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The existence of analytic solutions of an iterative functional differential equation is studied when the given functions are all analytic
and when the given functions have regular points. By reducing the equation to another functional equation without iteration of the
unknown function an existence theorem is established for analytic solutions of the original equation.

1. Introduction

Functional differential equations with state-dependent delay
have attracted the attentions of many authors in the last few
years (see [1–8]). In [6–8], analytic solutions of the state-
dependent functional differential equations

𝑥
󸀠

(𝑧) = 𝑥 (𝑎𝑧 + 𝑏𝑥 (𝑧)) ,

𝛼𝑧 + 𝛽𝑥
󸀠

(𝑧) = 𝑥 (𝑎𝑧 + 𝑏𝑥
󸀠

(𝑧)) ,

𝑓
𝑚

(𝑥) = 𝐺(

𝑚−1

∑

𝑘=0

𝑎
𝑘
𝑓
𝑘

(𝑥)) + 𝐹 (𝑥) , 𝑚 ≥ 2, 𝑥 ∈ C

(1)

are found. In this paper, we will be concerned with analytic
solutions of the functional differential equation

𝛼𝑧 + 𝛽𝑥
󸀠

(𝑧) = 𝐹(

𝑚

∑

𝑙=0

𝑐
𝑙
𝑥
𝑙

(𝑧)) + 𝐺 (𝑧) , 𝑧 ∈ C, (2)

where 𝛼, 𝛽, 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑚
are complex numbers, 𝛽 ̸= 0,

∑
𝑚

𝑙=0
|𝑐
𝑙
| < 1, and 𝑥

𝑙
(𝑧) = 𝑥(𝑥

𝑙−1
(𝑧)) that denote the 𝑛th

iterate of a map 𝑥. In general, 𝐹, 𝐺 are given complex-valued
functions of a complex variable.

In this paper, analytic solutions of nonlinear iterative
functional differential equations are investigated. Existence of
locally analytic solutions and their construction is given in the
case that all given functions exist regular points. As well as
in previous work [6–8], we still reduce this problem to find
analytic solutions of a differential-difference equation and

a functional differential equation with proportional delay.
The existence of analytic solutions for such equation is
closely related to the position of an indeterminate constant
𝜇 depending on the eigenvalue of the linearization of 𝑥 at its
fixed point 0 in the complex plane. For technical reasons, in
[6, 7], only the situation of 𝜇 off the unit circle in C and the
situation of 𝜇 on the circle with the Diophantine condition,
“|𝜇| = 1, 𝜇 is not a root of unity, and log(1/|𝜇𝑛 −1|) ≤ 𝑇 log 𝑛,
𝑛 = 2, 3, . . . for some positive constant 𝑇”, are discussed.
The Diophantine condition requires 𝜇 to be far from all roots
of unity that the fixed point 0 is irrationally neutral. In this
paper, besides the situation that 𝜇 is the inside of the unit
circle 𝑆

1, we break the restriction of the Diophantine condi-
tion and study the situations that the constant 𝜇 in (5) (or
𝜇 = 𝑏
−𝜆, 𝑏 is a complex constant, and 𝜆 is in (4)) is resonance

and a root of unity in the complex plane C near resonance
under the Brjuno condition.

2. Discussion on Auxiliary Equations

In this section we assume that both 𝐹 and 𝐺 are analytic
functions in a neighborhood of the origin, that is, 0 is a
regular point, and have power series expansions

𝐹 (𝑧) =

∞

∑

𝑛=0

𝑎
𝑛
𝑧
𝑛
, 𝐺 (𝑧) =

∞

∑

𝑛=0

𝑑
𝑛
𝑧
𝑛
,

𝑎
0

̸= 0, 𝑑
0

̸= 0, 𝑧 ∈ C.

(3)
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If there exists a complex constant 𝜆 and an invertible
function 𝜓(𝑧) such that 𝜓(𝜓

−1
(𝑧) + 𝜆) is well defined, then

letting 𝑥(𝑧) = 𝜓(𝜓
−1

(𝑧) + 𝜆), we can formally transform (2)
into the differential-difference equation

𝛼𝜓 (𝑧) 𝜓
󸀠

(𝑧) + 𝛽𝜓
󸀠

(𝑧 + 𝜆) = 𝐹(

𝑚

∑

𝑙=0

𝑐
𝑙
𝜓 (𝑧 + 𝑙𝜆))𝜓

󸀠

(𝑧)

+ 𝐺 (𝜓 (𝑧)) 𝜓
󸀠

(𝑧) .

(4)

The indeterminate constant 𝜆 will be discussed in the follow-
ing cases:

(I1) R𝜆 > 0;
(I2) 𝜇 = 𝑏

−𝜆
= 𝑒
2𝜋𝑖𝜃, and 𝜃 ∈ R \ Q is a Brjuno number

[9, 10]; that is, 𝐵(𝜃) = ∑
∞

𝑘=0
(log(𝑞

𝑘+1
)/𝑞
𝑘
) < ∞, where

{𝑝
𝑘
/𝑞
𝑘
} denotes the sequence of partial fraction of the

continued fraction expansion of 𝜃, said to satisfy the
Brjuno condition;

(I3) 𝜇 = 𝑏
−𝜆

= 𝑒
2𝜋𝑖𝑞/𝑝 for some integers 𝑝 ∈ N with 𝑝 ≥ 2

and 𝑞 ∈ Z \ {0}, and 𝛼 ̸= 𝑒
2𝜋𝑖𝑙/𝑘 for all 1 ≤ 𝑘 ≤ 𝑝 − 1

and 𝑙 ∈ Z \ {0}.

Take notations 𝑆
𝑝

:= {𝑧 ∈ C : R𝑧 > − ln 𝜌/ ln |𝑏|, −∞ <

I𝑧 < +∞}.
A change of variable further transforms (4) into the func-

tional differential equation

𝛼𝜑 (𝑧) 𝜑
󸀠

(𝑧) + 𝛽𝜇𝜑
󸀠
(𝜇𝑧) = 𝐹(

𝑚

∑

𝑙=0

𝑐
𝑙
𝜑 (𝜇
𝑙
𝑧))𝜑

󸀠

(𝑧)

+ 𝐺 (𝜑 (𝑧)) 𝜑
󸀠

(𝑧) ,

(5)

where 𝜇 is a complex constant. The solution of this equation
has properties similar to those of (4). If (5) has an invertible
solution 𝜑(𝑧), which satisfies the initial value conditions

𝜑 (0) = 0, 𝜑
󸀠

(0) = 𝜏 ̸= 0, (6)

then we can show that 𝑥(𝑧) = 𝜑(𝜇𝜑
−1

(𝑧)) is an analytic solu-
tion of (2).

Theorem 1. Suppose that (I1) holds, then (5) has an analytic
solution of the form

𝜓 (𝑧) =

∞

∑

𝑛=1

𝑏
𝑛
𝑏
−𝑛𝑧

, (7)

in the half plane 𝑆
𝜌
for a certain constant 𝜌 > 0, which satisfies

limR𝑧→+∞𝜓(𝑧) = 0.

Proof. Since 𝐹 and 𝐺 are analytic in a neighborhood of the
origin and have the power series expansion (3), there exists a
positive 󰜚 such that

󵄨
󵄨
󵄨
󵄨
𝑎
𝑛

󵄨
󵄨
󵄨
󵄨
≤ 󰜚
𝑛−1

,
󵄨
󵄨
󵄨
󵄨
𝑑
𝑛

󵄨
󵄨
󵄨
󵄨
≤ 󰜚
𝑛−1

, 𝑛 = 2, 3, . . . . (8)

Without loss of generality, we can assume that 󰜚 = 1; that is,
|𝑎
𝑛
| ≤ 1, |𝑑

𝑛
| ≤ 1 for 𝑛 = 2, 3, . . .. In fact, let 𝐹(𝑧) = 󰜚𝐹(󰜚

−1
𝑧),

𝐺(𝑧) = 󰜚𝐺(󰜚
−1

𝑧), and put 𝑦 = 󰜚𝑧, ̃
𝛽 = 󰜚𝛽, 𝑢 = 󰜚𝜆, and

𝜓̃(𝑧) = 󰜚𝜓(󰜚
−1

𝑧). Then (4) can be rewritten as

𝛼𝜓̃ (𝑦) 𝜓̃
󸀠
(𝑦) +

̃
𝛽𝜓̃
󸀠
(𝑦 + 𝑢) = 𝐹(

𝑚

∑

𝑙=0

𝑐
𝑙
𝜓̃ (𝑦 + 𝑙𝑢)) 𝜓̃

󸀠
(𝑦)

+ 𝐺 (𝜓̃ (𝑦)) 𝜓̃
󸀠
(𝑦) ,

(9)

in the same form as (4) and |𝑎
𝑛
󰜚
1−𝑛

| ≤ 1, |𝑑
𝑛
󰜚
1−𝑛

| ≤ 1 for
𝑛 = 2, 3, . . . by (8).

Consider a solution 𝜓(𝑧) of (4) in the formal Dirichlet
series (7); that is, 𝜓(𝑧) = ∑

∞

𝑛=1
𝑏
𝑛
𝑏
−𝑛𝑧, where 𝑏 is a complex

constant and |𝑏| > 1. Substituting series (3) and (7) of 𝐹, 𝐺,
and 𝜓 in (4) and comparing coefficients we obtain that

[𝛽𝑏
−𝜆

− (𝑎
0
+ 𝑑
0
)] ln 𝑏 𝑏

1
= 0, (10)

[𝛽𝑏
−𝑛𝜆

− (𝑎
0
+ 𝑑
0
)] 𝑛𝑏
𝑛

= −𝛼

𝑛−1

∑

𝑖=1

𝑖𝑏
𝑖
𝑏
𝑛−𝑖

+

𝑛−1

∑

𝑖=1

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

𝑖 [𝑑
𝑡
+ 𝑎
𝑡

𝑡

∏

𝑘=1

(

𝑚

∑

𝑙=0

𝑐
𝑙
𝑏
𝑙
𝑘
𝑙𝜆
)]𝑏
𝑖
𝑏
𝑙
1

𝑏
𝑙
2

⋅ ⋅ ⋅ 𝑏
𝑙
𝑡

,

𝑛 ≥ 2.

(11)

If 𝑏
1
= 𝜏 = 0, then (4) has a trivial solution 𝜓(𝑧) = 0. Assume

that 𝑏
1
= 𝜏 ̸= 0, because |𝑏| > 1; from (10) we have 𝑎

0
+ 𝑑
0
=

𝛽𝑏
−𝜆. From (11) we obtain that

𝛽𝑏
−𝜆

(𝑏
−(𝑛−1)𝜆

− 1) 𝑛𝑏
𝑛

= −𝛼

𝑛−1

∑

𝑖=1

𝑖𝑏
𝑖
𝑏
𝑛−𝑖

+

𝑛−1

∑

𝑖=1

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

𝑖 [𝑑
𝑡
+ 𝑎
𝑡

𝑡

∏

𝑘=1

(

𝑚

∑

𝑙=0

𝑐
𝑙
𝑏
−𝑙
𝑘
𝑙𝜆
)]𝑏
𝑖
𝑏
𝑙
1

𝑏
𝑙
2

⋅ ⋅ ⋅ 𝑏
𝑙
𝑡

,

𝑛 ≥ 2.

(12)

The sequence {𝑏
𝑛
}
∞

𝑛=2
is successively determined by (12) in a

unique manner.
In what follows we need to prove that the series (7) is

convergent in a right-half plane. SinceR𝜆 > 0, so we have

lim
𝑛→∞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝛼𝑖

𝑛𝛽𝑏
−𝜆

(𝑏
−(𝑛−1)𝜆

− 1)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ lim
𝑛→∞

|𝛼|

󵄨
󵄨
󵄨
󵄨
𝛽𝑏
−𝜆

(𝑏
−(𝑛−1)𝜆

− 1)
󵄨
󵄨
󵄨
󵄨

=

|𝛼|

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑏
−𝜆󵄨󵄨

󵄨
󵄨

, R𝜆 > 0,
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lim
𝑛→∞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑖 [𝑑
𝑡
+ 𝑎
𝑡
∏
𝑡

𝑘=1
(∑
𝑚

𝑙=0
𝑐
𝑙
𝑏
−𝑙
𝑘
𝑙𝜆
)]

𝑛𝛽𝑏
−𝜆

(𝑏
−(𝑛−1)𝜆

− 1)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ lim
𝑛→∞

󵄨
󵄨
󵄨
󵄨
𝑑
𝑡

󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
𝑎
𝑡

󵄨
󵄨
󵄨
󵄨
∏
𝑡

𝑘=1
(∑
𝑚

𝑙=0

󵄨
󵄨
󵄨
󵄨
𝑐
𝑙

󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
𝛽𝑏
−𝜆

(𝑏
−(𝑛−1)𝜆

− 1)
󵄨
󵄨
󵄨
󵄨

≤

2

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑏
−𝜆󵄨󵄨

󵄨
󵄨

, R𝜆 > 0.

(13)

This implies that there exists a constant 𝑀 > 0 such that

lim
𝑛→∞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝛼𝑖

𝑛𝛽𝑏
−𝜆

(𝑏
−(𝑛−1)𝜆

− 1)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀,

lim
𝑛→∞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑖 [𝑑
𝑡
+ 𝑎
𝑡
∏
𝑡

𝑘=1
(∑
𝑚

𝑙=0
𝑐
𝑙
𝑏
𝑙
𝑘
𝑙𝜆
)]

𝑛𝛽𝑏
−𝜆

(𝑏
−(𝑛−1)𝜆

− 1)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀,

∀𝑛 ≥ 2, R𝜆 > 0.

(14)

Therefore, from (12) we obtain

󵄨
󵄨
󵄨
󵄨
𝑏
𝑛

󵄨
󵄨
󵄨
󵄨
≤ 𝑀(

𝑛−1

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑏
𝑖

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑏
𝑛−𝑖

󵄨
󵄨
󵄨
󵄨
+

𝑛−1

∑

𝑖=1

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

󵄨
󵄨
󵄨
󵄨
𝑏
𝑖

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
1

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
⋅ ⋅ ⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
) ,

𝑛 ≥ 2.

(15)

In order to construct a majorant series of (7), we consider the
implicit functional equation

𝐻(𝑧) = |𝜏| 𝑧 + 𝑀[𝐻
2

(𝑧) +

𝐻
2
(𝑧)

1 − 𝐻 (𝑧)

] . (16)

Define the function

𝜔 (𝑧,𝐻) := 𝜔 (𝑧,𝐻, 𝜏,𝑀) = 𝐻 − |𝜏| 𝑧 − 𝑀(𝐻
2
+

𝐻
2

1 − 𝐻

)

(17)

for (𝑧,𝐻) in a neighborhood of the origin. Then 𝜔(0, 0) = 0,
𝜔
󸀠

𝐻
(0, 0) = 1 ̸= 0. Thus, there exists a unique function 𝐻(𝑧)

analytic in a neighborhood of zero; that is, there is a constant
𝛿
1

> 0, as |𝑧| < 𝛿
1
, the function 𝐻(𝑧) is analytic, such that

𝐻(0) = 0,𝐻󸀠(0) = −𝜔
󸀠

𝑧
(0, 0)/𝜔

󸀠

𝐻
(0, 0) = |𝜏| and 𝜔(𝑧,𝐻(𝑧)) =

0. Since 𝐻(0) = 0, there is a constant 𝛿
2

> 0, such that
|𝐻(𝑧)| < 1 for |𝑧| < 𝛿

2
. Therefore, as |𝑧| < 𝛿 := min{𝛿

1
, 𝛿
2
},

the function 𝐻(𝑧) satisfies the equation

𝜔 (𝑧,𝐻 (𝑧)) = 𝐻 (𝑧) − |𝜏| 𝑧 − 𝑀[𝐻
2

(𝑧) +

𝐻
2
(𝑧)

1 − 𝐻 (𝑧)

] = 0.

(18)

Choosing 𝐵
1
= |𝜏| and putting

𝐻(𝑧) =

∞

∑

𝑛=1

𝐵
𝑛
𝑏
−𝑛𝑧 (19)

in (18), we can determine all coefficients recursively by 𝐵
1
=

|𝜏| and

𝐵
𝑛
= 𝑀(

𝑛−1

∑

𝑖=1

𝐵
𝑖
𝐵
𝑛−𝑖

+

𝑛−1

∑

𝑖=1

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

𝐵
𝑖
𝐵
𝑙
1

𝐵
𝑙
2

⋅ ⋅ ⋅ 𝐵
𝑙
𝑡

),

𝑛 ≥ 2.

(20)

Moreover, it is easy to see from (15)
󵄨
󵄨
󵄨
󵄨
𝑏
𝑛

󵄨
󵄨
󵄨
󵄨
≤ 𝐵
𝑛
, 𝑛 = 1, 2, . . . . (21)

It follows that the power series

𝜙 (𝑧) =

∞

∑

𝑛=1

𝑏
𝑛
𝑧
𝑛 (22)

is also convergent as |𝑧| < 𝛿. So there exists 𝜌 ≤ 𝛿 such that
Dirichlet series (7) is convergent in 𝑆

𝜌
.

Furthermore, one has

lim
R𝑧→+∞

𝑏
−𝑧

= lim
R𝑧→+∞

𝑏
−R𝑧

[(cos (I𝑧 ln 𝑏)) − 𝑖 sin (I𝑧 ln 𝑏)]

= 0.

(23)

Thus limR𝑧→+∞𝜓(𝑧) = limR𝑧→+∞∑
∞

𝑛=1
𝑏
𝑛
𝑏
−𝑛𝑧

= 0. The
proof is complete.

We observe that 𝜇 = 𝑏
−𝜆 is inside the unit circle of (I1) but

on the unit circle in the rest cases. Next we devote attention
to the existence of analytic solutions of (4) under the Brjuno
condition. To do this, we first recall briefly the definition of
Brjuno numbers and some basic facts. As stated in [11], for a
real number 𝜃, we let [𝜃] denote its integer part, and {𝜃} =

𝜃 − [𝜃] its fractional part. Then every irrational number 𝜃 has
a unique expression of the Gauss’ continued fraction

𝜃 = 𝑎
0
+ 𝜃
0
= 𝑎
0
+

1

𝑎
1
+ 𝜃
1

= ⋅ ⋅ ⋅ , (24)

denoted simply by 𝜃 = [𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
, . . .], where 𝑎

𝑗
’s and 𝜃

𝑗
’s

are calculated by the algorithm: (a) 𝑎
0

= [𝜃], 𝜃
0

= {𝜃} and
(b) 𝑎
𝑛

= [1/𝜃
𝑛−1

], 𝜃
𝑛

= {1/𝜃
𝑛−1

} for all 𝑛 ≥ 1. Define the
sequences (𝑝

𝑛
)
𝑛∈N and (𝑞

𝑛
)
𝑛∈N as follows:

𝑞
−2

= 1, 𝑞
−1

= 0, 𝑞
𝑛
= 𝑎
𝑛
𝑞
𝑛−1

+ 𝑞
𝑛−2

,

𝑝
−2

= 0, 𝑝
−1

= 1, 𝑝
𝑛
= 𝑎
𝑛
𝑝
𝑛−1

+ 𝑝
𝑛−2

.

(25)

It is easy to show that 𝑝
𝑛
/𝑞
𝑛
= [𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
]. Thus, for every

𝜃 ∈ R \Qwe associate, using its convergence, an arithmetical
function 𝐵(𝜃) = ∑

𝑛≥0
(log(𝑞

𝑛+1
)/𝑞
𝑛
). We say that 𝜃 is a Brjuno

number or that it satisfies Brjuno condition if𝐵(𝜃) < +∞.The
Brjuno condition is weaker than the Diophantine condition.
For example, if 𝑎

𝑛+1
≤ 𝑐𝑒
𝑎
𝑛 for all 𝑛 ≥ 0, where 𝑐 > 0 is
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a constant, then 𝜃 = [𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
, . . .] is a Brjuno number

but is not a Diophantine number. So, the case (I2) contains
both Diophantine condition and a part of 𝜇 = 𝑏

−𝜆 “near”
resonance. let

𝐴
𝑘
= {𝑛 ≥ 0 | ‖𝑛𝜃‖ ≤

1

8𝑞
𝑘

} , 𝐸
𝑘
= max (𝑞

𝑘
,

𝑞
𝑘+1

4

) ,

𝜂
𝑘
=

𝑞
𝑘

𝐸
𝑘

.

(26)

Let 𝐴∗
𝑘
be the set of integers 𝑗 ≥ 0 such that either 𝑗 ∈ 𝐴

𝑘
or

for some 𝑗
1
and 𝑗
2
in𝐴
𝑘
, with 𝑗

2
−𝑗
1
< 𝐸
𝑘
, one has 𝑗

1
< 𝑗 < 𝑗

2

and 𝑞
𝑘
divides 𝑗 − 𝑗

1
. For any integer 𝑛 ≥ 0, define

𝑙
𝑘
(𝑛) = max((1 + 𝜂

𝑘
)

𝑛

𝑞
𝑘

− 2, (𝑚
𝑛
𝜂
𝑘
+ 𝑛)

1

𝑞
𝑘

− 1) ,

(27)

where 𝑚
𝑛
= max{𝑗 | 0 ≤ 𝑗 ≤ 𝑛, 𝑗 ∈ 𝐴

∗

𝑘
}. We then define the

function ℎ
𝑘
: N → R

+
as follows:

ℎ
𝑘
(𝑛) =

{
{
{

{
{
{

{

𝑚
𝑛
+ 𝜂
𝑘
𝑛

𝑞
𝑘

− 1, if 𝑚
𝑛
+ 𝑞
𝑘
∈ 𝐴
∗

𝑘
,

𝑙
𝑘
(𝑛) , if 𝑚

𝑛
+ 𝑞
𝑘
∉ 𝐴
∗

𝑘
.

(28)

Let 𝑔
𝑘
(𝑛) := max(ℎ

𝑘
(𝑛), [𝑛/𝑞

𝑘
]), and define 𝑘(𝑛) by the

condition 𝑞
𝑘(𝑛)

≤ 𝑛 ≤ 𝑞
𝑘(𝑛)+1

. Clearly, 𝑘(𝑛) is nondecreasing.
Moreover, the function 𝑔

𝑘
is nonnegative.Then we are able to

state the following result.

Lemma 2 (Davie’s lemma [12]). Let 𝐾(𝑛) = 𝑛 log 2 +

∑
𝑘(𝑛)

𝑗=0
𝑔
𝑗
(𝑛) log(2𝑞

𝑗+1
). Then

(a) there is a universal constant 𝛾 > 0 (independent of 𝑛
and 𝜃) such that

𝐾 (𝑛) ≤ 𝑛(

𝑘(𝑛)

∑

𝑗=0

log 𝑞
𝑗+1

𝑞
𝑗

+ 𝛾) , (29)

(b) 𝐾(𝑛
1
) + 𝐾(𝑛

2
) ≤ 𝐾(𝑛

1
+ 𝑛
2
) for all 𝑛

1
and 𝑛
2
, and

(c) − log |𝑏
−𝜆𝑛

− 1| ≤ 𝐾(𝑛) − 𝐾(𝑛 − 1).

Now we state and prove the following theorem under
Brjuno condition.

Theorem 3. Suppose that (I2) holds. Then (4) has an analytic
solution 𝜓 of the form (7) in the half plane 𝑆

𝜌
= {𝑧 ∈ C : R𝑧 >

− ln 𝜌/ ln |𝑏|, −∞ < I𝑧 < +∞} for a certain constant 𝜌 > 0,
which satisfies limR𝑧→+∞𝜓(𝑧) = 0.

Proof. As in the proof of Theorem 1, we find a solution in
the form of the Dirichlet series (7). Using the same method
as above mentioned, for chosen 𝑏

1
= 𝜏 we can uniquely

determine the sequence {𝑏
𝑛
}
∞

𝑛=2
recursively by (12). In fact, in

view of (I2) we see that 𝜇 = 𝑏
−𝜆 satisfies the conditions of

Lemma 2, and from (12) we have

󵄨
󵄨
󵄨
󵄨
𝑏
𝑛

󵄨
󵄨
󵄨
󵄨
≤

𝑀
1

󵄨
󵄨
󵄨
󵄨
𝑏
−(𝑛−1)𝜆

− 1
󵄨
󵄨
󵄨
󵄨

(

𝑛−1

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑏
𝑖

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑏
𝑛−𝑖

󵄨
󵄨
󵄨
󵄨

+

𝑛−1

∑

𝑖=1

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

󵄨
󵄨
󵄨
󵄨
𝑏
𝑖

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
1

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
⋅ ⋅ ⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
) ,

𝑛 ≥ 2,

(30)

where 𝑀
1
= max{|𝛼|/|𝛽|, 2/|𝛽|} > 0.

To construct a governing series of (7), we consider the
implicit functional equation

𝜔 (𝑧, 𝑈, 𝜏,𝑀
1
) = 0, (31)

where𝜔 is defined in (17). Similarly to the proof ofTheorem 1,
using the implicit function theoremwe can prove that (31) has
a unique analytic solution 𝑈(𝑧, 𝜏,𝑀

1
) in a neighborhood of

the origin; that is, there is a constant 𝛿
3
> 0, as |𝑧| < 𝛿

3
, the

function𝑈(𝑧, 𝜏,𝑀
1
) is analytic such that𝑈(0, 𝜏,𝑀

1
) = 0 and

𝑈
󸀠

𝑧
(0, 𝜏,𝑀

1
) = |𝜏|. Thus 𝑈(𝑧, 𝜏,𝑀

1
) in (31) can be expanded

into a convergent series

𝑈 (𝑧, 𝜏,𝑀
1
) =

∞

∑

𝑛=1

𝐶
𝑛
𝑧
𝑛
, (32)

in a neighborhood of the origin. Replacing (32) into (31) and
comparing coefficients, we obtain that 𝐶

1
= |𝜏| and

𝐶
𝑛
= 𝑀
1
(

𝑛−1

∑

𝑖=1

𝐶
𝑖
𝐶
𝑛−𝑖

+

𝑛−1

∑

𝑖=1

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

𝐶
𝑖
𝐶
𝑙
1

𝐶
𝑙
2

⋅ ⋅ ⋅ 𝐶
𝑙
𝑡

),

𝑛 ≥ 2.

(33)

Note that the series (32) converges in a neighborhood of the
origin. So, there is a constant 𝑇 > 0 such that

𝐶
𝑛
< 𝑇
𝑛
, 𝑛 ≥ 1. (34)

Now, we can deduce, by induction, that |𝑏
𝑛
| ≤ 𝐶

𝑛
𝑒
𝐾(𝑛−1)

for 𝑛 ≥ 1, where 𝐾 : N → R is defined in Lemma 2. In
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fact |𝑏
1
| = |𝜏| = 𝐶

1
, for inductive proof, and we assume that

|𝑏
𝑗
| ≤ 𝐶
𝑗
𝑒
𝐾(𝑗−1), 𝑗 ≤ 𝑛. From (30) and Lemma 2 we obtain

󵄨
󵄨
󵄨
󵄨
𝑏
𝑛+1

󵄨
󵄨
󵄨
󵄨

≤

𝑀
1

󵄨
󵄨
󵄨
󵄨
𝑏
−𝑛𝜆

− 1
󵄨
󵄨
󵄨
󵄨

× (

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑏
𝑖

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑏
𝑛−𝑖+1

󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖+1

𝑡=1,2,...,𝑛−𝑖+1

󵄨
󵄨
󵄨
󵄨
𝑏
𝑖

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
1

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
⋅ ⋅ ⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
)

≤

𝑀
1

󵄨
󵄨
󵄨
󵄨
𝑏
−𝑛𝜆

− 1
󵄨
󵄨
󵄨
󵄨

[

𝑛

∑

𝑖=1

𝐶
𝑖
𝐶
𝑛−𝑖+1

𝑒
𝐾(𝑖−1)+𝐾(𝑛−𝑖)

+

𝑛

∑

𝑖=1

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖+1

𝑡=1,2,...,𝑛−𝑖+1

𝐶
𝑖
𝐶
𝑙
1

𝐶
𝑙
2

⋅ ⋅ ⋅ 𝐶
𝑙
𝑡

× 𝑒
𝐾(𝑖−1)+𝐾(𝑙

1
−1)+⋅⋅⋅+𝐾(𝑙

𝑡
−1)

] .

(35)

Note that

𝐾 (𝑖 − 1) + 𝐾 (𝑛 − 𝑖)

≤ 𝐾 (𝑛 − 1) ≤ 𝐾 (𝑛) + log 󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
−𝜆𝑛

− 1

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝐾 (𝑙
1
− 1) + 𝐾 (𝑙

2
− 1) + ⋅ ⋅ ⋅ + 𝐾 (𝑙

𝑡
− 1)

≤ 𝐾 (𝑛 − 𝑖 + 1 − 𝑡) ≤ 𝐾 (𝑛 − 𝑖) ,

𝐾 (𝑖 − 1) + 𝐾 (𝑛 − 𝑖)

≤ 𝐾 (𝑛 − 1) ≤ 𝐾 (𝑛) + log 󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
−𝜆𝑛

− 1

󵄨
󵄨
󵄨
󵄨
󵄨
,

(36)

then
󵄨
󵄨
󵄨
󵄨
𝑏
𝑛+1

󵄨
󵄨
󵄨
󵄨

≤

𝑒
𝐾(𝑛−1)

𝑀
1

󵄨
󵄨
󵄨
󵄨
𝑏
−𝑛𝜆

− 1
󵄨
󵄨
󵄨
󵄨

× (

𝑛

∑

𝑖=1

𝐶
𝑖
𝐶
𝑛−𝑖+1

+

𝑛

∑

𝑖=1

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖+1

𝑡=1,2,...,𝑛−𝑖+1

𝐶
𝑖
𝐶
𝑙
1

𝐶
𝑙
2

⋅ ⋅ ⋅ 𝐶
𝑙
𝑡

)

≤ 𝐶
𝑛+1

𝑒
𝐾(𝑛)

(37)

as desired. Moreover, from Lemma 2, we know that 𝐾(𝑛) ≤

𝑛(𝐵(𝜃) + 𝛾) for some universal constant 𝛾 > 0. Then from
(34) we have |𝑏

𝑛
| ≤ 𝐶

𝑛
𝑒
𝐾(𝑛−1)

≤ 𝑇
𝑛
𝑒
(𝑛−1)(𝐵(𝜃)+𝛾); that is,

lim
𝑛→∞

sup(|𝑏
𝑛
|
1/𝑛

) ≤ lim
𝑛→∞

sup(𝑇𝑒
((𝑛−1)/𝑛)(𝐵(𝜃)+𝛾)

) =

𝑇𝑒
𝐵(𝜃)+𝛾, which shows that the series (7) converges for |𝑧| <

𝜌 = min{𝛿
3
, (𝑇𝑒
𝐵(𝜃)+𝛾

)
−1

}. So does series (22) in 𝑆
𝜌
. Similarly

limR𝑧→+∞𝜓(𝑧) = 0, as proved inTheorem 1.
The next theorem is devoted to the case of (I3), where 𝑏

−𝜆

is not only on the unit circle in C but also a root of unity. In
this case theDiophantine condition and Brjuno condition are
not satisfied. The idea of our proof is acquired from [13]. Let
{𝐴
𝑛
}
∞

𝑛=1
be a sequence defined by 𝐴

1
= 𝜏 and

𝐴
𝑛
= 𝜉𝑀
1
(

𝑛−1

∑

𝑖=1

𝐴
𝑖
𝐴
𝑛−𝑖

+

𝑛−1

∑

𝑖=1

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

𝐴
𝑖
𝐴
𝑙
1

𝐴
𝑙
2

⋅ ⋅ ⋅ 𝐴
𝑙
𝑡

),

𝑛 ≥ 2,

(38)

where 𝜉 = max{1, |𝛼𝑖 − 1|
−1

, 𝑖 = 1, 2 . . . , 𝑝 − 1} and 𝑀
1
is

defined inTheorem 3.

Theorem 4. Suppose that (I3) holds and 𝑝 is given as above
mentioned. Let {𝑏

𝑛
}
∞

𝑛=1
be determined recursively by 𝑏

1
= 𝜏 and

𝛽𝑏
−𝜆

(𝑏
−(𝑛−1)𝜆

− 1) 𝑛𝑏
𝑛
= Ω (𝑛, 𝜆) , 𝑛 = 2, 3, . . . , (39)

where

Ω (𝑛, 𝜆)

= −𝛼

𝑛−1

∑

𝑖=1

𝑖𝑏
𝑖
𝑏
𝑛−𝑖

+

𝑛−1

∑

𝑖=1

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

𝑖 [𝑑
𝑡
+ 𝑎
𝑡

𝑡

∏

𝑘=1

(

𝑚

∑

𝑙=0

𝑐
𝑙
𝑏
−𝑙
𝑘
𝑙𝜆
)]𝑏
𝑖
𝑏
𝑙
1

𝑏
𝑙
2

⋅ ⋅ ⋅ 𝑏
𝑙
𝑡

.

(40)

IfΩ(]𝑝 + 1, 𝜆) = 0 for all ] = 1, 2, . . ., then (4) has an analytic
solution 𝜓(𝑧) = 𝜙(𝑏

−𝑧
) in the half plane 𝑆

𝜌
:= {𝑧 ∈ C : R𝑧 >

− ln 𝜌/ ln |𝑏|, −∞ < I𝑧 < +∞} for a certain 𝜌 > 0, where 𝜙 is
an analytic function of the form (22) in 𝑈

𝜌
(0) = {𝑧 | |𝑧| < 𝜌}

such that 𝜙(0) = 0, and 𝜙
(]𝑝+1)

(0) = (]𝑝 + 1)!𝜏]𝑝+1, for all ] =

0, 1, 2, . . ., where 𝜏
󸀠

]𝑝+1𝑠 are arbitrary constants satisfying the
inequality |𝜏]𝑝+1| ≤ 𝐴]𝑝+1 and the sequence {𝐴

𝑛
}
∞

𝑛=1
is defined

in (38). The other derivatives at 0 satisfy that 𝜙(𝑖)(0) = 𝑖!𝑏
𝑖
for

𝑖 ̸= ]𝑝 + 1. Otherwise, if Ω(]𝑝 + 1, 𝜆) ̸= 0 for some ] = 1, 2, . . .,
then (4) has no analytic solutions in the half plane 𝑆

𝜌
:= {𝑧 ∈

C : R𝑧 > − ln 𝜌/ ln |𝑏|, −∞ < I𝑧 < +∞} for any 𝜌 > 0.

Proof. Analogously to the proof of Theorem 1, we seek for a
solution of (4) in Dirichlet (7). Without loss of generality, as
in the proof of Theorem 1 we still assume that 𝜌 = 1 in (8).
Taking (3) and (7) in (4) and defining 𝑏

1
= 𝜏 ̸= 0, we obtain

(12) or (39). If Ω(]𝑝 + 1, 𝜆) = 0 for all natural numbers ],
then for each ], 𝑏−]𝑝𝜆 − 1 = 0, the corresponding 𝑏]𝑝+1 has
infinitelymany choices inC; that is, the formal series solution



6 Journal of Applied Mathematics

(7) or (22) defines a family of solutions with infinitely many
parameters. Choose 𝑏]𝑝+1 = 𝜏]𝑝+1 arbitrarily such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝜏]𝑝+1

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐴]𝑝+1, ] = 0, 1, 2, . . . , (41)

where𝐴]𝑝+1 is defined by (38). In what follows, we prove that
the formal series solution (7) converges in a neighborhood of
the origin. Observe that |𝑏−𝑛𝜆 − 1|

−1
≤ 𝜉 for 𝑛 ̸= ]𝑝. It follows

from (12) or (39) that

󵄨
󵄨
󵄨
󵄨
𝑏
𝑛

󵄨
󵄨
󵄨
󵄨
≤ 𝜉𝑀
1
(

𝑛−1

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑏
𝑖

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑏
𝑛−𝑖

󵄨
󵄨
󵄨
󵄨

+

𝑛−1

∑

𝑖=1

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

󵄨
󵄨
󵄨
󵄨
𝑏
𝑖

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
1

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
⋅ ⋅ ⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
)

(42)

for all 𝑛 ̸= ]𝑝 + 1, ] = 0, 1, 2, . . ., where 𝑀
1
is defined in

Theorem 3. Let

𝑉 (𝑧, 𝜏, 𝜉𝑀
1
) =

∞

∑

𝑛=1

𝐴
𝑛
𝑧
𝑛
, 𝐴
1
= |𝜏| . (43)

It is easy to check that there exists a constant𝜌 > 0, for |𝑧| < 𝜌,
and (43) satisfies the implicit functional equation

𝜔 (𝑧, 𝑉, 𝜏, 𝜉𝑀
1
) = 0, (44)

where 𝜔 is defined in (17). Moreover, similarly to the proof
of Theorem 1, we can prove that (44) has a unique analytic
solution 𝑉(𝑍, 𝜏, 𝜉𝑀

1
) in a neighborhood of the origin such

that 𝑉(0, 𝜏, 𝜉𝑀
1
) = 0 and 𝑉

󸀠

𝑧
(0, 𝜏, 𝜉𝑀

1
) = |𝜏| ̸= 0. Thus (43)

converges in a neighborhoodof the origin.Moreover, it is easy
to show that, by induction,

󵄨
󵄨
󵄨
󵄨
𝑏
𝑛

󵄨
󵄨
󵄨
󵄨
≤ 𝐴
𝑛
, 𝑛 = 1, 2, . . . . (45)

By inequality (45) we see that the series (22) converges in
𝑈
𝜌
(0) = {𝑧 | |𝑧| < 𝜌}. Thus series (7) converges in 𝑆

𝜌
. This

completes the proof.

The following theorem shows that each analytic solution
of (4) leads to an analytic solution of (5). We shall discuss (5)
in the following cases:

(H1) 0 < |𝜇| ̸= 1;
(H2) 𝜇 = 𝑒

2𝜋𝑖𝜃, where 𝜃 ∈ R\Q is a Brjuno number, 𝐵(𝜃) =

∑
∞

𝑘=0
(log(𝑞

𝑘+1
)/𝑞
𝑘
) < ∞, where {𝑝

𝑘
/𝑞
𝑘
} denotes the

sequence of partial fraction of the continued fraction
expansion of 𝜃, said to satisfy the Brjuno condition;

(H3) 𝜇 = 𝑒
2𝜋𝑖𝑞/𝑝 for some integers 𝑝 ∈ N with 𝑝 ≥ 2 and

𝑞 ∈ Z \ {0}, and 𝜇 ̸= 𝑒
2𝜏𝑖𝑙/𝑘 for all 1 ≤ 𝑘 ≤ 𝑝 − 1 and

𝑙 ∈ Z \ {0}.

Theorem 5. Suppose that (H1) holds and that 𝑎
0

̸= 0, 𝑑
0

̸= 0.
Then in a neighborhood of the origin (5) has an analytic
solution 𝜑 satisfying 𝜑(0) = 0, 𝜑󸀠(0) = 𝜂.

Proof. Let

𝜑 (𝑧) =

∞

∑

𝑛=1

𝑏
𝑛
𝑧
𝑛
, 𝑏
1
= 𝜂 (46)

be the formal series of the solution 𝜑 for (5). We are going
to determine {𝑏

𝑛
}
∞

𝑛=1
. Substituting (3) and (46) into (5) and

comparing coefficients, we obtain

[𝛽𝜇 − (𝑎
0
+ 𝑑
0
)] 𝑏
1
= 0, (47)

(𝑛 + 1) [𝛽𝜇
𝑛+1

− (𝑎
0
+ 𝑑
0
)] 𝑏
𝑛+1

= −𝛼

𝑛−1

∑

𝑖=0

(𝑖 + 1) 𝑏
𝑖+1

𝑏
𝑛−𝑖

+

𝑛−1

∑

𝑖=0

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

(𝑖 + 1) [𝑑
𝑡
+ 𝑎
𝑡

𝑡

∏

𝑘=1

(

𝑚

∑

𝑙=0

𝑐
𝑙
𝜇
𝑙𝑙
𝑘
)]

× 𝑏
𝑖+1

𝑏
𝑙
1

𝑏
𝑙
2

⋅ ⋅ ⋅ 𝑏
𝑙
𝑡

, 𝑛 ≥ 1.

(48)

If 𝑏
1
= 𝜂 = 0, then (5) has a trivial solution 𝜑(𝑧) = 0. Assume

that 𝑏
1
= 𝜂 ̸= 0; from (47) we can choose 𝛽𝜇 = 𝑎

0
+ 𝑑
0
, then

(48) can be changed into

(𝑛 + 1) 𝛽𝜇 (𝜇
𝑛
− 1) 𝑏
𝑛+1

= −𝛼

𝑛−1

∑

𝑖=0

(𝑖 + 1) 𝑏
𝑖+1

𝑏
𝑛−𝑖

+

𝑛−1

∑

𝑖=0

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

(𝑖 + 1) [𝑑
𝑡
+ 𝑎
𝑡

𝑡

∏

𝑘=1

(

𝑚

∑

𝑙=0

𝑐
𝑙
𝜇
𝑙𝑙
𝑘
)]

× 𝑏
𝑖+1

𝑏
𝑙
1

𝑏
𝑙
2

⋅ ⋅ ⋅ 𝑏
𝑙
𝑡

, 𝑛 ≥ 1.

(49)

From (49) the sequence {𝑏
𝑛
}
∞

𝑛=2
is determined uniquely in the

recursive way.
Now we show the convergence of series (46) near zero.

Since the power series in (3) are both convergent for |𝑧| < 𝜎,
for any fixed 𝑟 ∈ (0, 𝜎) there exists a constant 𝑀

2
> 0 such

that

󵄨
󵄨
󵄨
󵄨
𝑎
𝑛

󵄨
󵄨
󵄨
󵄨
≤

𝑀
2

𝑟
𝑛

,
󵄨
󵄨
󵄨
󵄨
𝑑
𝑛

󵄨
󵄨
󵄨
󵄨
≤

𝑀
2

𝑟
𝑛

. (50)

Note that since 1 ≤ 𝑖 ≤ 𝑛 − 1, then there exists some positive
number 𝑀

3
as follows:

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑖 + 1)∏
𝑡

𝑘=1
(∑
𝑚

𝑙=0
𝑐
𝑙
𝜇
𝑙𝑙
𝑘
)

(𝑛 + 1) 𝛽𝜇 (𝜇
𝑛
− 1)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝜇
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝜇
𝑛
− 1

󵄨
󵄨
󵄨
󵄨

≤ 𝑀
3
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑖 + 1

(𝑛 + 1) 𝛽𝜇 (𝜇
𝑛
− 1)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝜇
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝜇
𝑛
− 1

󵄨
󵄨
󵄨
󵄨

≤ 𝑀
3
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝛼 (𝑖 + 1)

(𝑛 + 1) 𝛽𝜇 (𝜇
𝑛
− 1)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

|𝛼|

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝜇
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝜇
𝑛
− 1

󵄨
󵄨
󵄨
󵄨

≤ 𝑀
3
,

(51)
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then we have
󵄨
󵄨
󵄨
󵄨
𝑏
𝑛+1

󵄨
󵄨
󵄨
󵄨

≤ 𝐿(

𝑛−1

∑

𝑖=0

󵄨
󵄨
󵄨
󵄨
𝑏
𝑖+1

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑏
𝑛−𝑖

󵄨
󵄨
󵄨
󵄨

+

𝑛−1

∑

𝑖=0

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

1

𝑟
𝑡

󵄨
󵄨
󵄨
󵄨
𝑏
𝑖+1

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
1

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
⋅ ⋅ ⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑙
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
) ,

𝑛 ≥ 1,

(52)

where 𝐿 := max{2𝑀
2
𝑀
3
,𝑀
3
} > 0. Let

Θ (𝑧,𝑊) = 𝑊 −
󵄨
󵄨
󵄨
󵄨
𝜂
󵄨
󵄨
󵄨
󵄨
𝑧 − 𝐿(

𝑊
2
/𝑟

1 − (𝑊/𝑟)

+ 𝑊
2
) (53)

for (𝑧,𝑊) from a neighborhood of the origin. SinceΘ(0, 0) =

0, Θ
󸀠

𝑊
(0, 0) = 1 ̸= 0, there exists a unique function 𝑊(𝑧),

analytic in a neighborhood of the origin, such that𝑊(0) = 0,
𝑊
󸀠
(0) = |𝜂| ̸= 0, and Θ(𝑧,𝑊(𝑧)) = 0. Then define a sequence

{𝐷
𝑛
}
∞

𝑛=1
by 𝐷
1
= |𝜂| ̸= 0 and

𝐷
𝑛+1

= 𝐿(

𝑛−1

∑

𝑖=0

𝐷
𝑖+1

𝐷
𝑛−𝑖

+

𝑛−1

∑

𝑖=0

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

1

𝑟
𝑡
𝐷
𝑖+1

𝐷
𝑙
1

𝐷
𝑙
2

⋅ ⋅ ⋅ 𝐷
𝑙
𝑡

),

𝑛 ≥ 1.

(54)

By (52) we see that

󵄨
󵄨
󵄨
󵄨
𝑏
𝑛

󵄨
󵄨
󵄨
󵄨
≤ 𝐷
𝑛
, 𝑛 ≥ 1. (55)

Let

𝑃 (𝑧) =

∞

∑

𝑛=1

𝐷
𝑛
𝑧
𝑛
, 𝐷
1
=

󵄨
󵄨
󵄨
󵄨
𝜂
󵄨
󵄨
󵄨
󵄨
, (56)

with the recursive law of {𝐷
𝑛
}
∞

𝑛=1
. Then

𝑃
2

(𝑧)

= (

∞

∑

𝑛=0

𝐷
𝑛+1

𝑧
𝑛+1

)(

∞

∑

𝑛=1

𝐷
𝑛
𝑧
𝑛
)

=

∞

∑

𝑛=1

𝑛−1

∑

𝑖=0

𝐷
𝑖+1

𝐷
𝑛−𝑖

𝑧
𝑛+1

,

𝑃
2
(𝑧) /𝑟

1 − (𝑃 (𝑧) /𝑟)

= 𝑃 (𝑧)

𝑃 (𝑧) /𝑟

1 − (𝑃 (𝑧) /𝑟)

= (

∞

∑

𝑛=0

𝐷
𝑛+1

𝑧
𝑛+1

)(

∞

∑

𝑛=1

(

𝑃 (𝑧)

𝑟

)

𝑛

)

= (

∞

∑

𝑛=0

𝐷
𝑛+1

𝑧
𝑛+1

)(

∞

∑

𝑛=1

1

𝑟
𝑛
(

∞

∑

𝑛=1

𝐷
𝑛
𝑧
𝑛
)

𝑛

)

= (

∞

∑

𝑛=0

𝐷
𝑛+1

𝑧
𝑛+1

)(

∞

∑

𝑛=1

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛

𝑡=1,2,...,𝑛

1

𝑟
𝑡
𝐷
𝑙
1

𝐷
𝑙
2

⋅ ⋅ ⋅ 𝐷
𝑙
𝑡

𝑧
𝑛
)

=

∞

∑

𝑛=1

𝑛−1

∑

𝑖=0

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

1

𝑟
𝑡
𝐷
𝑖+1

𝐷
𝑙
1

𝐷
𝑙
2

⋅ ⋅ ⋅ 𝐷
𝑙
𝑡

𝑧
𝑛+1

.

(57)

Then we have

𝑃
2
(𝑧) /𝑟

1 − (𝑃 (𝑧) /𝑟)

+ 𝑝
2

(𝑧) =

1

𝐿

∞

∑

𝑛=1

𝐷
𝑛+1

𝑧
𝑛+1

=

1

𝐿

(𝑃 (𝑧) −
󵄨
󵄨
󵄨
󵄨
𝜂
󵄨
󵄨
󵄨
󵄨
𝑧) ,

(58)

that is

𝑃 (𝑧) −
󵄨
󵄨
󵄨
󵄨
𝜂
󵄨
󵄨
󵄨
󵄨
𝑧 − 𝐿 [

𝑃
2
(𝑧) /𝑟

1 − (𝑃 (𝑧) /𝑟)

+ 𝑝
2

(𝑧)] = 0. (59)

This shows that 𝑃(0) = 0, 𝑃
󸀠
(0) = |𝜂|, and Θ(𝑧, 𝑃(𝑧)) = 0.

So we have 𝑃(𝑧) = 𝑊(𝑧). It follows that the power series
(56) converges in a neighborhood of the origin. Therefore,
from (55) we see that (46) converges in a neighborhood of
the origin. The proof is complete.

In the case (H2) we obtain similarly an analogue to
Theorem 3.

Theorem 6. Suppose that (H2) holds and that 𝑎
0

̸= 0, 𝑑
0

̸= 0.
Then in a neighborhood of the origin (5) has an analytic
solution 𝜑(𝑧) satisfying 𝜑(0) = 0, 𝜑

󸀠
(0) = 𝜂 ̸= 0.

In the case (H3) we also obtain similarly an analogue to
Theorem 4.

Theorem 7. Suppose that (H3) holds, 𝑎
0

̸= 0, 𝑑
0

̸= 0, and 𝑝 is
given as abovementioned. Let {𝑏

𝑛
}
∞

𝑛=1
be determined recursively

by 𝑏
1
= 𝜂 and

(𝑛 + 1) 𝛽𝜇 (𝜇
𝑛
− 1) 𝑏
𝑛+1

= Ξ (𝑛 + 1, 𝜇) , (60)
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where

Ξ (𝑛 + 1, 𝜇)

= −𝛼

𝑛−1

∑

𝑖=0

(𝑖 + 1) 𝑏
𝑖+1

𝑏
𝑛−𝑖

+

𝑛−1

∑

𝑖=0

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

(𝑖 + 1) [𝑑
𝑡
+ 𝑎
𝑡

𝑡

∏

𝑘=1

(

𝑚

∑

𝑙=0

𝑐
𝑙
𝜇
𝑙𝑙
𝑘
)]

× 𝑏
𝑖+1

𝑏
𝑙
1

𝑏
𝑙
2

⋅ ⋅ ⋅ 𝑏
𝑙
𝑡

, 𝑛 ≥ 1.

(61)

If Ξ(𝑙𝑝 + 1, 𝜇) = 0 for all 𝑙 = 1, 2, . . ., then (5) has an analytic
solution in a neighborhood of the origin such that 𝜑(0) = 0,
𝜑
󸀠
(0) = 𝜂 ̸= 0, and 𝜑

(𝑙𝑝+1)
(0) = (𝑙𝑝 + 1)!𝜂

𝑙𝑝+1
, where 𝜂

󸀠

𝑙𝑝+1
𝑠 are

arbitrary constants satisfying the inequality |𝜂
𝑙𝑝+1

| ≤ 𝑑
𝑙𝑝+1

, 𝑙 =
1, 2, . . . and the sequence {𝑑

𝑛
}
∞

𝑛=1
is defined as follows: 𝑑

1
= |𝜂|

and

𝑑
𝑛+1

= Γ𝐿
1
(

𝑛−1

∑

𝑖=0

𝑑
𝑖+1

𝑑
𝑛−𝑖

+

𝑛−1

∑

𝑖=0

∑

𝑙
1
+𝑙
2
+⋅⋅⋅+𝑙
𝑡
=𝑛−𝑖

𝑡=1,2,...,𝑛−𝑖

1

𝑟
𝑡
𝑑
𝑖+1

𝑑
𝑙
1

𝑑
𝑙
2

⋅ ⋅ ⋅ 𝑑
𝑙
𝑡

),

𝑛 ≥ 1,

(62)

where Γ = max{1, |𝜇𝑖 − 1|
−1

, 𝑖 = 1, 2 . . . , 𝑝 − 1}, and 𝐿
1

=

max{2/|𝛽|, |𝛼|/|𝛽|}. Otherwise, if Ξ(𝑙𝑝 + 1, 𝜇) ̸= 0 for some 𝑙 =

1, 2, . . ., then (5) has no analytic solutions in any neighborhood
of the origin.

3. Analytic Solutions of the Original (2)
Having known analytic solutions of the auxiliary equation (4)
and (5), we can give results to the original (2).

Theorem 8. Suppose that the conditions of Theorems 1, 3,
or 4 are satisfied. Then (2) has an analytic solution 𝑥(𝑧) =

𝜓(𝜓
−1

(𝑧)+𝜆) in a neighborhood of the origin, where𝜓(𝑧) is an
analytic solution of (4) in the half plane 𝑆

𝜌
.

Proof. In view ofTheorems 1, 3, or 4, we may find a sequence
{𝑏
𝑛
}
∞

𝑛=1
such that the function 𝜓(𝑧) of the form (7) is an

analytic solution of (4) in the half plane 𝑆
𝜌
. As inTheorem 1,

𝜓(𝑧) = 𝜙(𝑏
−𝑧

). Since 𝜙
󸀠
(0) ̸= 0, the function 𝜙

−1 is analytic
in a neighborhood of the point 𝜙(0) = 0. Thus 𝜓

−1
(𝑧) =

− ln𝜙
−1

(𝑧)/ ln 𝑏 is analytic in a neighborhood of the origin.
Define 𝑥(𝑧) = 𝜓(𝜓

−1
(𝑧) + 𝜆) which is analytic clearly. Note

that

𝑥
󸀠

(𝑧) =

𝜓
󸀠
(𝜓
−1

(𝑧) + 𝜆)

𝜓
󸀠
(𝜓
−1

(𝑧))

, 𝑥
𝑘

(𝑧) = 𝜓 (𝜓
−1

(𝑧) + 𝑘𝜆) ,

(63)

then from (4)

𝛼𝑧 + 𝛽𝑥
󸀠

(𝑧) = 𝛼𝑧 +

𝛽𝜓
󸀠
(𝜓
−1

(𝑧) + 𝜆)

𝜓
󸀠
(𝜓
−1

(𝑧))

= 𝐹(

𝑚

∑

𝑙=0

𝑐
𝑙
𝜓 (𝜓
−1

(𝑧) + 𝑙𝜆)) + 𝐺 (𝜓 (𝜓
−1

(𝑧)))

= 𝐹(

𝑚

∑

𝑙=0

𝑐
𝑙
𝑥
𝑙

(𝑧)) + 𝐺 (𝑧) .

(64)

This shows that 𝑥(𝑧) = 𝜓(𝜓
−1

(𝑧) + 𝜆) satisfies (2). The proof
is complete.

Under the hypothesis ofTheorem 1 the origin 0 is a hyper-
bolic fixed point of 𝑥, but under hypotheses of Theorems
3 and 4 it is not. Actually, when the constant 𝜇 = 𝑏

−𝜆

satisfies the Brjuno condition, the norm of the eigenvalue of
the linearized of 𝑥 at 0 equals 1, but the eigenvalue is not a
root of unity. Under (I3), the fixed point 0 of 𝑥 is a resonance.

When 0 < |𝑏| < 1, the same method is applicable and a
similarly result can be obtained; that is, there exists a constant
𝜌 > 0 such that (4) has an analytic solution in the left-half
plane {𝑧 ∈ C | R𝑧 < − ln 𝜌/ ln |𝑏|, −∞ < I𝑧 < +∞}.

Theorem 9. Under one of the conditions in Theorems 5, 6, or
7, (2) has an analytic solution of the form 𝑥(𝑧) = 𝜑(𝜇𝜑

−1
(𝑧)) in

a neighborhood of the origin, where 𝜑(𝑧) is an analytic solution
of (5) in a neighborhood of the origin.

Proof. In Theorems 5–7 we have found a solution 𝜑(𝑧) of (5)
in the form (46), which is analytic near 0. Since 𝜑(0) = 0,
𝜑
󸀠
(0) = 𝜂 ̸= 0, the function 𝜑

−1 is also analytic near 0. Thus
𝑥(𝑧) = 𝜑(𝜇𝜑

−1
(𝑧)) is analytic. Moreover,

𝑥
󸀠

(𝑧) =

𝜇𝜑
󸀠
(𝜇𝜑
−1

(𝑧))

𝜑
󸀠
(𝜑
−1

(𝑧))

, 𝑥
𝑙

(𝑧) = 𝜑 (𝜇
𝑙
𝜑
−1

(𝑧)) , (65)

so from (5) we have

𝛼𝑧 + 𝛽𝑥
󸀠

(𝑧) = 𝛼𝑧 +

𝛽𝜇𝜑
󸀠
(𝜇𝜑
−1

(𝑧))

𝜑
󸀠
(𝜑
−1

(𝑧))

= 𝐹(

𝑚

∑

𝑙=0

𝑐
𝑙
𝜑 (𝜇
𝑙
𝜑
−1

(𝑧))) + 𝐺 (𝜑 (𝜑
−1

(𝑧)))

= 𝐹(

𝑚

∑

𝑙=0

𝑐
𝑙
𝑥
𝑙

(𝑧)) + 𝐺 (𝑧) .

(66)

Therefore, 𝑥(𝑧) = 𝜑(𝜇𝜑
−1

(𝑧)) satisfies (2). The proof is
complete.
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4. Example

Example 1. Consider the equation

𝑧 + 𝑥
󸀠

(𝑧) = 4𝑒
(1/2)𝑥(𝑥(𝑧))

− 𝑒
𝑧
−

17

6

. (67)

It is in the form of (2), where 𝛼 = 𝛽 = 1, 𝑐
0
= 𝑐
1
= 0, 𝑐
2
= 1/2,

𝑚 = 2, 𝐹(𝑧) = 4𝑒
𝑧
− (13/3) = ∑

∞

𝑛=1
(4𝑧
𝑛
/𝑛!) − (1/3), and

𝐺(𝑧) = (3/2)−𝑒
𝑧
= −∑

∞

𝑛=1
(𝑧
𝑛
/𝑛!)+(1/2). Clearly both𝐺 and

𝐹 are analytic near 0, 𝑎
0
= 𝐹(0) = −1/3,𝑑

0
= 𝐺(0) = 1/2, 𝑎

1
=

𝐹
󸀠
(0) = 4, and 𝑑

1
= 𝐺
󸀠
(0) = −1. For arbitrary |𝑏| > 1, let 𝜆 =

ln 6/ ln |𝑏|, the 0 < |𝑏
−𝜆

| < 1. ByTheorem 1, there is a constant
𝜌 > 0 such that the corresponding auxiliary equation

𝜓 (𝑧) 𝜓
󸀠

(𝑧) + 𝜓
󸀠

(𝑧 + 𝜆)

= 𝐹(

1

2

𝜓 (𝑧 + 2𝜆))𝜓
󸀠

(𝑧) + 𝐺 (𝜓 (𝑧)) 𝜓
󸀠

(𝑧) ,

(68)

and (67) itself have an analytic solution in the half plane 𝑆
𝜌
=

{𝑧 | R𝑧 > −(ln 𝜌/ ln 𝑏), −∞ < I𝑧 < +∞}. In the routine in
the proofs of our theorems we can calculate the solutions

𝑥 (𝑧) =

1

6

𝑧 −

35

36

𝑧
2
−

551

1944

𝑧
3
+ ⋅ ⋅ ⋅ . (69)

Example 2. Consider the equation

𝑧 − 𝑥
󸀠

(𝑧) =

1

2

𝑥 (𝑧) −

1

4

𝑥 (𝑥 (𝑧)) + 𝑒
𝑧
−

1

4

. (70)

It is in the form of (2), where 𝛼 = 1, 𝛽 = −1, 𝑐
0
= 0, 𝑐
1
= −1/2,

𝑐
2

= 1/4, 𝑚 = 2, 𝑎
0

= 1/2, 𝑎
1

= −1, 𝑎
𝑛

= 0 (𝑛 ≥ 2),
𝑑
0
= 1/4, 𝑑

1
= 1, 𝐹(𝑧) = −𝑧 + (1/2), and 𝐺(𝑧) = 𝑒

𝑧
− (3/4) =

∑
∞

𝑛=1
(𝑧
𝑛
/𝑛!) + (1/4). Clearly, ∑2

𝑙=0
|𝑐
𝑙
| < 1 and 𝜇 = (1/𝛽)(𝑎

0
+

𝑑
0
) = −3/4 such that 0 < |𝜇| < 1. By Theorem 5 the

corresponding auxiliary equation

𝜑 (𝑧) 𝜑
󸀠

(𝑧) − 𝜇𝜑
󸀠
(𝜇𝑧) = (

1

2

𝜑 (𝜇𝑧) −

1

4

𝜑 (𝜇
2
𝑧)) 𝜑

󸀠

(𝑧)

+ (𝑒
𝜑(𝑧)

−

1

4

)𝜑
󸀠

(𝑧)

(71)

and (70) itself have an analytic solution each in a neighbor-
hood of the origin. Proofs of our theorems provide a method
to calculate the solution

𝑥 (𝑧) = 𝜇𝑧 +

1

8

𝜇 (𝜇 − 2) 𝑧
2

+

1

3!

[

1

16

𝜇 (𝜇 − 1) (𝜇 − 2) (𝜇 + 2) − 1] 𝑧
3
+ ⋅ ⋅ ⋅ .

(72)
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