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Nonnegativity of theMoore-Penrose inverse of a perturbation of the form𝐴−𝑋𝐺𝑌𝑇 is consideredwhen𝐴† ≥ 0. Using a generalized
version of the Sherman-Morrison-Woodbury formula, conditions for (𝐴 − 𝑋𝐺𝑌𝑇)† to be nonnegative are derived. Applications of
the results are presented briefly. Iterative versions of the results are also studied.

1. Introduction

We consider the problem of characterizing nonnegativity
of the Moore-Penrose inverse for matrix perturbations of
the type 𝐴 − 𝑋𝐺𝑌

𝑇, when the Moore-Penrose inverse of
𝐴 is nonnegative. Here, we say that a matrix 𝐵 = (𝑏

𝑖𝑗
) is

nonnegative and denote it by 𝐵 ≥ 0 if 𝑏
𝑖𝑗
≥ 0, ∀𝑖, 𝑗. This

problemwasmotivated by the results in [1], where the authors
consider an 𝑀-matrix 𝐴 and find sufficient conditions for
the perturbed matrix (𝐴 − 𝑋𝑌𝑇) to be an𝑀-matrix. Let us
recall that a matrix 𝐵 = (𝑏

𝑖𝑗
) is said to 𝑍-matrix if 𝑏

𝑖𝑗
≤ 0

for all 𝑖, 𝑗, 𝑖 ̸= 𝑗. An𝑀-matrix is a nonsingular 𝑍-matrix with
nonnegative inverse. The authors in [1] use the well-known
Sherman-Morrison-Woodbury (SMW) formula as one of the
important tools to prove their main result.The SMW formula
gives an expression for the inverse of (𝐴−𝑋𝑌𝑇) in terms of the
inverse of𝐴, when it exists. When𝐴 is nonsingular,𝐴−𝑋𝑌𝑇

is nonsingular if and only 𝐼 − 𝑌𝑇𝐴−1𝑋 is nonsingular. In that
case,

(𝐴 − 𝑋𝑌
𝑇
)
−1

= 𝐴
−1
− 𝐴
−1
𝑋(𝐼 − 𝑌

𝑇
𝐴
−1
𝑋)
−1

𝑌
𝑇
𝐴
−1
. (1)

Themain objective of the present work is to study certain
structured perturbations 𝐴 − 𝑋𝑌𝑇 of matrices 𝐴 such that
theMoore-Penrose inverse of the perturbation is nonnegative
whenever the Moore-Penrose inverse of 𝐴 is nonnegative.
Clearly, this class of matrices includes the class of matrices
that have nonnegative inverses, especially𝑀-matrices. In our
approach, extensions of SMW formula for singular matrices

play a crucial role. Let us mention that this problem has been
studied in the literature. (See, for instance [2] formatrices and
[3] for operators over Hilbert spaces). We refer the reader to
the references in the latter for other recent extensions.

In this paper, first we present alternative proofs of
generalizations of the SMW formula for the cases of the
Moore-Penrose inverse (Theorem 5) and the group inverse
(Theorem 6) in Section 3. In Section 4, we characterize the
nonnegativity of (𝐴 − 𝑋𝐺𝑌𝑇)†. This is done in Theorem 9
and is one of the main results of the present work. As a
consequence, we present a result for𝑀-matrices which seems
new. We present a couple of applications of the main result
in Theorems 13 and 15. In the concluding section, we study
iterative versions of the results of the second section. We
prove two characterizations for (𝐴−𝑋𝑌𝑇)† to be nonnegative
in Theorems 18 and 21.

Before concluding this introductory section, let us give
a motivation for the work that we have undertaken here.
It is a well-documented fact that 𝑀-matrices arise quite
often in solving sparse systems of linear equations. An
extensive theory of𝑀-matrices has been developed relative
to their role in numerical analysis involving the notion of
splitting in iterativemethods and discretization of differential
equations, in the mathematical modeling of an economy,
optimization, and Markov chains [4, 5]. Specifically, the
inspiration for the present study comes from the work of [1],
where the authors consider a system of linear inequalities
arising out of a problem in third generation wireless commu-
nication systems.Thematrix defining the inequalities there is
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an 𝑀-matrix. In the likelihood that the matrix of this
problem is singular (due to truncation or round-off errors),
the earlier method becomes inapplicable. Our endeavour is
to extend the applicability of these results to more general
matrices, for instance, matrices with nonnegative Moore-
Penrose inverses. Finally, as mentioned earlier, sincematrices
with nonnegative generalized inverses include in particular
𝑀-matrices, it is apparent that our results are expected to
enlarge the applicability of themethods presently available for
𝑀-matrices, even in a very general framework, including the
specific problem mentioned above.

2. Preliminaries

Let R, R𝑛, and R𝑚×𝑛 denote the set of all real numbers, the
𝑛-dimensional real Euclidean space, and the set of all 𝑚 × 𝑛
matrices over R. For 𝐴 ∈ R𝑚×𝑛, let 𝑅(𝐴), 𝑁(𝐴), 𝑅(𝐴)⊥, and
𝐴
𝑇 denote the range space, the null space, the orthogonal

complement of the range space, and the transpose of the
matrix 𝐴, respectively. For x = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈ R𝑛, we

say that x is nonnegative, that is, x ≥ 0 if and only if x
𝑖
≥ 0

for all 𝑖 = 1, 2, . . . , 𝑛. As mentioned earlier, for a matrix 𝐵 we
use 𝐵 ≥ 0 to denote that all the entries of 𝐵 are nonnegative.
Also, we write 𝐴 ≤ 𝐵 if 𝐵 − 𝐴 ≥ 0.

Let 𝜌(𝐴) denote the spectral radius of the matrix 𝐴. If
𝜌(𝐴) < 1 for 𝐴 ∈ R𝑛×𝑛, then 𝐼 − 𝐴 is invertible. The
next result gives a necessary and sufficient condition for the
nonnegativity of (𝐼 − 𝐴)−1. This will be one of the results that
will be used in proving the first main result.

Lemma 1 (see [5, Lemma 2.1, Chapter 6]). Let 𝐴 ∈ R𝑛×𝑛 be
nonnegative. Then, 𝜌(𝐴) < 1 if and only if (𝐼 − 𝐴)−1 exists and

(𝐼 − 𝐴)
−1
=

∞

∑

𝑘=0

𝐴
𝑘
≥ 0. (2)

More generally, matrices having nonnegative inverses
are characterized using a property called monotonicity. The
notion of monotonicity was introduced by Collatz [6]. A real
𝑛 × 𝑛matrix 𝐴 is called monotone if 𝐴x ≥ 0 ⇒ x ≥ 0. It was
proved by Collatz [6] that 𝐴 is monotone if and only if 𝐴−1
exists and 𝐴−1 ≥ 0.

One of the frequently used tools in studying monotone
matrices is the notion of a regular splitting. We only refer the
reader to the book [5] for more details on the relationship
between these concepts.

The notion of monotonicity has been extended in a vari-
ety of ways to singular matrices using generalized inverses.
First, let us briefly review the notion of two important
generalized inverses.

For 𝐴 ∈ R𝑚×𝑛, the Moore-Penrose inverse is the unique
𝑍 ∈ R𝑛×𝑚 satisfying the Penrose equations: 𝐴𝑍𝐴 = 𝐴,
𝑍𝐴𝑍 = 𝑍, (𝐴𝑍)𝑇 = 𝐴𝑍, and (𝑍𝐴)𝑇 = 𝑍𝐴. The unique
Moore-Penrose inverse of𝐴 is denoted by𝐴†, and it coincides
with 𝐴−1 when 𝐴 is invertible.

The following theorem by Desoer and Whalen, which
is used in the sequel, gives an equivalent definition for the
Moore-Penrose inverse. Let us mention that this result was
proved for operators between Hilbert spaces.

Theorem 2 (see [7]). Let 𝐴 ∈ R𝑚×𝑛. Then 𝐴† ∈ R𝑛×𝑚 is the
unique matrix𝑋 ∈ R𝑛×𝑚 satisfying

(i) 𝑍𝐴𝑥 = 𝑥, ∀𝑥 ∈ 𝑅(𝐴𝑇),
(ii) 𝑍𝑦 = 0, ∀𝑦 ∈ 𝑁(𝐴𝑇).

Now, for𝐴 ∈ R𝑛×𝑛, any𝑍 ∈ R𝑛×𝑛 satisfying the equations
𝐴𝑍𝐴 = 𝐴, 𝑍𝐴𝑍 = 𝑍, and 𝐴𝑍 = 𝑍𝐴 is called the group
inverse of 𝐴. The group inverse does not exist for every
matrix. But whenever it exists, it is unique. A necessary and
sufficient condition for the existence of the group inverse of
𝐴 is that the index of𝐴 is 1, where the index of a matrix is the
smallest positive integer 𝑘 such that rank (𝐴𝑘+1) = rank (𝐴𝑘).

Some of the well-known properties of theMoore-Penrose
inverse and the group inverse are given as follows: 𝑅(𝐴𝑇) =
𝑅(𝐴
†
),𝑁(𝐴𝑇) = 𝑁(𝐴†), 𝐴†𝐴 = 𝑃

𝑅(𝐴
𝑇
)
, and 𝐴𝐴† = 𝑃

𝑅(𝐴)
. In

particular, x ∈ 𝑅(𝐴𝑇) if and only if x = 𝐴†𝐴x. Also, 𝑅(𝐴) =
𝑅(𝐴

#
), 𝑁(𝐴) = 𝑁(𝐴#

), and 𝐴#
𝐴 = 𝐴𝐴

#
= 𝑃
𝑅(𝐴),𝑁(𝐴)

. Here,
for complementary subspaces 𝐿 and𝑀 of R𝑘, 𝑃

𝐿,𝑀
denotes

the projection ofR𝑘 onto 𝐿 along𝑀. 𝑃
𝐿
denotes 𝑃

𝐿,𝑀
if𝑀 =

𝐿
⊥. For details, we refer the reader to the book [8].
Inmatrix analysis, a decomposition (splitting) of amatrix

is considered in order to study the convergence of iterative
schemes that are used in the solution of linear systems of alge-
braic equations. As mentioned earlier, regular splittings are
useful in characterizing matrices with nonnegative inverses,
whereas, proper splittings are used for studying singular
systems of linear equations. Let us next recall this notion.
For a matrix 𝐴 ∈ R𝑚×𝑛, a decomposition 𝐴 = 𝑈 − 𝑉 is
called a proper splitting [9] if 𝑅(𝐴) = 𝑅(𝑈) and 𝑁(𝐴) =
𝑁(𝑈). It is rather well-known that a proper splitting exists
for every matrix and that it can be obtained using a full-
rank factorization of the matrix. For details, we refer to [10].
Certain properties of a proper splitting are collected in the
next result.

Theorem 3 (see [9, Theorem 1]). Let 𝐴 = 𝑈 − 𝑉 be a proper
splitting of 𝐴 ∈ R𝑚×𝑛. Then,

(a) 𝐴 = 𝑈(𝐼 − 𝑈†𝑉),
(b) 𝐼 − 𝑈†𝑉 is nonsingular and,
(c) 𝐴† = (𝐼 − 𝑈†𝑉)−1𝑈†.

The following result by Berman and Plemmons [9] gives
a characterization for 𝐴† to be nonnegative when 𝐴 has a
proper splitting. This result will be used in proving our first
main result.

Theorem 4 (see [9, Corollary 4]). Let 𝐴 = 𝑈 − 𝑉 be a proper
splitting of 𝐴 ∈ R𝑚×𝑛, where 𝑈† ≥ 0 and 𝑈†𝑉 ≥ 0. Then
𝐴
†
≥ 0 if and only if 𝜌(𝑈†𝑉) < 1.

3. Extensions of the SMW Formula for
Generalized Inverses

The primary objects of consideration in this paper are gen-
eralized inverses of perturbations of certain types of a matrix
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𝐴. Naturally, extensions of the SMW formula for generalized
inverses are relevant in the proofs. Inwhat follows, we present
two generalizations of the SMW formula for matrices. We
would like to emphasize that our proofs also carry over
to infinite dimensional spaces (the proof of the first result
is verbatim and the proof of the second result with slight
modifications applicable to range spaces instead of ranks of
the operators concerned). However, we are confining our
attention to the case of matrices. Let us also add that these
results have been proved in [3] for operators over infinite
dimensional spaces. We have chosen to include these results
here as our proofs are different from the ones in [3] and that
our intention is to provide a self-contained treatment.

Theorem 5 (see [3, Theorem 2.1]). Let 𝐴 ∈ R𝑚×𝑛, 𝑋 ∈ R𝑚×𝑘,
and 𝑌 ∈ R𝑛×𝑘 be such that

𝑅 (𝑋) ⊆ 𝑅 (𝐴) , 𝑅 (𝑌) ⊆ 𝑅 (𝐴
𝑇
) . (3)

Let 𝐺 ∈ R𝑘×𝑘, and Ω = 𝐴 − 𝑋𝐺𝑌𝑇. If

𝑅 (𝑋
𝑇
) ⊆ 𝑅 ((𝐺

†
− 𝑌
𝑇
𝐴
†
𝑋)
𝑇

) ,

𝑅 (𝑌
𝑇
) ⊆ 𝑅 (𝐺

†
− 𝑌
𝑇
𝐴
†
𝑋) , 𝑅 (𝑋

𝑇
) ⊆ 𝑅 (𝐺) ,

𝑅 (𝑌
𝑇
) ⊆ 𝑅 (𝐺

𝑇
)

(4)

then

Ω
†
= 𝐴
†
+ 𝐴
†
𝑋(𝐺
†
− 𝑌
𝑇
𝐴
†
𝑋)
†

𝑌
𝑇
𝐴
†
. (5)

Proof. Set 𝑍 = 𝐴† + 𝐴†𝑋𝐻†𝑌𝑇𝐴†, where𝐻 = 𝐺
†
− 𝑌
𝑇
𝐴
†
𝑋.

From the conditions (3) and (4), it follows that 𝐴𝐴†𝑋 = 𝑋,
𝐴
†
𝐴𝑌 = 𝑌,𝐻†𝐻𝑋𝑇 = 𝑋𝑇,𝐻𝐻†𝑌𝑇 = 𝑌𝑇,𝐺𝐺†𝑋𝑇 = 𝑋𝑇, and

𝐺
†
𝐺𝑌
𝑇
= 𝑌
𝑇.

Now,

𝐴
†
𝑋𝐻
†
𝑌
𝑇
− 𝐴
†
𝑋𝐻
†
𝑌
𝑇
𝐴
†
𝑋𝐺𝑌
𝑇

= 𝐴
†
𝑋𝐻
†
(𝐺
†
𝐺𝑌
𝑇
− 𝑌
𝑇
𝐴
†
𝑋𝐺𝑌
𝑇
)

= 𝐴
†
𝑋𝐻
†
𝐻𝐺𝑌
𝑇
= 𝐴
†
𝑋𝐺𝑌
𝑇
.

(6)

Thus, 𝑍Ω = 𝐴
†
𝐴. Since 𝑅(Ω𝑇) ⊆ 𝑅(𝐴

𝑇
), it follows that

𝑍Ω(x) = 𝑥, ∀x ∈ 𝑅(Ω𝑇).
Let y ∈ 𝑁(Ω

𝑇
). Then, 𝐴𝑇y − 𝑌𝐺𝑇𝑋𝑇y = 0 so that

𝑋
𝑇
𝐴
†𝑇

(𝐴
𝑇
− 𝑌𝐺
𝑇
𝑋
𝑇
)y = 0. Substituting 𝑋𝑇 = 𝐺𝐺†𝑋𝑇 and

simplifying it, we get𝐻𝑇𝐺𝑇𝑋𝑇y = 0. Also,𝐴𝑇y = 𝑌𝐺𝑇𝑋𝑇y =
𝑌𝐻𝐻
†
𝐺
𝑇
𝑋
𝑇y = 0 and so 𝐴†y = 0. Thus, 𝑍y = 0 for

y ∈ 𝑁(Ω𝑇). Hence, by Theorem 2, 𝑍 = Ω†.

The result for the group inverse follows.

Theorem 6. Let 𝐴 ∈ R𝑛×𝑛 be such that 𝐴# exists. Let 𝑋,
𝑌 ∈ R𝑛×𝑘 and 𝐺 be nonsingular. Assume that 𝑅(𝑋) ⊆ 𝑅(𝐴),
𝑅(𝑌) ⊆ 𝑅(𝐴

𝑇
) and 𝐺−1 − 𝑌𝑇𝐴#

𝑋 is nonsingular. Suppose that
rank (𝐴 − 𝑋𝐺𝑌𝑇) = rank (𝐴). Then, (𝐴 − 𝑋𝐺𝑌𝑇)# exists and
the following formula holds:

(𝐴 − 𝑋𝐺𝑌
𝑇
)
#
= 𝐴

#
+ 𝐴

#
𝑋(𝐺
−1
− 𝑌
𝑇
𝐴

#
𝑋)
−1

𝑌
𝑇
𝐴

#
. (7)

Conversely, if (𝐴−𝑋𝐺𝑌𝑇)# exists, then the formula above holds,
and we have rank (𝐴 − 𝑋𝐺𝑌𝑇) = rank (𝐴).

Proof. Since 𝐴# exists, 𝑅(𝐴) and 𝑁(𝐴) are complementary
subspaces of R𝑛×𝑛.

Suppose that rank (𝐴 − 𝑋𝐺𝑌𝑇) = rank (𝐴). As 𝑅(𝑋) ⊆
𝑅(𝐴), it follows that 𝑅(𝐴 − 𝑋𝐺𝑌𝑇) ⊆ 𝑅(𝐴). Thus 𝑅(𝐴 −
𝑋𝐺𝑌
𝑇
) = 𝑅(𝐴). By the rank-nullity theorem, the nullity of

both 𝐴 − 𝑋𝐺𝑌𝑇 and 𝐴 are the same. Again, since 𝑅(𝑌) ⊆
𝑅(𝐴
𝑇
), it follows that 𝑁(𝐴 − 𝑋𝐺𝑌

𝑇
) = 𝑁(𝐴). Thus,

𝑅(𝐴 − 𝑋𝐺𝑌
𝑇
) and 𝑁(𝐴 − 𝑋𝐺𝑌𝑇) are complementary sub-

spaces. This guarantees the existence of the group inverse of
𝐴 − 𝑋𝐺𝑌

𝑇.
Conversely, suppose that (𝐴 − 𝑋𝐺𝑌𝑇)# exists. It can be

verified by direct computation that 𝑍 = 𝐴
#
+ 𝐴

#
𝑋(𝐺
−1
−

𝑌
𝑇
𝐴

#
𝑋)
−1
𝑌
𝑇
𝐴

# is the group inverse of 𝐴 − 𝑋𝐺𝑌𝑇. Also, we
have (𝐴−𝑋𝐺𝑌𝑇)(𝐴−𝑋𝐺𝑌𝑇)# = 𝐴𝐴#, so that𝑅(𝐴−𝑋𝐺𝑌𝑇) =
𝑅(𝐴), and hence the rank (𝐴 − 𝑋𝐺𝑌𝑇) = rank (𝐴).

We conclude this section with a fairly old result [2] as a
consequence of Theorem 5.

Theorem 7 (see [2, Theorem 15]). Let 𝐴 ∈ R𝑚×𝑛 of rank 𝑟,
𝑋 ∈ R𝑚×𝑟 and 𝑌 ∈ R𝑛×𝑟. Let𝐺 be an 𝑟×𝑟 nonsingular matrix.
Assume that 𝑅(𝑋) ⊆ 𝑅(𝐴), 𝑅(𝑌) ⊆ 𝑅(𝐴𝑇), and 𝐺−1 − 𝑌𝑇𝐴†𝑋
is nonsingular. Let Ω = 𝐴 − 𝑋𝐺𝑌𝑇. Then

(𝐴 − 𝑋𝐺𝑌
𝑇
)
†

= 𝐴
†
+ 𝐴
†
𝑋(𝐺
−1
− 𝑌
𝑇
𝐴
†
𝑋)
−1

𝑌
𝑇
𝐴
†
. (8)

4. Nonnegativity of (𝐴−𝑋𝐺𝑌𝑇)†

In this section, we consider perturbations of the form 𝐴 −

𝑋𝐺𝑌
𝑇 and derive characterizations for (𝐴 − 𝑋𝐺𝑌𝑇)† to be

nonnegative when 𝐴† ≥ 0, 𝑋 ≥ 0, 𝑌 ≥ 0 and 𝐺 ≥ 0. In order
to motivate the first main result of this paper, let us recall the
following well known characterization of𝑀-matrices [5].

Theorem 8. Let 𝐴 be a 𝑍-matrix with the representation 𝐴 =
𝑠𝐼 − 𝐵, where 𝐵 ≥ 0 and 𝑠 ≥ 0. Then the following statements
are equivalent:

(a) 𝐴−1 exists and 𝐴−1 ≥ 0.

(b) There exists 𝑥 > 0 such that 𝐴𝑥 > 0.

(c) 𝜌(𝐵) < 𝑠.

Let us prove the first result of this article. This extends
Theorem 8 to singular matrices. We will be interested in
extensions of conditions (a) and (c) only.

Theorem 9. Let 𝐴 = 𝑈 − 𝑉 be a proper splitting of 𝐴 ∈ R𝑚×𝑛

with 𝑈† ≥ 0, 𝑈†𝑉 ≥ 0 and 𝜌(𝑈†𝑉) < 1. Let 𝐺 ∈ R𝑘×𝑘 be
nonsingular and nonnegative, 𝑋 ∈ R𝑚×𝑘, and 𝑌 ∈ R𝑛×𝑘 be
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nonnegative such that 𝑅(𝑋) ⊆ 𝑅(𝐴), 𝑅(𝑌) ⊆ 𝑅(𝐴𝑇) and𝐺−1 −
𝑌
𝑇
𝐴
†
𝑋 is nonsingular. LetΩ = 𝐴−𝑋𝐺𝑌𝑇.Then, the following

are equivalent

(a) Ω† ≥ 0.
(b) (𝐺−1 − 𝑌𝑇𝐴†𝑋)−1 ≥ 0.
(c) 𝜌(𝑈†𝑊) < 1 where𝑊 = 𝑉 + 𝑋𝐺𝑌

𝑇.

Proof. First, we observe that since 𝑅(𝑋) ⊆ 𝑅(𝐴), 𝑅(𝑌) ⊆
𝑅(𝐴
𝑇
), and 𝐺−1 − 𝑌𝑇𝐴†𝑋 is nonsingular, by Theorem 7, we

have

Ω
†
= 𝐴
†
+ 𝐴
†
𝑋(𝐺
−1
− 𝑌
𝑇
𝐴
†
𝑋)
−1

𝑌
𝑇
𝐴
†
. (9)

We thus haveΩΩ† = 𝐴𝐴† andΩ†Ω = 𝐴†𝐴. Therefore,

𝑅 (Ω) = 𝑅 (𝐴) , 𝑁 (Ω) = 𝑁 (𝐴) . (10)

Note that the first statement also implies that 𝐴† ≥ 0, by
Theorem 4.

(a) ⇒ (b): By taking 𝐸 = 𝐴 and 𝐹 = 𝑋𝐺𝑌
𝑇, we get

Ω = 𝐸 − 𝐹 as a proper splitting for Ω such that 𝐸† = 𝐴† ≥ 0
and 𝐸†𝐹 = 𝐴†𝑋𝐺𝑌𝑇 ≥ 0 (since 𝑋𝐺𝑌𝑇 ≥ 0). Since Ω† ≥ 0,
by Theorem 4, we have 𝜌(𝐴†𝑋𝐺𝑌𝑇) = 𝜌(𝐸

†
𝐹) < 1. This

implies that 𝜌(𝑌𝑇𝐴†𝑋𝐺) < 1. We also have 𝑌𝑇𝐴†𝑋𝐺 ≥ 0.
Thus, by Lemma 1, (𝐼−𝑌𝑇𝐴†𝑋𝐺)−1 exists and is nonnegative.
But, we have 𝐼 − 𝑌𝑇𝐴†𝑋𝐺 = (𝐺

−1
− 𝑌
𝑇
𝐴
†
𝑋)𝐺. Now, 0 ≤

(𝐼 − 𝑌
𝑇
𝐴
†
𝑋𝐺)
−1
= 𝐺
−1
(𝐺
−1
− 𝑌
𝑇
𝐴
†
𝑋)
−1. This implies that

(𝐺
−1
− 𝑌
𝑇
𝐴
†
𝑋)
−1
≥ 0 since 𝐺 ≥ 0. This proves (b).

(b) ⇒ (c): We have𝑈−𝑊 = 𝑈−𝑉−𝑋𝐺𝑌
𝑇
= 𝐴−𝑋𝑌

𝑇
=

Ω. Also 𝑅(Ω) = 𝑅(𝐴) = 𝑅(𝑈) and 𝑁(Ω) = 𝑁(𝐴) = 𝑁(𝑈).
So, Ω = 𝑈 − 𝑊 is a proper splitting. Also 𝑈† ≥ 0 and
𝑈
†
𝑊 = 𝑈

†
(𝑉+𝑋𝐺𝑌

𝑇
) ≥ 𝑈
†
𝑉 ≥ 0. Since (𝐺−1−𝑌𝑇𝐴†𝑋)−1 ≥

0, it follows from (9) that Ω† ≥ 0. (c) now follows from
Theorem 4.

(c) ⇒ (a): Since𝐴 = 𝑈−𝑉, we haveΩ = 𝑈−𝑉−𝑋𝐺𝑌𝑇 =
𝑈−𝑊. Also we have𝑈† ≥ 0,𝑈†𝑉 ≥ 0. Thus,𝑈†𝑊 ≥ 0, since
𝑋𝐺𝑌
𝑇
≥ 0. Now, by Theorem 4, we are done if the splitting

Ω = 𝑈 −𝑊 is a proper splitting. Since 𝐴 = 𝑈 − 𝑉 is a proper
splitting, we have 𝑅(𝑈) = 𝑅(𝐴) and 𝑁(𝑈) = 𝑁(𝐴). Now,
from the conditions in (10), we get that 𝑅(𝑈) = 𝑅(Ω) and
𝑁(𝑈) = 𝑁(Ω). Hence Ω = 𝑈 − 𝑊 is a proper splitting, and
this completes the proof.

The following result is a special case of Theorem 9.

Theorem 10. Let𝐴 = 𝑈−𝑉 be a proper splitting of𝐴 ∈ R𝑚×𝑛

with 𝑈† ≥ 0, 𝑈†𝑉 ≥ 0 and 𝜌(𝑈†𝑉) < 1. Let 𝑋 ∈ R𝑚×𝑘 and
𝑌 ∈ R𝑛×𝑘 be nonnegative such that 𝑅(𝑋) ⊆ 𝑅(𝐴), 𝑅(𝑌) ⊆
𝑅(𝐴
𝑇
), and 𝐼−𝑌𝑇𝐴†𝑋 is nonsingular. LetΩ = 𝐴−𝑋𝑌𝑇. Then

the following are equivalent:

(a) Ω† ≥ 0.
(b) (𝐼 − 𝑌𝑇𝐴†𝑋)−1 ≥ 0.
(c) 𝜌(𝑈†𝑊) < 1, where𝑊 = 𝑉 + 𝑋𝑌

𝑇.

The following consequence of Theorem 10 appears to be
new. This gives two characterizations for a perturbed 𝑀-
matrix to be an𝑀-matrix.

Corollary 11. Let𝐴 = 𝑠𝐼−𝐵where,𝐵 ≥ 0 and 𝜌(𝐵) < 𝑠 (i.e.,𝐴
is an𝑀-matrix). Let 𝑋 ∈ R𝑚×𝑘 and 𝑌 ∈ R𝑛×𝑘 be nonnegative
such that 𝐼 − 𝑌𝑇𝐴†𝑋 is nonsingular. Let Ω = 𝐴 − 𝑋𝑌𝑇. Then
the following are equivalent:

(a) Ω−1 ≥ 0.
(b) (𝐼 − 𝑌𝑇𝐴†𝑋)−1 ≥ 0.
(c) 𝜌(𝐵(𝐼 + 𝑋𝑌𝑇)) < 𝑠.

Proof. From the proof ofTheorem 10, since 𝐴 is nonsingular,
it follows that ΩΩ† = 𝐼 and Ω†Ω = 𝐼. This shows that Ω
is invertible. The rest of the proof is omitted, as it is an easy
consequence of the previous result.

In the rest of this section, we discuss two applications
of Theorem 10. First, we characterize the least element in
a polyhedral set defined by a perturbed matrix. Next, we
consider the following Suppose that the “endpoints” of an
interval matrix satisfy a certain positivity property. Then all
matrices of a particular subset of the interval also satisfy
that positivity condition. The problem now is if that we are
given a specific structured perturbation of these endpoints,
what conditions guarantee that the positivity property for the
corresponding subset remains valid.

The first result is motivated by Theorem 12 below. Let us
recall that with respect to the usual order, an element x∗ ∈
X ⊆ R𝑛 is called a least element ofX if it satisfies x∗ ≤ x for
all x ∈ X. Note that a nonempty set may not have the least
element, and if it exists, then it is unique. In this connection,
the following result is known.

Theorem 12 (see [11, Theorem 3.2]). For 𝐴 ∈ R𝑚×𝑛 and b ∈
R𝑚, let

Xb = {x ∈ R
𝑛
: 𝐴x + y ≥ b, 𝑃

𝑁(𝐴)
x = 0,

𝑃
𝑅(𝐴)

y = 0, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 y ∈ R𝑚} .
(11)

Then, a vector x∗ is the least element ofXb if and only if x∗ =
𝐴
†b ∈ Xb with 𝐴† ≥ 0.

Now, we obtain the nonnegative least element of a
polyhedral set defined by a perturbed matrix. This is an
immediate application of Theorem 10.

Theorem 13. Let 𝐴 ∈ R𝑚×𝑛 be such that 𝐴† ≥ 0. Let 𝑋 ∈

R𝑚×𝑘, and let 𝑌 ∈ R𝑛×𝑘 be nonnegative, such that 𝑅(𝑋) ⊆
𝑅(𝐴), 𝑅(𝑌) ⊆ 𝑅(𝐴𝑇), and 𝐼 − 𝑌𝑇𝐴†𝑋 is nonsingular. Suppose
that (𝐼 − 𝑌𝑇𝐴†𝑋)−1 ≥ 0. For b ∈ R𝑚, 𝑏 ≥ 0, let

Sb = {x ∈ R
𝑛
: Ωx + y ≥ b, 𝑃

𝑁(Ω)
x = 0,

𝑃
𝑅(Ω)

y = 0, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 y ∈ R𝑚} ,
(12)

where Ω = 𝐴 − 𝑋𝑌
𝑇. Then, x∗ = (𝐴 − 𝑋𝑌𝑇)†b is the least

element of S
𝑏
.

Proof. From the assumptions, using Theorem 10, it fol-
lows that Ω† ≥ 0. The conclusion now follows from
Theorem 12.
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To state and prove the result for interval matrices, let us
first recall the notion of interval matrices. For𝐴, 𝐵 ∈ R𝑚 × 𝑛,
an interval (matrix) 𝐽 = [𝐴, 𝐵] is defined as 𝐽 = [𝐴, 𝐵] = {𝐶 :
𝐴 ≤ 𝐶 ≤ 𝐵}. The interval 𝐽 = [𝐴, 𝐵] is said to be range-kernel
regular if 𝑅(𝐴) = 𝑅(𝐵) and 𝑁(𝐴) = 𝑁(𝐵). The following
result [12] provides necessary and sufficient conditions for
𝐶
†
≥ 0 for 𝐶 ∈ 𝐾, where 𝐾 = {𝐶 ∈ 𝐽 : 𝑅(𝐶) = 𝑅(𝐴) =

𝑅(𝐵),𝑁(𝐶) = 𝑁(𝐴) = 𝑁(𝐵)}.

Theorem 14. Let 𝐽 = [𝐴, 𝐵] be range-kernel regular. Then, the
following are equivalent:

(a) 𝐶† ≥ 0 whenever 𝐶 ∈ 𝐾,
(b) 𝐴† ≥ 0 and 𝐵† ≥ 0.

In such a case, we have 𝐶† = ∑∞
𝑗=0
(𝐵
†
(𝐵 − 𝐶))

𝑗
𝐵
†.

Now, we present a result for the perturbation.

Theorem 15. Let 𝐽 = [𝐴, 𝐵] be range-kernel regular with𝐴† ≥
0 and 𝐵† ≥ 0. Let 𝑋

1
, 𝑋
2
, 𝑌
1
, and 𝑌

2
be nonnegative matrices

such that 𝑅(𝑋
1
) ⊆ 𝑅(𝐴), 𝑅(𝑌

1
) ⊆ 𝑅(𝐴

𝑇
), 𝑅(𝑋

2
) ⊆ 𝑅(𝐵), and

𝑅(𝑌
2
) ⊆ 𝑅(𝐵

𝑇
). Suppose that 𝐼−𝑌𝑇

1
𝐴
†
𝑋
1
and 𝐼−𝑌𝑇

2
𝐴
†
𝑋
2
are

nonsingular with nonnegative inverses. Suppose further that
𝑋
2
𝑌
𝑇

2
≤ 𝑋
1
𝑌
𝑇

1
. Let 𝐽 = [𝐸, 𝐹], where 𝐸 = 𝐴 − 𝑋

1
𝑌
𝑇

1
and

𝐹 = 𝐵 − 𝑋
2
𝑌
𝑇

2
. Finally, let 𝐾̃ = {𝑍 ∈ 𝐽 : 𝑅(𝑍) = 𝑅(𝐸) =

𝑅(𝐹) 𝑎𝑛𝑑 𝑁(𝑍) = 𝑁(𝐸) = 𝑁(𝐹)}. Then,

(a) 𝐸† ≥ 0 and 𝐹† ≥ 0.
(b) 𝑍† ≥ 0 whenever 𝑍 ∈ 𝐾̃.

In that case, 𝑍† = ∑∞
𝑗=0
(𝐵
†
𝐵 − 𝐹

†
𝑍)
𝑗
𝐹
†.

Proof. It follows fromTheorem 7 that

𝐸
†
= 𝐴
†
+ 𝐴
†
𝑋
1
(𝐼 − 𝑌

𝑇

1
𝐴
†
𝑋
1
)
−1

𝑌
𝑇

1
𝐴
†
,

𝐹
†
= 𝐵
†
+ 𝐵
†
𝑋
2
(𝐼 − 𝑌

𝑇

2
𝐵
†
𝑋
2
)
−1

𝑌
𝑇

2
𝐵
†
.

(13)

Also, we have 𝐸𝐸† = 𝐴𝐴
†, 𝐸†𝐸 = 𝐴

†
𝐴, 𝐹†𝐹 = 𝐵

†
𝐵,

and 𝐹𝐹† = 𝐵𝐵
†. Hence, 𝑅(𝐸) = 𝑅(𝐴), 𝑁(𝐸) = 𝑁(𝐴),

𝑅(𝐹) = 𝑅(𝐵), and 𝑁(𝐹) = 𝑁(𝐵). This implies that the
interval 𝐽 is range-kernel regular. Now, since 𝐸 and 𝐹 satisfy
the conditions of Theorem 10, we have 𝐸† ≥ 0 and 𝐹† ≥ 0
proving (a). Hence, by Theorem 14, 𝑍† ≥ 0 whenever 𝑍 ∈ 𝐾̃.
Again, by Theorem 14, we have 𝑍† = ∑∞

𝑗=0
(𝐹
†
(𝐹 − 𝑍))

𝑗
𝐹
†
=

∑
∞

𝑗=0
(𝐵
†
𝐵 − 𝐹

†
𝑍)
𝑗
𝐹
†.

5. Iterations That Preserve Nonnegativity of
the Moore-Penrose Inverse

In this section, we present results that typically provide
conditions for iteratively defined matrices to have nonneg-
ative Moore-Penrose inverses given that the matrices that
we start with have this property. We start with the following
result about the rank-one perturbation case, which is a direct
consequence of Theorem 10.

Theorem 16. Let 𝐴 ∈ R𝑛×𝑛 be such that 𝐴† ≥ 0. Let x ∈ R𝑚

and y ∈ R𝑛 be nonnegative vectors such that x ∈ 𝑅(𝐴), y ∈
𝑅(𝐴
𝑇
), and 1 − y𝑇𝐴†x ̸= 0. Then (𝐴 − xy𝑇)† ≥ 0 if and only if

y𝑇𝐴†x < 1.

Example 17. Let us consider 𝐴 = (1/3) (
1 −1 1

−1 4 −1

1 −1 1
). It can be

verified that 𝐴 can be written in the form 𝐴 = (
𝐼2

𝑒
𝑇

1

) (𝐼
2
+

e
1
𝑒
𝑇

1
)
−1
𝐶
−1
(𝐼
2
+ e
1
𝑒
𝑇

1
)
−1
(𝐼2 e
1) where e1 = (1, 0)

𝑇 and 𝐶 is
the 2 × 2 circulant matrix generated by the row (1, 1/2). We
have 𝐴† = (1/2) ( 2 1 21 2 1

2 1 2
) ≥ 0. Also, the decomposition 𝐴 =

𝑈−𝑉, where𝑈 = (1/3) ( 1 −1 2−1 4 −2

1 −1 2
), and𝑉 = (1/3) ( 0 0 10 2 −1

0 0 1
) is

a proper splitting of 𝐴 with 𝑈† ≥ 0, 𝑈†𝑉 ≥ 0, and 𝜌(𝑈†𝑉) <
1.

Let x = y = (1/3, 1/6, 1/3)
𝑇. Then, x and let y are

nonnegative, x ∈ 𝑅(𝐴) and y ∈ 𝑅(𝐴𝑇). We have 1 − y𝑇𝐴†x =
5/12 > 0 and 𝜌(𝑈†𝑊) < 1 for𝑊 = 𝑉 + xy𝑇. Also, it can be
seen that (𝐴 − xy𝑇)† = (1/20) ( 47 28 4728 32 28

47 28 47
) ≥ 0. This illustrates

Theorem 10.

Let x
1
, x
2
, . . . , x

𝑘
∈ R𝑚 and y

1
, y
2
, . . . , y

𝑘
∈ R𝑛 be nonneg-

ative. Denote 𝑋
𝑖
= (x
1
, x
2
, . . . , x

𝑖
) and 𝑌

𝑖
= (y
1
, y
2
, . . . , y

𝑖
) for

𝑖 = 1, 2, . . . , 𝑘. Then𝐴−𝑋
𝑘
𝑌
𝑇

𝑘
= 𝐴−∑

𝑘

𝑖=1
x
𝑖
y𝑇
𝑖
. The following

theorem is obtained by a recurring application of the rank-
one result of Theorem 16.

Theorem 18. Let𝐴 ∈ R𝑚×𝑛 and let𝑋
𝑖
, 𝑌
𝑖
be as above. Further,

suppose that x
𝑖
∈ 𝑅(𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
), y
𝑖
∈ 𝑅(𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
)
𝑇 and

1 − y𝑇
𝑖
(𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
)
†x
𝑖
be nonzero. Let (𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
)
†
≥ 0,

for all 𝑖 = 1, 2, . . . , 𝑘. Then (𝐴 − 𝑋
𝑘
𝑌
𝑇

𝑘
)
†
≥ 0 if and only if

y𝑇
𝑖
(𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
)
†x
𝑖
< 1, where 𝐴 − 𝑋

0
𝑌
𝑇

0
is taken as 𝐴.

Proof. Set 𝐵
𝑖
= 𝐴 − 𝑋

𝑖
𝑌
𝑇

𝑖
for 𝑖 = 0, 1, . . . , 𝑘, where 𝐵

0
is

identified as 𝐴. The conditions in the theorem can be written
as:

x
𝑖
∈ 𝑅 (𝐵

𝑖−1
) , y

𝑖
∈ 𝑅 (𝐵

𝑇

𝑖−1
) ,

1 − y𝑇
𝑖
𝐵
†

𝑖−1
x
𝑖
̸= 0,

∀𝑖 = 1, 2 . . . , 𝑘.

(14)

Also, we have 𝐵†
𝑖
≥ 0, for all 𝑖 = 0, 1, . . . , 𝑘 − 1.

Now, assume that 𝐵†
𝑘
≥ 0. Then by Theorem 16 and the

conditions in (14) for 𝑖 = 𝑘, we have y
𝑘
𝐵
†

𝑘−1
x
𝑘
< 1. Also

since by assumption 𝐵†
𝑖
≥ 0 for all 𝑖 = 0, 1 . . . , 𝑘 − 1, we have

y𝑇
𝑖
𝐵
†

𝑖−1
x
𝑖
< 1 for all 𝑖 = 1, 2 . . . , 𝑘.

The converse part can be proved iteratively. Then condi-
tion y𝑇

1
𝐵
0

†x
1
< 1 and the conditions in (14) for 𝑖 = 1 imply

that 𝐵
1

†
≥ 0. Repeating the argument for 𝑖 = 2 to 𝑘 proves the

result.

The following result is an extension of Lemma 2.3 in [1],
which is in turn obtained as a corollary.This corollary will be
used in proving another characterization for (𝐴−𝑋

𝑘
𝑌
𝑇

𝑘
)
†
≥ 0.



6 Journal of Applied Mathematics

Theorem 19. Let 𝐴 ∈ R𝑛×𝑛, b,c ∈ R𝑛 be such that −b ≥ 0,
−c ≥ 0 and 𝛼(∈ R) > 0. Further, suppose that b ∈ 𝑅(𝐴) and
c ∈ 𝑅(𝐴𝑇). Let 𝐴 = ( 𝐴 b

c𝑇 𝛼 ) ∈ R(𝑛+1)×(𝑛+1). Then, 𝐴† ≥ 0 if and
only if 𝐴† ≥ 0 and c𝑇𝐴†b < 𝛼.

Proof. Let us first observe that 𝐴𝐴†b = b and c𝑇𝐴†𝐴 = c𝑇.
Set

𝑋 =(

𝐴
†
+
𝐴
†bc𝑇𝐴†

𝛼 − c𝑇𝐴†b
−𝐴
†b

𝛼 − c𝑇𝐴†b
−

c𝑇𝐴†

𝛼 − c𝑇𝐴†b
1

𝛼 − c𝑇𝐴†b
). (15)

It then follows that 𝐴𝑋 = ( 𝐴𝐴† 00𝑇 1 ) and 𝑋𝐴 = (
𝐴
†
𝐴 0

0𝑇 1 ). Using
these two equations, it can easily be shown that𝑋 = 𝐴†.

Suppose that 𝐴† ≥ 0 and 𝛽 = 𝛼 − c𝑇𝐴†b > 0. Then,
𝐴
†
≥ 0. Conversely suppose that 𝐴† ≥ 0. Then, we must

have 𝛽 > 0. Let {e
1
, e
2
, . . . , e

𝑛+1
} denote the standard basis

of R𝑛+1. Then, for 𝑖 = 1, 2, . . . , 𝑛, we have 0 ≤ 𝐴
†
(e
𝑖
) =

(𝐴
†e
𝑖
+(𝐴
†bc𝑇𝐴†e

𝑖
/𝛽), −(c𝑇𝐴†e

𝑖
/𝛽))
𝑇. Since c ≤ 0, it follows

that 𝐴†e
𝑖
≥ 0 for 𝑖 = 1, 2, . . . , 𝑛. Thus, 𝐴† ≥ 0.

Corollary 20 (see [1, Lemma 2.3]). Let 𝐴 ∈ R𝑛×𝑛 be
nonsingular. Let b, c ∈ R𝑛 be such that −b ≥ 0, −c ≥ 0

and 𝛼(∈ R) > 0. Let 𝐴 = (
𝐴 b
c𝑇 𝛼 ). Then, 𝐴−1 ∈ R(𝑛+1)×(𝑛+1)

is nonsingular with 𝐴−1 ≥ 0 if and only if 𝐴−1 ≥ 0 and
c𝑇𝐴−1b < 𝛼.

Now, we obtain another necessary and sufficient condi-
tion for (𝐴 − 𝑋

𝑘
𝑌
𝑇

𝑘
)
† to be nonnegative.

Theorem 21. Let 𝐴 ∈ R𝑚×𝑛 be such that 𝐴† ≥ 0. Let x
𝑖
, y
𝑖

be nonnegative vectors inR𝑛 andR𝑚 respectively, for every 𝑖 =
1, . . . , 𝑘, such that

x
𝑖
∈ 𝑅 (𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
) , y

𝑖
∈ 𝑅(𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
)
𝑇

, (16)

where 𝑋
𝑖
= (x
1
, . . . , x

𝑖
), 𝑌
𝑖
= (y
1
, . . . , y

𝑖
) and 𝐴 − 𝑋

0
𝑌
𝑇

0
is

taken as𝐴. If𝐻
𝑖
= 𝐼
𝑖
−𝑌
𝑇

𝑖
𝐴
†
𝑋
𝑖
is nonsingular and 1− y𝑇

𝑖
𝐴
†x
𝑖

is positive for all 𝑖 = 1, 2, . . . , 𝑘, then (𝐴 − 𝑋
𝑘
𝑌
𝑇

𝑘
)
†
≥ 0 if and

only if

y𝑇
𝑖
𝐴
†x
𝑖
< 1 − y𝑇

𝑖
𝐴
†
𝑋
𝑖−1
𝐻
−1

𝑖−1
𝑌
𝑇

𝑖−1
𝐴
†x
𝑖
, ∀𝑖 = 1, . . . , 𝑘. (17)

Proof. The range conditions in (16) imply that 𝑅(𝑋
𝑘
) ⊆ 𝑅(𝐴)

and 𝑅(𝑌
𝑘
) ⊆ 𝑅(𝐴

𝑇
). Also, from the assumptions, it follows

that 𝐻
𝑘
is nonsingular. By Theorem 10, (𝐴 − 𝑋

𝑘
𝑌
𝑇

𝑘
)
†
≥ 0 if

and only if𝐻−1
𝑘
≥ 0. Now,

𝐻
𝑘
= (

𝐻
𝑘−1

−𝑌
𝑇

𝑘−1
𝐴
†x
𝑘

−y𝑇
𝑘
𝐴
†
𝑋
𝑘−1

1 − y𝑇
𝑘
𝐴
†x
𝑘

) . (18)

Since 1−y𝑇
𝑘
𝐴
†x
𝑘
> 0, usingCorollary 20, it follows that𝐻−1

𝑘
≥

0 if and only if y𝑇
𝑘
𝐴
†
𝑋
𝑘−1
𝐻
−1

𝑘−1
𝑌
𝑇

𝑘−1
𝐴
†x
𝑘
< 1 − y𝑇

𝑘
𝐴
†x
𝑘
and

𝐻
−1

𝑘−1
≥ 0.

Now, applying the above argument to the matrix 𝐻
𝑘−1

,
we have that 𝐻−1

𝑘−1
≥ 0 holds if and only if 𝐻−1

𝑘−2
≥ 0

holds and y𝑇
𝑘−1
𝐴
†
𝑋
𝑘−2
(𝐼
𝑘−2

− 𝑌
𝑇

𝑘−2
𝐴
†
𝑋
𝑘−2
)
−1
𝑌
𝑇

𝑘−2
𝐴
†x
𝑘−1 <

1− y𝑇
𝑘−1
𝐴
†x
𝑘−1. Continuing the above argument, we get, (𝐴−

𝑋
𝑘
y𝑇
𝑘
)
†
≥ 0 if and only if y𝑇

𝑖
𝐴
†
𝑋
𝑖−1
𝐻
−1

𝑖−1
𝑌
𝑇

𝑖−1
𝐴
†x
𝑖
< 1−y𝑇

𝑖
𝐴
†x
𝑖
,

∀𝑖 = 1, . . . , 𝑘. This is condition (17).

We conclude the paper by considering an extension of
Example 17.

Example 22. For a fixed 𝑛, let 𝐶 be the circulant matrix
generated by the row vector (1, (1/2), (1/3), . . . (1/(𝑛 − 1))).
Consider

𝐴 = (
𝐼

𝑒
𝑇

1

) (𝐼 + e
1
𝑒
𝑇

1
)
−1

𝐶
−1
(𝐼 + e

1
𝑒
𝑇

1
)
−1

(𝐼 e
1) , (19)

where 𝐼 is the identity matrix of order 𝑛 − 1, e
1
is (𝑛 − 1) × 1

vector with 1 as the first entry and 0 elsewhere. Then, 𝐴 ∈

R𝑛×𝑛. 𝐴† is the 𝑛 × 𝑛 nonnegative Toeplitz matrix

𝐴
†
=

(
(
(
(
(
(

(

1
1

𝑛 − 1

1

𝑛 − 2
. . .

1

2
1

1

2
1

1

𝑛 − 1
. . .

1

3

1

2
...

...
...

...
...

...
1

𝑛 − 1

1

𝑛 − 2

1

𝑛 − 3
. . . 1

1

𝑛 − 1

1
1

𝑛 − 1

1

𝑛 − 2
. . .

1

2
1

)
)
)
)
)
)

)

. (20)

Let 𝑥
𝑖
be the first row of 𝐵†

𝑖−1
written as a column vector

multiplied by 1/𝑛𝑖 and let 𝑦
𝑖
be the first column of 𝐵†

𝑖−1

multiplied by 1/𝑛𝑖, where 𝐵
𝑖
= 𝐴 − 𝑋

𝑖
𝑌
𝑇

𝑖
, with 𝐵

0
being

identified with 𝐴, 𝑖 = 0, 2, . . . , 𝑘. We then have x
𝑖
≥ 0,

y
𝑖
≥ 0, 𝑥

1
∈ 𝑅(𝐴) and 𝑦

1
∈ 𝑅(𝐴

𝑇
). Now, if 𝐵†

𝑖−1
≥ 0 for

each iteration, then the vectors 𝑥
𝑖
and 𝑦

𝑖
will be nonnegative.

Hence, it is enough to check that 1 − 𝑦𝑇
𝑖
𝐵
†

𝑖−1
𝑥
𝑖
> 0 in order

to get 𝐵†
𝑖
≥ 0. Experimentally, it has been observed that for

𝑛 > 3, the condition 1 − 𝑦𝑇
𝑖
𝐵
†

𝑖−1
𝑥
𝑖
> 0 holds true for any

iteration. However, for 𝑛 = 3, it is observed that 𝐵†
1
≥ 0, 𝐵†

2
≥

0, 1 − 𝑦𝑇
1
𝐴
†
𝑥
1
> 0, and 1 − 𝑦†

2
𝐵
†

1
𝑥
2
> 0. But, 1 − 𝑦𝑇

3
𝐵
†

2
𝑥
3
< 0,

and in that case, we observe that 𝐵†
3
is not nonnegative.
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