Thus, we have

-7

‘ ([A <Sin (L) BA | + J-O Sin ((t+7) <Z) BA5 (1) dﬂ)
+Cos (t&)BA | + J_OT Cos((t+1n) £)BA5 (n)dy

2
+ BAZ]Z,CDn>

2 2
prL,p

2
SFM_l

n

+2

[plo, WF + Llg, OF 1212, (65)

where F is a positive constant dependent on o, f;, g;(1), i =
1, 2. Therefore, we have the following result:

(o) 1 A 2
O < FY L (10, 2‘
it AT+, | (66)
2 2
x [plw, (D + Llg, (O[]
From Lemma 4, we have
sup [[H (A)] < oo. (67)

RA>5>0

Hence the system (6) is L%OC well posed (see, [15]).

Next, we consider the exact observability of the system

(6).
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Lemma 6 (see [16]). Let Z be a separable Hilbert space, and
let & be a unbounded positive definite operator. Assume that
Z satisfies the following conditions:

(1) ZLhas compact resolvent and its spectrum is 0(&) =

{psn € NE;
(2) the spectra of Z satisfy the separable condition
Jnf [V, = V| = 8> 0; (68)

(3) the corresponding eigenvectors {®,;n € N} with
D, Il = 1 form a normalized orthogonal basis for 7 .

LetYbe a Hilbert space. Assume that C : D(&) — Y is
an admissible observation operator for £. Then the following
system:

Zy+ LL(t) = Z0)=2

(69)

Z,0)=2,, Y(@)=C(Z2)

is exactly observable in finite time in the energy space
D(ZL'?) x # if and only if

O)
C(. Z >q)n>
1\ by

Now we apply Lemma 6 to the system (55). We can eas-
ily know that the condition (68) is fulfilled when ¢, =

VK/p#¢, = \IEI/IP (see Remark 2.1in [8]).

For @, (x) =

o 2o o
i, "

=A,®, (1)

> 0. (70)
Y

inf
neN

(w,(x), ,(x))", we have

+ [Als,ﬂ”z Sin (t%) B

' o
+ 31/21 Sin((7 + ) Z)BA 5(n)d ] P T
1 S v

+ [Al Cos(t¥)B

+ J_OT Cos((t+1n)Z)BA, (1) dn] D
(71)

Forany Z = (z,,2,) € C*, we have

* ()
<A1(31/2 Sin (1%) B) 551/2,—",2)
14/ c2

(31/2 D,

N

, 22 Sin (1) BA z)
Lf,xLZIp (72)

= —i/ih,(P,, Sin (£) BA | Z),.»

xL2
o<l

= —isin (\/1,T) [oclzlpwn (1) + ay2,1,9, (1)].

13
Similarity, we have
0 * 10)
12 : 12 Py
((3 J_T Sin ((t +7) &) BA, (1) dn) 4 ﬁ, Z)C2
0
=i | sin((r+n) Vi)
x (g1 (1) 21pw0, (1) + g5 (1) 21,9, (1) ],
(A1(Cos (1£)B)* @, Z)
= cos (\/phT) [oclzlpwn (1) + a2z, 1,9, (1)],
((JO Cos((t+1n)Z)BA, (1) dn) d)n,Z>
=T CZ
0
~ [ cos(r ) Vi)
x [g, (1) 2, pw, (1) + g, (1) 2,19, (1) dn.
(73)

Thus it holds that

0]
o(2w,)
1/t

(% rane ™ [ g (n) e”'“””)mdn) pw, (1)

—iT 0 —i((t
(l% +ope ™V [ gy () e ”’”’T")dﬂ) L, (1)

p
(74)
Set
ﬁ)ng D gy,
(75)
& = J g: () e Ty,
Then
2 2
0]
! Mn Cc?
2
& +age TV fflz) 'ngon (1)|2.
(76)
Obviously, when
A, =inf & + ocle_ir Bn f;l)
" lp
(77)
A, = inf &+(x26_” b >0,
n Ip
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we have

()
il

2

CZ
2 78
> A%|pw, (D] + A3|Lg, (1)| 78)
2
> min {A,, A} (Jow, (O + |19, O] )5
using Lemma 4,
2
inf C( ,®” ,(Dn> > 0. (79)
! it c?

According to Lemma 6, the system (56) is exactly observable
in finite time, and hence the closed-loop system (11) is
exponentially stable.

Ifforall n e N,

ﬁl —iT ptn+££ll) >0

—+(X€

(80)
B,

T e i ””+Eflz)
P

>0,

we can see that in this case, there is no eigenvalue of system
(11) on the imaginary axis. Moreover, if the conditions

inf P + e VB L ED
n
p
(81)
inf 1B2 4 etV 4 £
inf Tt oe VL B =0

P

hold, then the imaginary axis is an asymptote of the eigen-
values of the system (11). Therefore, the stability theorem
[17] asserts then that the system (11) is asymptotically stable.
Therefore, we get the result of the Theorem 2.

6. Conclusion

In this paper, we designed a new controller for a Timoshenko
beam with distributed delay in the boundary that stabilizes
exponentially the system. In the design process of new
controllers, there are main steps: (1) to translate the delay
system into a system without delay; (2) for the undelay
system, we used the collocated feedback law to obtain the
control signals; (3) using the obtained control signals, act on
the delay system. This control strategy can be regarded as
extension form of [15]. In the stability analysis, the key trick is
to use the exact observability of the dual system in finite time
to obtain the exponential stability of the closed-loop system.

In the proof of main result, the condition K/p # EI/I,, is
used to ensure the separability of the spectrum (see, the
condition (2)) in Lemma 6). In the statement of our result

Abstract and Applied Analysis

(Theorem 2), the conditions are stronger than the practice; in
fact,

2 2
)
o, ) =B ae g0 fow,
1 Hn c?
3 2
-2+ae'fm+£9 L. (DI
p
(82)
one only needs to request
2
)
mfc(,”,q) >0, (83)
" i\, c?
so, the conditions
inf & + ocle_iT By ES) >0,
mlp
(84)
inf [ +aye TV 2l >0,
n Ip
are sufficient, but not necessary. Since
0 .
RIS
N (85)
&= | g ey,
-T
solim,_, &Y =0, j = 1,2. Therefore, when
&+(x e’ ”"+f£ll) >0,
(86)
&Hx e T "”+Eff) >0
p

that means that there is no eigenvalue on the imaginary axis,
and

inf B +age VB S 0,
n
P
(87)
inf B +aye VLS 0,
ol
P
we have
2
D
mfc(,",q) > 0. (88)
" Hn c?
Clearly, when f, # pa; and f3, #1,a,, we also have
2
D
mfc(,",q) > 0. (89)
" Iy c?

Therefore, the conditions in Theorem 2 are easily verified.
The control method proposed in this paper can be used to
the system of output availed system by using the Luenberger
observer. Also we have noted that the method is only fitting
the continuous model; for the model of data-driven system
(e.g., see, [18]), it might fail. So we need to study the
corresponding control strategy for the data-driven system.
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