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This paper investigates the cluster synchronization of impulsive complex networks with stochastic perturbation and time-varying
delays. Besides, the nodes in the complex networks are nonidentical. By utilizing the Lyapunov stability theory, stochastic analysis
theory, and linear matrix inequalities (LMI), sufficient conditions are derived to guarantee the cluster synchronization. The
numerical simulation is provided to show the effectiveness of the theoretical results.

1. Introduction

Over the past few years, the study of complex networks
has become an important issue. The complex networks are
constructed with individual units called nodes, connected by
links that exhibit complex topological properties, such as cou-
pled biological and chemical system, neural networks, social
interacting species, the Internet, and the World Wide Web
[1]. Thereafter, the problem of control and synchronization
in complex networks has attracted increasing attention for its
wide applications in real world.

From the literature, there are three common phenomena
in many evolving networks: delay effects, stochastic effects,
and impulsive effects. First of all, considering finite switching
speed of amplifiers and finite signal propagation time, time
delay is ubiquitous in the implementation of electronic net-
works. There are two kinds of time delays in complex
dynamical networks.The inner delay time causes chaos, such
as delayed neural networks and delayed Chua’s circuit system
and the outer coupling delay time also exists widely, such as in
communication and traffic congestion.Therefore, time delays
cannot be ignored in order to simulate realistic networks; see
[2–5]. Second, the nodes in dynamical networks are often
subject to various types of noise and uncertainty, which can
have a great influence on the behavior of dynamical networks.

For instance, signals transmitted between nodes of complex
networks are unavoidably subject to stochastic perturbations
from environment, which may cause information contained
in these signals to be lost; see [6, 7]. Therefore, stochastic
perturbations should be included in the complex network
model.Third, impulsive exchange is a common phenomenon
in many evolving networks. The state of nodes is often
subject to instantaneous perturbations and experience abrupt
change at certain instants which may be caused by switch-
ing phenomena, frequency change, or sudden noise. For
example, the states of electronic networks and biological
networks are often subject to instantaneous disturbances and
experience abrupt changes at certain instants, which may
be caused by switching phenomenon, frequency change, or
other sudden noises, which could be expressed as impulsive
effects. Thus, impulsive dynamical networks, which involve
sudden changes at certain discrete times, are receiving more
and more attention of researchers for various fields, that
is, [8–10] and the references therein. Since time delays,
stochastic perturbations, and impulsive effects can heavily
affect the dynamical behaviors of the networks, it is neces-
sary to investigate the time delay, stochastic perturbations,
and impulsive effects on the synchronization of dynamical
networks. Actually, impulsive stochastic perturbed complex
networks have attracted the interest of many researchers for



2 Journal of Applied Mathematics

their various applications in information science, economic
systems, automated control systems, and so forth.

Synchronization is one of the hot topics in the investiga-
tion of complex networks. Generally speaking, synchroniza-
tion is the process in which two or more dynamical systems
seek to adjust a certain prescribed property of their motion
to a common behavior in the limit as time tends to infinity
either by virtue of coupling or by forcing [11]. Synchronization
of complex network has observed wide potential applications
in many different areas such as population dynamic, power
system, chemical process simulation, automatic control, and
many others [12–18]. Synchronization patterns are classified
as complete synchronization [19], lag synchronization [20],
cluster synchronization [21], phase synchronization [22],
and partial synchronization [23]. Among them, the cluster
synchronization has received more and more attention. The
cluster synchronization requires that the coupled oscillators
split into subgroups called clusters, such that the oscillators
synchronize with one another in the same cluster, but there is
no synchronization among different clusters.The clusters can
be classified by different function communities contained in
the networks of real world, and the local dynamics between
two function communities are different. For instances, in
metabolic, neural, or software community networks, the
individual nodes in each community can be viewed as the
identical functional units, whereas the nodes in different
communities are different since they have different func-
tions [24]. There have been already some papers focused
on sufficient conditions for the global stability of cluster
synchronization of some related networks; see [25, 26] and
the references therein. In [27], Wang et al. investigated the
exponential synchronization of stochastic perturbed complex
networks with time-varying delays via periodically intermit-
tent pinning. Compared with the work in [27], in this paper,
we would focus on the cluster synchronization of complex
networks with stochastic perturbations, time-varying delays,
and impulsive effects. It should also be mentioned that
synchronization problems could be seen as an application of
stability. There are many papers that are concerned with the
stability of complex systems with time delays, such as [28–31],
which inspire the studies of synchronization problems.

As everyone knows, the real-world networks normally
have a large number of nodes, and it is usually impractical
to control a complex network by adding the controllers to all
nodes. Pinning control, in which controllers are only applied
to a small fraction of nodes, is an effective way to reduce
the number of controlled nodes. Chen et al. [32] proved
that the complex networks with symmetric or asymmetric
couplingmatrix achieved synchronization by a single pinning
controller. In [33], Zhao et al. proposed a pinning scheme
to solve the problems how to stabilize a network onto a
homogeneous state globally exponentially and how to select
an optimal combination between the number of pinned
nodes and the feedback control gain.

Based on the above analysis, in this paper, we study
the cluster synchronization of impulsive complex networks
with time-varying delays and stochastic perturbations by
adding feedback controllers and impulsive controllers on

a fraction of selected nodes. To obtain our main results, we
first formulate a new complex network nondelayed and time-
varying delayed linear coupling and vector-form stochastic
perturbations. By using the Lyapunov functional method, the
stochastic stability analysis theory, and linear matrix inequal-
ity technique (LMI), some novel sufficient conditions are
derived to guarantee cluster synchronization of the complex
networks.

Remark 1. The main tools to derive the results in this paper
are Lyapunov functional method, Itô formula, and linear
matrix inequality technique (LMI). It is well known that
Lyapunov functionalmethod is one of themost useful tools to
handle the stability problems. Since stochastic perturbations
are considered in the model of this paper, Itô formula is
employed to deal with the stochastic differential equations
arising in the analysis of synchronization. Linear matrix
inequality technique also plays an important role in the proof
of our main theorem.

The paper is organized as follows. In Section 2, a gen-
eral model of impulsive complex network with both time-
varying delays and stochastic perturbations is given, and
some preliminaries are stated. In Section 3, some cluster syn-
chronization criteria for such complex dynamical network are
established. In Section 4, a numerical example for verifying
the effectiveness of the theoretical results is provided. We
conclude the paper in Section 5.

2. Preliminaries

For the facility of statements, we give some definitions of
notations and lemmas, which would be used in the analysis
of the next sections. Similar definitions can also be found in
[27]. Suppose that R𝑛 and R𝑛×𝑛 denote the 𝑛-dimensional
Euclidean space and the set of all 𝑛 × 𝑛 real matrices,
respectively. The superscript 𝑇 denotes the transpose of a
matrix or vector, Tr(⋅) denotes the trace of the corre-
sponding matrix, and 𝐼

𝑛
denotes the identity matrix

with 𝑛 dimensions. For square matrices 𝑀, the notation
𝑀 > 0 (< 0) denotes that 𝑀 is positive-definite (negative-
definite) matrix. Suppose that 𝐴 is a symmetric matrix.
Denote 𝜆max(𝐴) as the largest eigenvalue of 𝐴, and denote
𝜆min(𝐴) as the smallest eigenvalue of 𝐴. Let (Ω,F,
{F
𝑡
}
𝑡≥0

,P) be a completed probability space with a filtration
{F
𝑡
}
𝑡≥0

which is right continuous and F
0
contains all P-

null sets. Let 𝑤(𝑡) = (𝑤
1
(𝑡), 𝑤
2
(𝑡), . . . , 𝑤

𝑛
(𝑡))
𝑇 be an 𝑚-

dimensional Brownian motion defined on probability
space. Denote by 𝐶([−𝜏, 0]; 𝑅

𝑛

) the family of continuous
function 𝜙 from [−𝜏, 0] to R𝑛 with the uniform norm
‖𝜙‖
2

= sup
−𝜏≤𝑠≤0

𝜙(𝑠)
𝑇

𝜙(𝑠). Denote by 𝐶
2

F0
([−𝜏, 0];R𝑛) the

family of all F
0
measurable, 𝐶([−𝜏, 0];R𝑛)-valued sto-

chastic variables 𝜉 = {𝜉(𝜃):−𝜏 ≤ 𝜃 ≤ 0} such that
∫

0

−𝜏

E‖𝜉(𝑠)‖
2

𝑑𝑠 ≤ ∞, where E stands for the correspondent
expectation operator with respect to the given probability
measure P.

Consider an impulsive complex network consisting of
𝑁 nodes and 𝑚 communities (𝑁 > 𝑚 ≥ 2) with nondelayed
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and time-varying delayed linear coupling and vector-form
stochastic perturbations, which is described as

𝑑𝑥
𝑖
(𝑡) =

{

{

{

𝑓
𝜇𝑖

(𝑡, 𝑥
𝑖
(𝑡) , 𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑎
𝑖𝑗
Γ (𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡))

+

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑏
𝑖𝑗
Γ (𝑥
𝑗
(𝑡 − 𝜏
𝑐
(𝑡)) − 𝑥

𝑖
(𝑡))

}

}

}

𝑑𝑡

+ 𝜎
𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏

𝑐
(𝑡))) 𝑑𝑤

𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑁, 𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ N

𝑥
𝑗
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
+

𝑘
) = ] (𝑥

𝑗
(𝑡
−

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
))

for 𝑘 ∈ N (𝑖, 𝑗) : 𝑎
𝑖𝑗

> 0,

(1)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))
𝑇

∈ R𝑛 represents the
state vector of the 𝑖th node of the network; 𝑓

𝜇𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 −

𝜏(𝑡))) = [𝑓
𝜇𝑖1

(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡−𝜏(𝑡))), 𝑓

𝜇𝑖2
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡−𝜏(𝑡))), . . .,

𝑓
𝜇𝑖𝑛

(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡)))]

𝑇 is a continuous vector-form func-
tion. If node 𝑖 belongs to the 𝑗th community, then we
let 𝜇
𝑖

= 𝑗. We denote by 𝑈
𝑖
the set of all nodes in the 𝑖th

community and 𝑈̃
𝐴

𝑖
, which is the subset of 𝑈

𝑖
, is the index set

of all nodes in the 𝑖th community having direct connections
to other communities in 𝐴. And by the similar way, we can
define 𝑈̃

𝐵

𝑖
. The function 𝑓

𝜇𝑖
(⋅) describes the local dynamics

of nodes in the 𝜇
𝑖
th community, which is differentiable

and capable of performing abundant dynamical behaviors.
For any pair of indices 𝑖 and 𝑗, if 𝜇

𝑖
̸= 𝜇
𝑗
, which means

node 𝑖 and node 𝑗 belong to different communities, then
𝑓
𝜇𝑖

̸= 𝑓
𝜇𝑗
. Γ = diag(𝛾

1
, 𝛾
2
, . . . , 𝛾

𝑛
) is an inner coupling of the

networks, satisfying 𝛾
𝑗

> 0, 𝑗 = 1, 2, . . . , 𝑛. 𝐴 = [𝑎
𝑖𝑗
] ∈

R𝑛×𝑛 and 𝐵 = [𝑏
𝑖𝑗
] ∈ R𝑛×𝑛 are outer coupling matrices of the

networks at time 𝑡 and 𝑡 − 𝜏
𝑐
(𝑡), respectively, which are both

symmetric, satisfying 𝑎
𝑖𝑗

≥ 0 for 𝑖 ̸= 𝑗, 𝑎
𝑖𝑖

= −∑
𝑁

𝑗=𝑖,𝑗 ̸= 𝑖
𝑎
𝑖𝑗
,

and 𝑏
𝑖𝑗

≥ 0 for 𝑖 ̸= 𝑗, 𝑏
𝑖𝑖

= −∑
𝑁

𝑗=𝑖,𝑗 ̸= 𝑖
𝑏
𝑖𝑗
; 𝜏(𝑡) is the inner

time-varying delay satisfying 𝜏 ≥ 𝜏(𝑡) ≥ 0, and 𝜏
𝑐
(𝑡) is

the coupling time-varying delay satisfying 𝜏
𝑐

≥ 𝜏
𝑐
(𝑡) ≥

0; 𝜎
𝑖
(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏(𝑡)), 𝑥(𝑡 − 𝜏

𝑐
(𝑡))) = 𝜎

𝑖
(𝑡, 𝑥
1
(𝑡), . . .,

𝑥
𝑛
(𝑡), 𝑥
1
(𝑡 − 𝜏(𝑡)), . . . , 𝑥

𝑛
(𝑡 − 𝜏(𝑡)), 𝑥

1
(𝑡 − 𝜏

𝑐
(𝑡)), . . . , 𝑥

𝑛
(𝑡 −

𝜏
𝑐
(𝑡))) ∈ R𝑛×𝑛 is the noise intensity matrix, and 𝑤

𝑖
(𝑡) =

(𝑤
𝑖1
(𝑡), 𝑤
𝑖2
(𝑡), . . . , 𝑤

𝑖𝑛
(𝑡))
𝑇

∈ R𝑛 is a bounded vector-form
Weiner process, satisfying

E𝑤
𝑖𝑗
(𝑡) = 0, E𝑤

2

𝑖𝑗
(𝑡) = 1,

E𝑤
𝑖𝑗
(𝑡) 𝑤
𝑖𝑗
(𝑠) = 0 (𝑠 ̸= 𝑡) .

(2)

In this paper, we always assume that 𝐴 is irreducible in the
sense that there is no isolated node and |]| < 1, which means
that corresponding impulsive effects are synchronizing.

The initial conditions associated with (1) are
𝑥
𝑖
(𝑠) = 𝜉

𝑖
(𝑠) , − ̌𝜏 ≤ 𝑠 ≤ 0, 𝑖 = 1, 2, . . . , 𝑁, (3)

where ̌𝜏 = max{𝜏, 𝜏
𝑐
}, 𝜉
𝑖
∈ 𝐶
𝑏

F0
([− ̌𝜏, 0],R𝑛) with the norm

‖𝜉
𝑖
‖
2

= sup
− ̌𝜏≤𝑠≤0

𝜉
𝑖
(𝑠)
𝑇

𝜉
𝑖
(𝑠). We define 𝑠

𝜇𝑖
= (𝑠
𝜇𝑖1

, 𝑠
𝜇𝑖2

, . . .,
𝑠
𝜇𝑖𝑛

)
𝑇

∈ 𝑅
𝑛 that satisfies

𝑑𝑠
𝜇𝑖

(𝑡) = {𝑓
𝜇𝑖

(𝑡, 𝑠
𝜇𝑖

(𝑡) , 𝑠
𝜇𝑖

(𝑡 − 𝜏 (𝑡)))

−𝑏
𝑖𝑖
Γ (𝑠
𝜇𝑖

(𝑡 − 𝜏 (𝑡)) − 𝑠
𝜇𝑖

(𝑡))} 𝑑𝑡,

(4)

which describes the identical local dynamics for the nodes in
the 𝜇
𝑖
th community. Obviously, the synchronization state in

the same community 𝑠
𝜇𝑖
(𝑡) is uniform.Therefore, we assume

that 𝑏
11

= 𝑏
22

= ⋅ ⋅ ⋅ = 𝑏
𝑁𝑁

.
In order to achieve the cluster synchronization objective,

the feedback controllers as well as impulsive controllers are
added to part of its nodes. When 𝑡 ̸= 𝑡

𝑘
for 𝑘 ∈ N

𝑢
𝑖
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

−𝜀
𝑖
(𝑥
𝑖
(𝑡) − 𝑠

𝜇𝑖
(𝑡)) −

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑠
𝜇𝑗

(𝑡) 𝑖 ∈ 𝑈̃
𝐴

𝜇𝑖

\ 𝑈̃
𝐵

𝜇𝑖

,

−𝜀
𝑖
(𝑥
𝑖
(𝑡) − 𝑠

𝜇𝑖
(𝑡)) −

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ𝑠
𝜇𝑗

(𝑡) 𝑖 ∈ 𝑈̃
𝐵

𝜇𝑖

\ 𝑈̃
𝐴

𝜇𝑖

,

−𝜀
𝑖
(𝑥
𝑖
(𝑡) − 𝑠

𝜇𝑖
(𝑡)) −

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑠
𝜇𝑗

(𝑡)

−

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ𝑠
𝜇𝑗

(𝑡) 𝑖 ∈ 𝑈̃
𝐴

𝜇𝑖

∩ 𝑈̃
𝐵

𝜇𝑖

,

0, 𝑖 otherwise,
(5)

and when 𝑡 = 𝑡
𝑘
for 𝑘 ∈ N

𝑒
𝑖
(𝑡
+

𝑘
) = ]𝑒

𝑖
(𝑡
−

𝑘
) for 𝑖 ∈ 𝑈̃

𝐴

𝜇𝑖

∪ 𝑈̃
𝐵

𝜇𝑖

, (6)

where 𝜀
𝑖

> 0 (𝑖 ∈ 𝑈̃
𝐴

𝜇𝑖

∪ 𝑈̃
𝐵

𝜇𝑖

) represents control gain and
by defining 𝜀

𝑖
= 0 for 𝑖 otherwise, we can denote Ξ =

diag{𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑁
}. Define the synchronization error as

𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡)−𝑠
𝜇𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑁), according to the control-

lers (5) and (6), the error system is derived as follows:

𝑑𝑒
𝑖
(𝑡) =

{

{

{

𝑓
𝜇𝑖

(𝑡, 𝑥
𝑖
(𝑡) , 𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

− 𝑓
𝜇𝑖

(𝑡, 𝑠
𝜇𝑖

(𝑡) , 𝑠
𝜇𝑖

(𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑒
𝑗
(𝑡) +

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ𝑒
𝑗
(𝑡 − 𝜏
𝑐
(𝑡))

−𝑏
𝑖𝑖
Γ (𝑒
𝑖
(𝑡 − 𝜏
𝑐
(𝑡)) − 𝑒

𝑖
(𝑡)) − 𝜀

𝑖
𝑒
𝑖
(𝑡)

}

}

}

𝑑𝑡
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+ 𝜎
𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑥 (𝑡 − 𝜏
𝑐
(𝑡))) 𝑑𝑤

𝑖
(𝑡) ,

for 𝑖 = 1, 2, . . . , 𝑁, 𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ N

𝑒
𝑖
(𝑡
+

𝑘
) − 𝑒
𝑗
(𝑡
+

𝑘
) = ] (𝑒

𝑖
(𝑡
−

𝑘
) − 𝑒
𝑗
(𝑡
−

𝑘
))

for (𝑖, 𝑗) : 𝑎
𝑖𝑗

> 0, 𝑡 = 𝑡
𝑘
, 𝑘 ∈ N

𝑒
𝑖
(𝑡
+

𝑘
) = ]𝑒

𝑖
(𝑡
−

𝑘
) for 𝑖 ∈ 𝑈̃

𝐴

𝜇𝑖

∪ 𝑈̃
𝐵

𝜇𝑖

, 𝑡 = 𝑡
𝑘
, 𝑘 ∈ N.

(7)

Remark 2. Since both state coupling and impulsive coupling
are considered in (1), it is reasonable to expect that both
the state-feedback controller (5) and the impulsive controller
(6) will play important roles in the stabilizing process of the
complex network (1). Thus, the controller designed in this
paper consists of both the state-feedback controller (5) and
the impulsive controller (6).

Definition 3. The complex network (4) is said to be exponen-
tially synchronized if the trivial solution of system (9) satisfies

𝑁

∑

𝑖=1

E
󵄩
󵄩
󵄩
󵄩
𝑒
𝑖
(𝑡, 𝑡
0
, 𝜉
𝑖
)
󵄩
󵄩
󵄩
󵄩

2

≤ 𝐾𝑒
−𝜅𝑡

, (8)

where 𝐾 > 0 and 𝜅 > 0, for any initial data 𝜉
𝑖

∈ C𝑏F0
([−𝜏, 0];R𝑛).

Definition 4 (see [6]). A continuous function 𝑓(𝑡, 𝑥, 𝑦) :

[0, +∞]×R𝑛×R𝑛 → R𝑛 is said to be in the QUAD function
class, denoted as 𝑓 ∈ QUAD(𝑃, Δ, 𝜂, 𝜁), for given matrix Γ =

diag{𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛
}, if there exist positive definite diagonal

matrices 𝑃 = diag{𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
}, diagonal matrices Δ =

diag{𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑛
},and constants 𝜂 > 0, 𝜁 > 0, such that

𝑓 satisfies the following condition:

(𝑥 − 𝑦)
𝑇

𝑃 ((𝑓 (𝑡, 𝑥, 𝑧) − 𝑓 (𝑡, 𝑦, 𝑤)) − ΔΓ (𝑥 − 𝑦))

≤ −𝜂(𝑥 − 𝑦)
𝑇

(𝑥 − 𝑦) + 𝜁 (𝑧 − 𝑤)
𝑇

(𝑧 − 𝑤)

(9)

for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ R𝑛.

We will simply introduce the following notations:

𝑝̌ = max {𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
} , 𝑝 = min {𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
} ,

̌
𝛿 = max {𝛿

1
, 𝛿
2
, . . . , 𝛿

𝑛
} .

(10)

Definition 5 (see [34]). The average impulsive interval of the
impulsive sequence 𝜁 = {𝑡

1
, 𝑡
2
, . . .} is less than 𝑇

𝑎
, if there

exist a positive integer 𝑁
0
and a positive number 𝑇

𝑎
, such

that

𝑁
𝜁
(𝑇, 𝑡) ≥

𝑇 − 𝑡

𝑇
𝑎

− 𝑁
0
, ∀𝑇 ≥ 𝑡 ≥ 0, (11)

where 𝑁
𝜁
(𝑇, 𝑡) denotes the number of impulsive times of the

impulsive sequence 𝜁 in the time interval (𝑡, 𝑇).

The following assumptions will be used throughout this
paper in establishing our synchronization condition.

(H1) 𝑏
11

= 𝑏
22

= ⋅ ⋅ ⋅ = 𝑏
𝑁𝑁

= 𝑏.

(H2) 𝜏(𝑡) and 𝜏
𝑐
(𝑡) are abounded and continuously dif-

ferentiable functions, satisfying 0 < 𝜏(𝑡) ≤ 𝜏, ̇𝜏(𝑡) <

𝜏 < 1, 0 < 𝜏
𝑐
(𝑡) ≤ 𝜏

𝑐
, and ̇𝜏

𝑐
(𝑡) < 𝜏

𝑐
< 1. Denote ̌

𝜏 =

max{𝜏, 𝜏
𝑐
}.

(H3) Denote 𝜎(𝑡, 𝑒(𝑡), 𝑒(𝑡 − 𝜏(𝑡)), 𝑒(𝑡 − 𝜏
𝑐
(𝑡))) = 𝜎(𝑡, 𝑒

1
(𝑡),

. . . , 𝑒
𝑁
(𝑡), 𝑒
1
(𝑡 − 𝜏(𝑡)), . . . , 𝑒

𝑁
(𝑡 − 𝜏(𝑡)), 𝑒

1
(𝑡 − 𝜏

𝑐
(𝑡)),

. . . , 𝑒
𝑁
(𝑡 − 𝜏

𝑐
(𝑡))). There exist appropriate dimen-

sional positive definite constant matrices Υ
𝑖1
, Υ
𝑖2
,

and Υ
𝑖3
for 𝑖 = 1, 2, . . . , 𝑁 such that

Tr [𝜎
𝑖
(𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡 − 𝜏

𝑐
(𝑡)))
𝑇

× 𝜎
𝑖
(𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡 − 𝜏

𝑐
(𝑡)) )]

≤

𝑁

∑

𝑗=1

𝑒
𝑗
(𝑡)
𝑇

Υ
𝑖1
𝑒
𝑗
(𝑡)

+

𝑁

∑

𝑗=1

𝑒
𝑗
(𝑡 − 𝜏 (𝑡))

𝑇

Υ
𝑖2
𝑒
𝑗
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝑒
𝑗
(𝑡 − 𝜏
𝑐
(𝑡))
𝑇

Υ
𝑖3
𝑒
𝑗
(𝑡 − 𝜏
𝑐
(𝑡)) .

(12)

Lemma 6 (see [35] (Itô formula)). Consider an 𝑛-dimen-
sional stochastic differential equation

𝑑𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) 𝑑𝜔 (𝑡) .

(13)

Let 𝐶
2,1

(R
+

× R𝑛;R
+
) denote the family of all nonnega-

tive functions 𝑉(𝑡, 𝑥) on R
+

× R𝑛, which are twice con-
tinuously differentiable in 𝑥 and once differentiable in 𝑡. If
𝑉 ∈ 𝐶

2,1

(R
+

× R𝑛;R
+
), define an operator L𝑉 from R

+
×

R𝑛 to R by

L𝑉 (𝑡, 𝑥) = 𝑉
𝑡
(𝑡, 𝑥) + 𝑉

𝑥
(𝑡, 𝑥) 𝑓 (𝑡, 𝑥, 𝑦)

+

1

2

Tr [𝜎(𝑡, 𝑥, 𝑦)
𝑇

𝑉
𝑥𝑥

𝜎 (𝑡, 𝑥, 𝑦)] ,

(14)

where 𝑉
𝑡
(𝑡, 𝑥) = 𝜕𝑉(𝑡, 𝑥)/𝜕𝑡, 𝑉

𝑥
(𝑡, 𝑥) = (𝜕𝑉(𝑡, 𝑥)/𝜕𝑥

1
, . . .,

𝜕𝑉(𝑡, 𝑥)/𝜕𝑥
𝑛
), 𝑉
𝑥𝑥

(𝑡, 𝑥) = (𝜕
2

𝑉(𝑡, 𝑥)/𝜕𝑥
𝑖
𝑥
𝑗
)
𝑛×𝑛

. If 𝑉 ∈

𝐶
2,1

(R
+
× R𝑛;R

+
); then for any ∞ > 𝑡 > 𝑡

0
≥ 0,

E𝑉 (𝑡, 𝑥 (𝑡)) = E𝑉 (𝑡
0
, 𝑥 (𝑡
0
)) + E∫

𝑡

𝑡0

L𝑉 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (15)

as long as the expectations of the integrals exist.
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3. Main Results

We would give some sufficient conditions for the cluster
synchronization of impulsive complex networks with time-
varying delays and stochastic perturbations in this section.

Theorem 7. Suppose the assumptions (H1), (H2), and (H3)
hold and 𝑓

𝜇𝑖
∈ 𝑄𝑈𝐴𝐷(𝑃, Δ, 𝜂, 𝜁). If there exist positive

constants 𝛼 and 𝛽, such that

[

[

[

[

𝐴 + (
̌

𝛿 + 𝑏) 𝐼
𝑁

− Ξ + 𝛼𝐼
𝑁

𝐵 − 𝑏𝐼
𝑁

2

𝐵
𝑇

− 𝑏𝐼
𝑁

2

−𝛽𝐼
𝑁

]

]

]

]

≤ 0, (16)

0 ≤
̌

𝜏 ≤ 1 −

𝑏 + 𝑐

𝑎

, (17)

where 𝛾 > 0 is the smallest root of the equation

𝛾 − 𝑎 +

𝑏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

= 0,

𝑎 =

𝜆min (2𝜂𝐼
𝑛
− 𝑝̌∑

𝑁

𝑖=1
Υ
𝑖1

+ 2𝛼𝑃Γ)

𝑝̌

,

(18)

𝑏 =

𝜆max (∑
𝑁

𝑖=1
𝑃Υ
𝑖2

+ 2𝜁𝐼
𝑁
)

𝑝

,

𝑐 =

𝜆max (∑
𝑁

𝑖=1
𝑃Υ
𝑖3

+ 2𝛽𝑃Γ)

𝑝

,

(19)

then the solution 𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑁
(𝑡) of system (4) could

reach cluster synchronization under controller (5) when the
average impulsive interval is less than 𝑇

𝑎
, and 0 < ]2+(𝑏𝜏/(1−

𝜏))𝑒
𝛾𝜏

+ (𝑐𝜏
𝑐
/(1 − 𝜏

𝑐
))𝑒
𝛾𝜏𝑐

< 1.

Proof. Let 𝑒
𝑘

(𝑡) = (𝑒
1𝑘
(𝑡), 𝑒
2𝑘
(𝑡), . . . , 𝑒

𝑁𝑘
(𝑡))
𝑇, 𝑘 = 1, 2, . . . , 𝑛.

Define a Lyapunov function

𝑉 (𝑡, 𝑒 (𝑡)) ≡ 𝑉 (𝑡) =

1

2

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇

𝑃𝑒
𝑖
(𝑡) . (20)

When 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), according to Lemma 6, we have

L𝑉 (𝑡, 𝑒 (𝑡))

=

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇

𝑃

{

{

{

𝑓
𝜇𝑖

(𝑡, 𝑥
𝑖
(𝑡) , 𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

− 𝑓
𝜇𝑖

(𝑡, 𝑠
𝜇𝑖

(𝑡) , 𝑠
𝜇𝑖

(𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑒
𝑗
(𝑡) +

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ𝑒
𝑗
(𝑡 − 𝜏
𝑐
(𝑡))

− 𝑏Γ (𝑒
𝑖
(𝑡 − 𝜏
𝑐
(𝑡)) − 𝑒

𝑖
(𝑡)) + 𝜀

𝑖
𝑒
𝑖
(𝑡)

}

}

}

+

1

2

Tr {𝜎
𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏

𝑐
(𝑡)))
𝑇

× 𝑃𝜎
𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏

𝑐
(𝑡))) }

=

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇

𝑃 {𝑓
𝜇𝑖

(𝑡, 𝑥
𝑖
(𝑡) , 𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

− 𝑓
𝜇𝑖

(𝑡, 𝑠 (𝑡) , 𝑠 (𝑡 − 𝜏 (𝑡))) − ΔΓ𝑒
𝑖
(𝑡)}

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇

𝑃ΔΓ𝑒
𝑖
(𝑡) +

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
𝑒
𝑖
(𝑡)
𝑇

𝑃Γ𝑒
𝑗
(𝑡)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
𝑖
(𝑡)
𝑇

𝑃Γ𝑒
𝑗
(𝑡 − 𝜏
𝑐
(𝑡))

−

𝑁

∑

𝑖=1

𝑏𝑒
𝑖
(𝑡)
𝑇

𝑃Γ𝑒
𝑖
(𝑡 − 𝜏
𝑐
(𝑡))

+

𝑁

∑

𝑖=1

𝑏𝑒
𝑖
(𝑡)
𝑇

𝑃Γ𝑒
𝑖
(𝑡) −

𝑙

∑

𝑖=1

𝜀
𝑖
𝑒
𝑖
(𝑡)
𝑇

𝑃Γ𝑒
𝑖
(𝑡)

+

1

2

𝑁

∑

𝑖=1

Tr {𝜎
𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏

𝑐
(𝑡)))
𝑇

× 𝑃𝜎
𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏

𝑐
(𝑡))) }

≤ −𝜂

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡) + 𝜁

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

𝑇

𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

+

𝑛

∑

𝑘=1

𝑝
𝑘
𝛾
𝑘
{𝑒
𝑘

(𝑡)
𝑇

(𝐴 + (
̌

𝛿 + 𝑏) 𝐼
𝑁

− Ξ) 𝑒
𝑘

(𝑡)

+ 𝑒
𝑘

(𝑡)
𝑇

(𝐵 − 𝑏𝐼
𝑁
) 𝑒
𝑘

(𝑡 − 𝜏
𝑐
(𝑡))}

+

𝑝̌

2

𝑁

∑

𝑗=1

𝑁

∑

𝑖=1

{𝑒
𝑗
(𝑡)
𝑇

Υ
𝑖1
𝑒
𝑗
(𝑡)

+ 𝑒
𝑗
(𝑡 − 𝜏 (𝑡))

𝑇

Υ
𝑖2
𝑒
𝑗
(𝑡 − 𝜏 (𝑡))

+𝑒
𝑗
(𝑡 − 𝜏
𝑐
(𝑡))
𝑇

Υ
𝑖3
𝑒
𝑗
(𝑡 − 𝜏
𝑐
(𝑡))}

≤

𝑁

∑

𝑗=1

𝑒
𝑗
(𝑡)
𝑇

(−𝜂𝐼
𝑛
+

𝑝̌

2

𝑁

∑

𝑖=1

Υ
𝑖1

− 𝛼
1
𝑃Γ) 𝑒

𝑗
(𝑡)

+

𝑁

∑

𝑗=1

𝑒
𝑗
(𝑡 − 𝜏 (𝑡))

𝑇

(𝜁𝐼
𝑁

+

𝑝̌

2

𝑁

∑

𝑖=1

Υ
𝑖2
)𝑒
𝑗
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝑒
𝑗
(𝑡 − 𝜏
𝑐
(𝑡))
𝑇

(

𝑝̌

2

𝑁

∑

𝑖=1

Υ
𝑖3

+ 𝛽
1
𝑃Γ) 𝑒

𝑗
(𝑡 − 𝜏
𝑐
(𝑡))

+

𝑛

∑

𝑘=1

𝑝
𝑘
𝛾
𝑘
{𝑒
𝑘

(𝑡)
𝑇

(𝐴 + (
̌

𝛿 + 𝑏) 𝐼
𝑁

− Ξ + 𝛼
1
𝐼
𝑁
) 𝑒
𝑘

(𝑡)
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+ 𝑒
𝑘

(𝑡)
𝑇

(𝐵 − 𝑏𝐼
𝑁
) 𝑒
𝑘

(𝑡 − 𝜏
𝑐
(𝑡))

− 𝛽
1
𝑒
𝑘

(𝑡 − 𝜏
𝑐
(𝑡))

𝑇

𝑒
𝑘

(𝑡 − 𝜏
𝑐
(𝑡))} .

(21)

From condition (16), we obtain

L𝑉 (𝑡, 𝑒 (𝑡)) ≤ −𝑎𝑉 (𝑡) + 𝑏𝑉 (𝑡 − 𝜏 (𝑡)) + 𝑐𝑉 (𝑡 − 𝜏
𝑐
(𝑡)) .

(22)

Define

𝑊(𝑡) ≡ 𝑊 (𝑡, 𝑒 (𝑡)) = 𝑒
𝛾𝑡

𝑉 (𝑡, 𝑒 (𝑡)) , (23)

where 𝛾 is the largest root of (18). For 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), we
calculate the operator

L𝑊(𝑡, 𝑒 (𝑡)) = 𝑒
𝛾𝑡

[𝛾𝑉 (𝑡) + L𝑉 (𝑡)]

≤ 𝑒
𝛾𝑡

[𝛾𝑉 (𝑡) − 𝑎
1
𝑉 (𝑡) + 𝑏𝑉 (𝑡 − 𝜏 (𝑡))

+𝑐𝑉 (𝑡 − 𝜏
𝑐
(𝑡))] .

(24)

Therefore, by the generalized Itô formula, we have that, for
any 𝑡 > 𝑡

0
≥ 0,

𝑊(𝑡) = 𝑊(𝑡
0
) + E∫

𝑡

𝑡0

L𝑊(𝑠) 𝑑𝑠. (25)

For 𝑡 ∈ [0, 𝑡
1
), we have

𝑒
𝛾𝑡

E𝑉 (𝑡) ≤ E𝑉 (0)

+ E∫

𝑡

0

𝑒
𝛾𝑠

[𝛾𝑉 (𝑠) − 𝑎𝑉 (𝑠) + 𝑏𝑉 (𝑠 − 𝜏 (𝑠))

+ 𝑐𝑉 (𝑠 − 𝜏
𝑐
(𝑠))] 𝑑𝑠

≤

𝑝̌

2

𝑁

∑

𝑖=1

E
󵄩
󵄩
󵄩
󵄩
𝜉
𝑖

󵄩
󵄩
󵄩
󵄩

2

+ (𝛾 − 𝑎)∫

𝑡

0

𝑒
𝛾𝑠

E𝑉 (𝑠) 𝑑𝑠

+ 𝑏𝑒
𝛾𝜏

∫

𝑡

0

𝑒
𝛾(𝑠−𝜏(𝑠))

E𝑉 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠

+ 𝑐𝑒
𝛾𝜏𝑐

∫

𝑡

0

𝑒
𝛾(𝑠−𝜏𝑐(𝑠))E𝑉 (𝑠 − 𝜏

𝑐
(𝑠)) 𝑑𝑠.

(26)

By changing variable 𝑠 − 𝜏(𝑠) = 𝑢, we have

∫

𝑡

0

𝑒
𝛾(𝑠−𝜏(𝑠))

E𝑉 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠 = ∫

𝑡−𝜏(𝑡)

−𝜏(0)

𝑒
𝛾𝑢

E𝑉 (𝑢)

𝑑𝑢

1 − ̇𝜏 (𝑠)

≤ ∫

𝑡

−𝜏

𝑒
𝛾𝑢

E𝑉 (𝑢)

𝑑𝑢

1 − 𝜏

≤

𝑝̌

2

𝜏

1 − 𝜏

𝑁

∑

𝑖=1

E
󵄩
󵄩
󵄩
󵄩
𝜉
𝑖

󵄩
󵄩
󵄩
󵄩

2

+

1

1 − 𝜏

∫

𝑡

0

𝑒
𝛾𝑢

E𝑉 (𝑢) 𝑑𝑢.

(27)

Substituting variable 𝑠 − 𝜏
𝑐
(𝑠) = 𝑢 gives

∫

𝑡

0

𝑒
𝛾(𝑠−𝜏𝑐(𝑠))E𝑉 (𝑠 − 𝜏

𝑐
(𝑠)) 𝑑𝑠 = ∫

𝑡−𝜏𝑐(𝑡)

−𝜏𝑐(0)

𝑒
𝛾𝑢

E𝑉 (𝑢)

𝑑𝑢

1 − ̇𝜏
𝑐
(𝑡)

≤

𝑝̌

2

𝜏
𝑐

1 − 𝜏
𝑐

𝑁

∑

𝑖=1

E
󵄩
󵄩
󵄩
󵄩
𝜉
𝑖

󵄩
󵄩
󵄩
󵄩

2

+

1

1 − 𝜏
𝑐

∫

𝑡

0

𝑒
𝛾𝑢

E𝑉 (𝑢) 𝑑𝑢.

(28)

Taking (27) and (28) into (26) and by condition (18), we
obtain

E𝑉 (𝑡) ≤

𝑝̌

2

(1 +

𝑏𝜏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐𝜏
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

)

𝑁

∑

𝑖=1

E
󵄩
󵄩
󵄩
󵄩
𝜉
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝑒
−𝛾𝑡

.

(29)

When 𝑡 ∈ [𝑡
1
, 𝑡
2
), we have E𝑉(𝑡

1
) = ]2E𝑉(𝑡

−

1
) and

𝑒
𝛾𝑡

E𝑉 (𝑡) ≤ 𝑒
𝛾𝑡1E𝑉 (𝑡

1
)

+ E∫

𝑡

𝑡1

𝑒
𝛾𝑠

[𝛾𝑉 (𝑠) − 𝑎𝑉 (𝑠) + 𝑏𝑉 (𝑠 − 𝜏 (𝑠))

+ 𝑐𝑉 (𝑠 − 𝜏
𝑐
(𝑠))] 𝑑𝑠

≤ 𝑒
𝛾𝑡1E𝑉 (𝑡

1
) +

𝑏

1 − 𝜏

𝑒
𝛾𝜏

∫

𝑡1

𝑡1−𝜏

𝑒
𝛾𝑠

E𝑉 (𝑠) 𝑑𝑠

+

𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

∫

𝑡1

𝑡1−𝜏𝑐

𝑒
𝛾𝑠

E𝑉 (𝑠) 𝑑𝑠

≤ {

𝑝̌

2

(1 +

𝑏𝜏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐𝜏
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

)

× (]
2

+

𝑏𝜏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐𝜏
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

)}

𝑁

∑

𝑖=1

E
󵄩
󵄩
󵄩
󵄩
𝜉
𝑖

󵄩
󵄩
󵄩
󵄩

2

.

(30)

Similarly, we can prove that, when 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), we have

𝑒
𝛾𝑡

E𝑉 (𝑡) ≤ {

𝑝̌

2

(1 +

𝑏𝜏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐𝜏
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

)

× (]
2

+

𝑏𝜏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐𝜏
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

)

𝑘

}

𝑁

∑

𝑖=1

E
󵄩
󵄩
󵄩
󵄩
𝜉
𝑖

󵄩
󵄩
󵄩
󵄩

2

.

(31)
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If 0 < ]2 + (𝑏𝜏/(1 − 𝜏))𝑒
𝛾𝜏

+ (𝑐𝜏
𝑐
/(1 − 𝜏

𝑐
))𝑒
𝛾𝜏𝑐

< 1, we get

E𝑉 (𝑡) ≤ {

𝑝̌

2

(1 +

𝑏𝜏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐𝜏
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

)

× (]
2

+

𝑏𝜏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐𝜏
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

)

𝑘

}

𝑁

∑

𝑖=1

E
󵄩
󵄩
󵄩
󵄩
𝜉
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝑒
−𝛾𝑡

≤ {

𝑝̌

2

(1 +

𝑏𝜏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐𝜏
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

)

× (]
2

+

𝑏𝜏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐𝜏
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

)

𝑡/𝑇𝑏−𝑁0

}

×

𝑁

∑

𝑖=1

E
󵄩
󵄩
󵄩
󵄩
𝜉
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝑒
−𝛾𝑡

= {

𝑝̌

2

(1 +

𝑏𝜏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐𝜏
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

)

×(]
2

+

𝑏𝜏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐𝜏
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

)

−𝑁0

}

× 𝑒
((ln(]2+(𝑏𝜏/(1−𝜏))𝑒𝛾𝜏+(𝑐𝜏𝑐/(1−𝜏𝑐))𝑒𝛾𝜏𝑐 ))/𝑇𝑏)𝑡

𝑁

∑

𝑖=1

E
󵄩
󵄩
󵄩
󵄩
𝜉
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝑒
−𝛾𝑡

≤ 𝐾𝑒
(((ln(]2+(𝑏𝜏/(1−𝜏))𝑒𝛾𝜏+(𝑐𝜏𝑐/(1−𝜏𝑐))𝑒𝛾𝜏𝑐 ))/𝑇𝑎) −𝛾)𝑡

,

(32)

where

𝐾 = {

𝑝̌

2

(1 +

𝑏𝜏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐𝜏
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

)

× (]
2

+

𝑏𝜏

1 − 𝜏

𝑒
𝛾𝜏

+

𝑐𝜏
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐

)

−𝑁0

}

𝑁

∑

𝑖=1

E
󵄩
󵄩
󵄩
󵄩
𝜉
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝑒
−𝛾𝑡

.

(33)

The proof is then completed.

Remark 8. In Theorem 7, we can see that the speed of
stabilizing process depends on the dynamical structure
and stochastic perturbations of the complex network, as
well as the impulsive effects |]| and the average impulsive
interval 𝑇

𝑎
. The smaller |]| and 𝑇

𝑎
are, the higher the speed

of the stabilizing process will be.

When there is no time-varying delay coupling, the net-
work (1) can be changed as

𝑑𝑥
𝑖
(𝑡) = {𝑓

𝜇𝑖
(𝑡, 𝑥
𝑖
(𝑡) , 𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑎
𝑖𝑗
Γ (𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡))} 𝑑𝑡

+ 𝜎
𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤

𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑁, 𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ N,

𝑥
𝑗
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
+

𝑘
) = ] (𝑥

𝑗
(𝑡
−

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
))

for 𝑘 ∈ N (𝑖, 𝑗) : 𝑎
𝑖𝑗

> 0.

(34)

Corollary 9. Suppose that the assumptions (H1), (H2), and
(H3) hold and 𝑓

𝜇𝑖
∈ 𝑄𝑈𝐴𝐷(𝑃, Δ, 𝜂, 𝜁). If there exist positive

constants 𝛼 such that

𝐴 +
̌

𝛿𝐼
𝑁

+ 𝛼𝐼
𝑁

− Ξ ≤ 0, 0 ≤ 𝜏 ≤ 1 −

𝑏

𝑎

, (35)

where 𝛾 > 0 is the smallest root of the equation

𝛾 − 𝑎 +

𝑏

1 − 𝜏

𝑒
𝛾𝜏

= 0,

𝑎 =

𝜆min (2𝜂𝐼
𝑛
− 𝑝̌∑

𝑁

𝑖=1
Υ
𝑖1

+ 2𝛼𝑃Γ)

𝑝̌

,

𝑏 =

𝜆max (∑
𝑁

𝑖=1
𝑃Υ
𝑖2

+ 2𝜁𝐼
𝑁
)

𝑝

,

(36)

then the solution 𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑁
(𝑡) of system (34) could

reach cluster synchronization under the controller (5)when the
average impulsive interval is less than 𝑇

𝑎
and 0 < ]2+(𝑏𝜏/(1−

𝜏))𝑒
𝛾𝜏

< 1.

When the time-varying delays are constant (i.e., 𝜏(𝑡) =

𝜏, 𝜏
𝑐
(𝑡) = 𝜏

𝑐
), we get the following corollary.

Corollary 10. Suppose the assumptions (H1), (H2), and (H3)
hold and 𝑓

𝜇𝑖
∈ 𝑄𝑈𝐴𝐷(𝑃, Δ, 𝜂, 𝜁). If there exist positive

constants 𝛼 and 𝛽, such that

[

[

[

[

𝐴 + (
̌

𝛿 + 𝑏) 𝐼
𝑁

− Ξ + 𝛼𝐼
𝑁

𝐵 − 𝑏𝐼
𝑁

2

𝐵
𝑇

− 𝑏𝐼
𝑁

2

−𝛽𝐼
𝑁

]

]

]

]

≤ 0, (37)

where 𝛾 > 0 is the smallest root of the equation

𝛾 − 𝑎 + 𝑏𝑒
𝛾𝜏

+ 𝑐𝑒
𝛾𝜏𝑐

= 0,

𝑎 =

𝜆min (2𝜂𝐼
𝑛
− 𝑝̌∑

𝑁

𝑖=1
Υ
𝑖1

+ 2𝛼𝑃Γ)

𝑝̌

,

𝑏 =

𝜆max (∑
𝑁

𝑖=1
𝑃Υ
𝑖2

+ 2𝜁𝐼
𝑁
)

𝑝

,

𝑐 =

𝜆max (∑
𝑁

𝑖=1
𝑃Υ
𝑖3

+ 2𝛽𝑃Γ)

𝑝

,

(38)

then the solution 𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑁
(𝑡) of system (4) could

reach cluster synchronization under controller (5) when the
average impulsive interval is less than 𝑇

𝑎
and 0 < ]2 +𝑏𝜏𝑒

𝛾𝜏

+

𝑐𝜏
𝑐
𝑒
𝛾𝜏𝑐

< 1.



8 Journal of Applied Mathematics

14

11 17

12

19

10

8
7

15

20

18
16

13

9

4
61

5

2

3

(a)

8

7

6

9

10

12

14

16

11

13 15

17

20

1

18

2
35 4

19

(b)

Figure 1: The controlled complex network (41). (a) The topological structure of matrix A. (b) The topological structure of matrix B.
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Figure 2: (a) The trajectories of the state variables of 𝑥
𝑖1

(𝑖 = 1, 2, . . . , 10) in system (41) under pinning control; (b) The trajectories of the
state variables of 𝑥

𝑖2
(𝑖 = 1, 2, . . . , 10) in system (41) under pinning control.

4. Numerical Simulation

In this section, we give numerical simulation to verify the
theorem given in the previous section.

Consider the following chaotic delayed neural networks:

𝑓
𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))

= −𝐶𝑥 (𝑡) + 𝐴
𝑖
𝑓 (𝑥 (𝑡)) + 𝐵

𝑖
𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) ,

(39)

where 𝑓(𝑥) = 𝑔(𝑥) = tanh(𝑥), 𝜏(𝑡) = 1,

𝐶 = [

1 0

0 1
] , 𝐴

1
= [

2 −0.1

−5 4.5
] ,

𝐵
1
= [

−1.5 −0.1

−0.2 −4
] , 𝐴

2
= [

2 −0.2

−5 4.5
] ,

𝐵
2
= [

−1.2 −0.1

−0.1 −4
] .

(40)

Take 𝑃 = diag{1, 2} and Δ = diag{5, 11, 5} and we have 𝜂 =

0.15, 𝜁 = 3.25. Hence the condition (9) can be satisfied for 𝑖 =

1, 2 (see [6]).
In order to verify our results, we consider the following

complex network:

𝑑𝑥
𝑖
(𝑡) =

{

{

{

𝑓
𝜇𝑖

(𝑡, 𝑥
𝑖
(𝑡) , 𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

+

10

∑

𝑗=1,𝑖 ̸= 𝑗

𝑎
𝑖𝑗
Γ (𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡))
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Figure 3: (a) The time evolution of 𝑒
𝑖1
(𝑖 = 1, 2, . . . , 10) in system (41) under pinning control. (b) The time evolution of 𝑒

𝑖2
(𝑖 = 1, 2, . . . , 10)

in system (41) under pinning control.

+

10

∑

𝑗=1,𝑖 ̸= 𝑗

𝑏
𝑖𝑗
Γ (𝑥
𝑗
(𝑡 − 𝜏
𝑐
(𝑡)) − 𝑥

𝑖
(𝑡))

}

}

}

𝑑𝑡

+ 𝜎
𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏

𝑐
(𝑡))) 𝑑𝑤

𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 20,

(41)
where

Γ = [

1 0

0 1
] , 𝜏

𝑐
(𝑡) = 0.1

𝑒
𝑡

1 + 𝑒
𝑡
,

𝜎
𝑖
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏

𝑐
(𝑡)))

= 0.1 × diag {𝑥
𝑖1
(𝑡) , 𝑥
𝑖2
(𝑡)} .

(42)

In this simulation, we consider a networkwith the topological
structure of Figure 1 for 20 nodes with 2 communities.
The nodes numbered 𝑖 = 1, 2, . . . , 10 belong to the first
community, while the rest of the nodes belong to the second
community. By the pinning scheme above, we pin the nodes
1, 7, 8, 9, 10, 11, 12, 13, 14, and 20.

Through computation, we get 𝜏 = 1, 𝜏 = 0, 𝜏
𝑐
= 0.1, 𝜏

𝑐
=

0.1, and Υ
𝑖𝑗

= 0.01𝐼
2
for 𝑖 = 1, 2, . . . , 𝑁 and 𝑗 = 1, 2. Let the

control strength 𝜀
𝑖
= 90. By using the Matlab LMI toolbox,

we can obtain the following solution for the conditions of
Theorem 7: 𝑎 = 67.5, 𝑏 = 5.3, 𝑐 = 0.7, 𝛼 = 45.5, 𝛽 =

0.2, 𝑇 = 0.8, and ] = 0.7.
The initial conditions of the numerical simulations are as

follows: 𝑥
𝑖𝑗
(𝑡) = 𝜉

𝑖𝑗
, 𝑖 = 1, 2, . . . , 10, 𝑗 = 1, 2, for all 𝑡 ∈

[−1, 0], where 𝜉
𝑖𝑗
are chosen randomly in [−10, 10]. By using

the Euler-Maruyama method, the simulation is carried
out with Δ = 0.01. The trajectories of the state vari-
ables of 𝑥

𝑖1
and 𝑥

𝑖2
(𝑖 = 1, 2, . . . , 10) in system (41) under

pinning control are shown in Figure 2. And Figure 3 exhibits
the time evolutions of synchronization errors under pinning
control.

5. Conclusion

In this paper, we investigated the cluster synchronization of
impulsive complex networks with time-varying delay cou-
pling and stochastic perturbations. Specifically, we achieved
global exponential synchronization by applying pinning con-
trol scheme to a small fraction of nodes and derived sufficient
conditions for the global exponential stability of synchroniza-
tion. Finally, for clarity of exposition, a numerical example
was considered to illustrate the theoretical analysis by using
Matlab.
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