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Several authors have introduced various conditions which can be used in order to prove common fixed point results. However, it
became clear recently that some of these conditions, though formally distinct from each other, actually coincide in the case when
the given mappings have a unique point of coincidence. Hence, in fact, new common fixed point results cannot be obtained in this
way. We make a review of such connections and results in this paper.

1. Introduction

The simplest common fixed point results for mappings 𝐴, 𝑆 :
𝑋 → 𝑋 can be obtained if 𝐴 and 𝑆 commute (Jungck, [1]).
Obviously, this condition is too strong, and so it is natural
to seek for weaker assumptions. Hence, several authors
have introduced various other conditions (we will call them
compatible-type conditions) which can be used in order to
prove common fixed point results. Some of these conditions
were given in [2–19]. These (and other) conditions were used
in other papers cited in the references. A review of the
relationship between various compatible-type conditions
introduced until 2001 was given in [20].

However, it became clear recently that some of these
conditions, though formally distinct from each other, actually
coincide in the case when the given mappings have a unique
point of coincidence. Hence, in fact, new common fixed point
results cannot be obtained in this way. We make a review of
such connections and results in this paper.

2. Definitions and Relations between
Various Types of Pairs

Most of the notions and results that follow can be formulated
and proved in various types of spaces—metric, symmetric,

cone metric, 𝑏-metric, probabilistic metric, and so forth. For
the sake of simplicity, we will stay within the framework of
metric spaces.

Let (𝑋, 𝑑) be a metric space, and let 𝐴, 𝑆 : 𝑋 → 𝑋. We
will denote by𝐶(𝐴, 𝑆) the set of coincidence points (CP) of𝐴
and 𝑆, that is,

𝐶 (𝐴, 𝑆) = {𝑥 ∈ 𝑋 | 𝐴𝑥 = 𝑆𝑥} , (1)

by 𝑃𝐶(𝐴, 𝑆) the set of points of coincidence (POC) of 𝐴 and
𝑆, that is,

𝑃𝐶 (𝐴, 𝑆) = {𝑦 ∈ 𝑋 | 𝑦 = 𝐴𝑥 = 𝑆𝑥, for some 𝑥 ∈ 𝑋} ,
(2)

and by L(𝐴, 𝑆) the set of sequences (𝑥
𝑛
) in 𝑋 satisfying

lim
𝑛→∞

𝐴𝑥
𝑛
= lim
𝑛→∞

𝑆𝑥
𝑛
, that is,

L (𝐴, 𝑆) = {(𝑥
𝑛
) | lim
𝑛→∞

𝐴𝑥
𝑛
= lim
𝑛→∞

𝑆𝑥
𝑛
} . (3)

The following are definitions of some of the multitude
of compatible-type conditions, introduced and used for
establishing common fixed point results in recent decades.
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Table 1

If Properties that trivially hold Properties that cannot hold
𝐶(𝐴, 𝑆) = 0 (7), (9), (19) (8), (14), (15), (16), (17), (20)

L(𝐴, 𝑆) = 0
(3), (6), (11), (13), (18)
(7), (9), (10), (19)

(2), (4), (5), (12)
(8), (14), (15), (16), (17), (20)

𝐶(𝐴, 𝑆) ̸= 0

(7)⇒ (8), (8)⇔ (9), (10)⇒ (8)
(8)⇒ (17), (19)⇒ (20)
(2), (3)⇒ (6), (5)⇔ (6)
(11)⇒ (12), (12)⇔ (13)

L(𝐴, 𝑆) ̸= 0
(2), (3)⇒ (6), (5)⇔ (6)
(11)⇒ (12), (12)⇔ (13)

Definition 1. It is said that the pair (𝐴, 𝑆) is

(1) weakly commuting [2] if, for all𝑥 ∈ 𝑋,𝑑(𝐴𝑆𝑥, 𝑆𝐴𝑥) ≤
𝑑(𝐴𝑥, 𝑆𝑥);

(2) said to satisfy the property (E.A) [7] if L(𝐴, 𝑆) ̸= 0

(i.e., if there exists a sequence (𝑥
𝑛
) in 𝑋 such that

lim
𝑛→∞

𝐴𝑥
𝑛
= lim
𝑛→∞

𝑆𝑥
𝑛
);

(3) compatible [3] if, for all (𝑥
𝑛
), (𝑥
𝑛
) ∈ L(𝐴, 𝑆) implies

that lim
𝑛→∞

𝑑(𝐴𝑆𝑥
𝑛
, 𝑆𝐴𝑥
𝑛
) = 0;

(4) noncompatible [4] if, for some (𝑥
𝑛
) ∈ L(𝐴, 𝑆),

lim
𝑛→∞

𝑑(𝐴𝑆𝑥
𝑛
, 𝑆𝐴𝑥
𝑛
) ̸= 0 or does not exist;

(5) subcompatible [15] if, for some (𝑥
𝑛
) ∈ L(𝐴, 𝑆),

lim
𝑛→∞

𝑑(𝐴𝑆𝑥
𝑛
, 𝑆𝐴𝑥
𝑛
) = 0;

(6) conditionally compatible [6] if L(𝐴, 𝑆) ̸= 0 implies
that for some (𝑥

𝑛
) ∈ L(𝐴, 𝑆), lim

𝑛→∞
𝑑(𝐴𝑆𝑥

𝑛
,

𝑆𝐴𝑥
𝑛
) = 0;

(7) weakly compatible [5] if, for all 𝑥 ∈ 𝑋, 𝐴𝑥 = 𝑆𝑥

implies that 𝐴𝑆𝑥 = 𝑆𝐴𝑥 (i.e., if, for all 𝑥 ∈ 𝑋, 𝑥 ∈

𝐶(𝐴, 𝑆) implies that 𝐴𝑥 ∈ 𝐶(𝐴, 𝑆));
(8) occasionally weakly compatible [8] (see also [21–23])

if, for some 𝑥 ∈ 𝑋, 𝐴𝑥 = 𝑆𝑥 and 𝐴𝑆𝑥 = 𝑆𝐴𝑥 (i.e., if,
for some 𝑥 ∈ 𝐶(𝐴, 𝑆), 𝐴𝑥 ∈ 𝐶(𝐴, 𝑆));

(9) conditionally commuting [9] if 𝐶(𝐴, 𝑆) ̸= 0 implies
that there exists 0 ̸= 𝑌 ⊆ 𝐶(𝐴, 𝑆) such that, for all
𝑦 ∈ 𝑌, 𝐴𝑆𝑦 = 𝑆𝐴𝑦;

(10) faintly compatible [16] if it is conditionally compatible
and conditionally commuting (i.e., (6) and (9) hold);

(11) reciprocally continuous [13] if, for all (𝑥
𝑛
) ∈ L(𝐴, 𝑆),

lim
𝑛→∞

𝐴𝑥
𝑛

= lim
𝑛→∞

𝑆𝑥
𝑛

= 𝑧 implies that
lim
𝑛→∞

𝐴𝑆𝑥
𝑛
= 𝐴𝑧 and lim

𝑛→∞
𝑆𝐴𝑥
𝑛
= 𝑆𝑧;

(12) subsequentially continuous [15] if, for some (𝑥
𝑛
) ∈

L(𝐴, 𝑆), lim
𝑛→∞

𝐴𝑥
𝑛

= lim
𝑛→∞

𝑆𝑥
𝑛

= 𝑧 and
lim
𝑛→∞

𝐴𝑆𝑥
𝑛
= 𝐴𝑧, lim

𝑛→∞
𝑆𝐴𝑥
𝑛
= 𝑆𝑧;

(13) conditionally reciprocal continuous [19] if
L(𝐴, 𝑆) ̸= 0 implies that, for some (𝑥

𝑛
) ∈ L(𝐴, 𝑆),

lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥
𝑛
= 𝑧, lim

𝑛→∞
𝐴𝑆𝑥
𝑛
=

𝐴𝑧, and lim
𝑛→∞

𝑆𝐴𝑥
𝑛
= 𝑆𝑧;

(14) a P-operator pair [10] if, for some 𝑥 ∈ 𝐶(𝐴, 𝑆),
𝑑(𝑥, 𝐴𝑥) ≤ diam𝐶(𝐴, 𝑆);

(15) a JH-operator pair [11] if, for some 𝑥 ∈ 𝐶(𝐴, 𝑆),
𝑑(𝑥, 𝐴𝑥) ≤ diam𝑃𝐶(𝐴, 𝑆);

(16) a generalizedJH-operator pair of order 𝑛 ∈ N [12] if,
for some 𝑥 ∈ 𝐶(𝐴, 𝑆), 𝑑(𝑥, 𝐴𝑥) ≤ (diam𝑃𝐶(𝐴, 𝑆))

𝑛;
(17) a PD-operator pair [14] if, for some 𝑥 ∈ 𝐶(𝐴, 𝑆),

𝑑(𝐴𝑆𝑥, 𝑆𝐴𝑥) ≤ diam𝑃𝐶(𝐴, 𝑆);
(18) 𝑆-biased [17] if, for all (𝑥

𝑛
) ∈ L(𝐴, 𝑆),

𝛼𝑑(𝑆𝑥
𝑛
, 𝑆𝐴𝑥
𝑛
) ≤ 𝛼𝑑(𝐴𝑥

𝑛
, 𝐴𝑆𝑥
𝑛
), where 𝛼 = lim sup

or 𝛼 = lim inf;
(19) weakly 𝑆-biased [17] if, for all 𝑥 ∈ 𝑋, 𝑥 ∈ 𝐶(𝐴, 𝑆)

implies that 𝑑(𝑆𝐴𝑥, 𝑆𝑥) ≤ 𝑑(𝐴𝑆𝑥, 𝐴𝑥);
(20) occasionally weakly 𝑆-biased [11, 18] if, for some 𝑥 ∈

𝐶(𝐴, 𝑆), 𝑑(𝑆𝐴𝑥, 𝑆𝑥) ≤ 𝑑(𝐴𝑆𝑥, 𝐴𝑥);

Note that the conditions (7), (8), and (9) are purely set-
theoretical and do not depend on the metric structure of
(𝑋, 𝑑). All other conditions are metrical and could change if
the metric of the space is changed (or some other structure of
the space is applied).

In Table 1, we state which of these properties trivially hold
(or can never hold) if one (or both) of the sets 𝐶(𝐴, 𝑆) and
L(𝐴, 𝑆) is empty or nonempty. Also, some of implications
between these conditions obviously hold in some of these
cases. Note that L(𝐴, 𝑆) = 0 ⇒ 𝐶(𝐴, 𝑆) = 0 (and hence,
𝐶(𝐴, 𝑆) ̸= 0 ⇒ L(𝐴, 𝑆) ̸= 0).

Counter examples for some of the reverse implications
are given in [8, Example in Section 2], [14, Example 3.1], [21,
Example], and [24, Example 2.12].

The following are some other implications (mostly clear
from definitions) that hold between the introduced notions.
When it is not obvious that the reverse implication does not
hold, a reference for a counterexample is given.

(1)⇒ (3). For the reverse implication see [3, Examples
2.1 and 2.2].
(4)⇒ (2). For the reverse implication see [25, Exam-
ple 1].
(3) ∧ (2) ⇒ (5) and (6) ∧ (2) ⇒ (5). For the reverse
implications see [26, Example 2.3].
(3)⇒ (6). For the reverse implication see [16, Example
1.2].
(5) ⇒ (6) (for the reverse implication take arbitrary
mappings satisfyingL(𝐴, 𝑆) = 0) and (5)⇒ (2).
(2) and (7) are independent of each other (see [27,
Examples 2.1-2.2]).
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(3)⇒ (7). For the reverse implication see, for example,
[28, Example 2.3] (note that a part of the definition of
themapping𝐴 in this example ismissing; it should be,
for example, 𝐴𝑥 = (𝑥 + 5)/5 for 5 < 𝑥 ≤ 20).
(6) does not imply (7) (see [16, Example 1.3]).
(3) and (8) are independent (in one direction take any
pair with L(𝐴, 𝑆) = 0, and for the reverse see [9,
Example 1.1]).
(4) and (8) are independent of each other (see [9,
Examples 1.1–1.3]).
(8)⇒ (5). For the reverse implication see [15, Example
1.2].
(8)⇒ (6) and (8)⇒ (9). For the reverse implications
take arbitrary mappings satisfying L(𝐴, 𝑆) = 0 (and
hence, 𝐶(𝐴, 𝑆) = 0).
(9) does not imply (7) (see [9]).
(3) ⇒ (10). For the reverse implication see [16,
Example 1.4].
(4) and (10) are independent of each other. An exam-
ple of a noncompatible pair which is not faintly com-
patible is [16, Example 1.5] (see also [9, Example 1.1]).
Any pair of commuting that maps with 𝐶(𝐴, 𝑆) ̸= 0 is
faintly compatible and not noncompatible.
(8) ⇒ (10). For the reverse implication see [16,
Example 1.7] or [29, Example 2.1].
(11) and (12) are independent conditions, (in one
direction, take arbitrary pair satisfying L(𝐴, 𝑆) = 0,
and in the other see [15, Example 1.4]).
(11) ⇒ (13) and (12) ⇒ (13). For the reverse implica-
tions see [19, Example 6].
(7)⇒ (14) and (8)⇒ (14). Indeed, it follows from (8)
that there exists 𝑥 ∈ 𝐶(𝐴, 𝑆) such that 𝐴𝑆𝑥 = 𝑆𝐴𝑥;
that is, 𝐴𝑥 = 𝑆𝑥 ∈ 𝐶(𝐴, 𝑆). But then 𝑑(𝑥, 𝐴𝑥) ≤

diam𝐶(𝐴, 𝑆).
(14) and (15) (together) do not imply either (7), or (8)
(see [10, Example A]), or (17) (see [14, Example 3.3]).
(15)⇒ (16) (for the reverse implication and that (16)
does not imply (8) see [12, Example 3.2]).
(17) does not imply (14), and (17) does not imply (15)
(see [14, Example 3.4]).
(3)⇒ (18). For the reverse implication see [17].
(18)⇒ (19). For the reverse implication see [17].
(7)⇒ (19) and (8)⇒ (20). For the reverse implications
see [30, Example 2.3] and [18, Example 3.2].
(19) does not imply (8) (see [30, Example 2.4]) and
(20) does not imply (19) (see [18, Example 3.2]).
Finally, if 𝑃𝐶(𝐴, 𝑆) is a singleton, then
(8)⇒ (7) [31, Proposition 2.2],
(5)⇒ (7) [32, Proposition 2.22], and
(20)⇒ (19) [24, Proposition 2.11].

3. Reducing Common Fixed Point Results to
the Case of Weak Compatibility

The following simple result can be used to show that several
common fixed point theorems obtained recently are actually
not generalizations of previously known results.

Proposition 2. Let (𝑋, 𝑑) be a metric space, and let 𝐴, 𝑆 :

𝑋 → 𝑋. Let the pair (𝐴, 𝑆) have exactly one point of coinci-
dence; that is,

𝑃𝐶 (𝐴, 𝑆) = {𝑤} . (4)

Then conditions (7), (8), (9), and (17) are equivalent, and equiv-
alent with the condition that the pair (𝐴, 𝑆) has a unique com-
mon fixed point.

Proof. Note first that 𝑃𝐶(𝐴, 𝑆) ̸= 0 implies that 𝐶(𝐴, 𝑆) ̸= 0

and L(𝐴, 𝑆) ̸= 0 (just take 𝑥
𝑛
= 𝑥, where 𝑥 ∈ 𝐶(𝐴, 𝑆), for

all 𝑛 ∈ N) Consider the following.

(7)⇒ (8) holds because 𝐶(𝐴, 𝑆) ̸= 0.
(8)⇒ (7) follows by [31, Proposition 2.2].
(8)⇔ (9) holds because 𝐶(𝐴, 𝑆) ̸= 0.
(7)⇒ (17) was proved in [14], and (17)⇒ (8) follows
because diam𝑃𝐶(𝐴, 𝑆) = diam{𝑤} = 0.

In the case that (𝐴, 𝑆) has a unique POC, it was proved in
[22] that condition (8) implies that (𝐴, 𝑆) has a unique com-
mon fixed point. The converse is obvious.

An easy example of mappings 𝐴𝑥 = 3𝑥 − 2 and 𝑆𝑥 = 𝑥
2

on𝑋 = [1, +∞), when𝑃𝐶(𝐴, 𝑆) has two elements, shows that
the condition that 𝑃𝐶(𝐴, 𝑆) is a singleton cannot be removed
from the previous proposition, neither does this proposition
hold when 𝑃𝐶(𝐴, 𝑆) = 0, as [19, Example 6] shows.

When considering two pairs of mappings, the following
is a direct consequence of Proposition 2.

Corollary 3. Let (𝐴, 𝑆) and (𝐵, 𝑇) be two pairs of self-maps on
a metric space (𝑋, 𝑑), satisfying

𝑃𝐶 (𝐴, 𝑆) = 𝑃𝐶 (𝐵, 𝑇) = {𝑤} . (5)

Then the following conditions are equivalent.

(i) (𝐴, 𝑆) and (𝐵, 𝑇) both satisfy condition (7).
(ii) (𝐴, 𝑆) and (𝐵, 𝑇) both satisfy condition (8).
(iii) (𝐴, 𝑆) and (𝐵, 𝑇) both satisfy condition (17).
(iv) 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common fixed point.

Applying Proposition 2 or Corollary 3, it is easy to show
that a lot of the results of papers cited in the references are
actually not generalizations of previously known ones.

As a sample, consider Theorems 2.1 and 2.2 of [16].
𝑃𝐶(𝐴, 𝑆) in these assertions is a singleton. Further, mappings
𝐴 and 𝑆 have a unique common fixed point. By Proposition 2,
it follows that the pair (𝐴, 𝑆) is weakly compatible (condition
(4)). Hence, using formally weaker assumption (10) does not
produce a more general assertion.
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Similarly, inTheorems 2.1 and 2.2 and Corollaries 2.1–2.6
of [33], applying Corollary 3, we get that the pairs (𝑓, 𝑆) and
(𝑔, 𝑇) are weakly compatible.

In the same way, it can be concluded that the following
results are actually not generalizations of previously known
ones: [6, Theorems 1.4 and 1.5]; [8, Theorem 2.1]; [19,
Theorems 1–3 of Section 2]; [11, Theorems 2.8–2.12]; [14,
Theorems 4.1, 4.4, 4.6, 4.8, 4.10, 4.12, and 5.1]; [18, Theorems
4.1, 4.6, 5.6, 6.2; Corollaries 4.3, 4.4]; [22, Lemma 1;Theorems
1–5; Corollaries 1–5]; [30, Theorem 2.5; Corollary 2.7]; [34,
Theorems 1–4 and Corollaries 1–3]; [35, Theorems 3.1, 3.4,
and 3.6; Corollaries 3.9, 3.10, and 3.11]; [36, Theorems 2.2 and
2.6]; [37, Theorems 2.1–2.3 and 3.1–3.4; Corollary 2.1]; [38,
Theorem 1.1]; [39, Theorems 2.1 and 2.3; Corollaries 2.2, 2.4
and 2.5]; [40, Theorems 3.1–3.3]; [41, Theorems 2.1 and 2.2;
Corollaries 2.1–2.3]; [42, Theorems 3.1–3.3 and 4.1–4.3]; [43,
Theorems 2.1 and 2.2]; [44, Theorem 3.2; Corollaries 3.1 and
3.2]; [45, Theorems 2.3]; [46, Theorem 11; Corollary 13]; [47,
Theorems 2.2 and 2.3]; [48,Theorems 2.1–2.5]; [49,Theorems
2.1, 2.4, and 2.10]; [50, Theorems 4.1, 4.2, and 5.1–5.5].

A different kind of conclusions can bemade for the results
from [28, 51, 52].

Again, as a sample, consider [52, Theorem 2.1], which
(abbreviated) reads as follows.

Let 𝑓 and 𝑔 be two pseudoreciprocal continuous self-
mappings of a complete metric space (𝑋, 𝑑) such that 𝑓𝑋 ⊆

𝑔𝑋 and satisfying certain contractive condition. If the pair
(𝑓, 𝑔) is conditionally sequential absorbing, then𝑓 and𝑔have
a unique common fixed point.

It can be reformulated as follows.
Under the previous conditions, the pair (𝑓, 𝑔) is weakly

compatible (i.e., satisfies condition (7)).
Indeed, the proof of [52,Theorem 2.1] shows that 𝑓 and 𝑔

have a unique commonfixed point.The contractive condition
easily implies that they also have a unique POC (i.e., 𝑃𝐶(𝑓, 𝑔)
is a singleton). Then, Proposition 2 implies that (𝑓, 𝑔) is
weakly compatible (and occasionally weakly compatible,
of the type PD, conditionally commuting). Hence, weak
compatibility is again a natural (and the weakest possible)
assumption for this kind of results.

Similar conclusions can bemade for the following results:
[28, Corollary 2.1]; [51, Theorems 1–3]; [52, Theorems 2.2 and
2.3].

Several very interesting results were also obtained for
multivalued mappings. We just note [53–55].

It is interesting that in the case of hybrid pairs ofmappings
(one single-valued and one multivalued) conclusions similar
to those from this paper cannot be made. Namely, it was
shown in [31, Example 2.5] that in this case Proposition 2 no
longer holds.Hence, for example, results from the papers [56–
59] cannot be directly obtained from previously known ones.
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