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The notion of a modular metric on an arbitrary set and the corresponding modular spaces, generalizing classical modulars over
linear spaces like Orlicz spaces, were recently introduced. In this paper we introduced and study the concept of one-local retract
in modular metric space. In particular, we investigate the existence of common fixed points of modular nonexpansive mappings
defined on nonempty 𝜔-closed 𝜔-bounded subset of modular metric space.

1. Introduction

The purpose of this paper is to give an outline of a com-
mon fixed-point theory for nonexpansive mappings (i.e.,
mappings with the modular Lipschitz constant 1) on some
subsets of modular metric spaces which are natural general-
ization of classical modulars over linear spaces like Lebesgue,
Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, Calderon-
Lozanovskii, and many other spaces. Modular metric spaces
were introduced in [1, 2].Themain idea behind this new con-
cept is the physical interpretation of the modular. Informally
speaking, whereas a metric on a set represents nonnegative
finite distances between any two points of the set, a modular
on a set attributes a nonnegative (possibly, infinite valued)
“field of (generalized) velocities” to each “time” 𝜆 > 0 (the
absolute value of) an average velocity 𝜔𝜆(𝑥, 𝑦) is associated
in such a way that in order to cover the “distance” between
points 𝑥, 𝑦 ∈ 𝑋 it takes time 𝜆 to move from 𝑥 to 𝑦 with
velocity 𝜔𝜆(𝑥, 𝑦). But the way we approached the concept of
modular metric spaces is different. Indeed we look at these
spaces as the nonlinear version of the classicalmodular spaces
introduced by Nakano [3] on vector spaces and Musielak-
Orlicz spaces introduced by Musielak [4] and Orlicz [5].

In recent years, there was an uptake interest in the
study of electrorheological fluids, sometimes referred to as
“smart fluids” (for instance, lithium polymethacrylate). For
these fluids, modeling with sufficient accuracy using classical

Lebesgue and Sobolev spaces, 𝐿𝑝 and𝑊1,𝑝, where 𝑝 is a fixed
constant is not adequate, but rather the exponent 𝑝 should
be able to vary [6, 7]. One of the most interesting problems in
this setting is the famous Dirichlet energy problem [8, 9].The
classical technique used so far in studying this problem is to
convert the energy function, naturally defined by a modular,
to a convoluted and complicated problem which involves a
norm (the Luxemburg norm). The modular metric approach
is more natural and has not been used extensively.

In many cases, particularly in applications to integral
operators, approximation, and fixed point results, modular
type conditions are much more natural as modular type
assumptions can be more easily verified than their metric or
norm counterparts. In recent years, therewas a strong interest
to study the fixed point property in modular function spaces
after the first paper [10] was published in 1990. More recently,
the authors presented a fixed point result for pointwise
nonexpansive and asymptotic pointwise nonexpansive acting
inmodular functions spaces [11].The theory of nonexpansive
mappings defined on convex subsets of Banach spaces has
been well developed since the 1960s (see, e.g., Belluce and
Kirk [12], Browder [13], Bruck [14], and Lim [15]), and gener-
alized to other metric spaces (see e.g., [16–18]), and modular
function spaces (see e.g., [10]).The corresponding fixed-point
results were then extended to larger classes of mappings like
pointwise contractions, asymptotic pointwise contractions
[18–22], and asymptotic pointwise nonexpansive mappings
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[11]. In [23], Penot presented an abstract version of Kirk’s
fixed point theorem [24] for nonexpansive mappings. Many
results of fixed point in metric spaces were developed after
Penot’s formulation. Using Penot’s work, the author in [25]
proved some results in metric spaces with uniform normal
structure similar to the ones known in Banach spaces. In
[26], Khamsi introduced the concept of one-local retract in
metric spaces and proved that any commutative family of
nonexpansive mappings defined on a metric space with a
compact and normal convexity structure has a common fixed
point. Recently in [27], the authors introduced the concept of
one-local retract in modular function spaces and proved the
existence of commonfixed points for commutativemappings.

In this paper, we study the concept of one-local retract
in more general setting in modular metric space; therefore,
we prove the existence of common fixed points for a family
of modular nonexpansive mappings defined on nonempty 𝜔-
closed 𝜔-bounded subsets in modular metric space.

For more on metric fixed point theory, the reader may
consult the book [28] and for modular function spaces the
book [29].

2. Basic Definitions and Properties

Let𝑋 be a nonempty set.Throughout this paper for a function
𝜔 : (0,∞) × 𝑋 × 𝑋 → [0,∞], we will write

𝜔𝜆 (𝑥, 𝑦) = 𝜔 (𝜆, 𝑥, 𝑦) , (1)

for all 𝜆 > 0 and 𝑥, 𝑦 ∈ 𝑋.

Definition 1 (see [1, 2]). A function 𝜔 : (0,∞) × 𝑋 × 𝑋 →

[0,∞] is said to be modular metric on 𝑋 if it satisfies the
following axioms:

(i) 𝑥 = 𝑦 if and only if 𝜔𝜆(𝑥, 𝑦) = 0, for all 𝜆 > 0;
(ii) 𝜔𝜆(𝑥, 𝑦) = 𝜔𝜆(𝑦, 𝑥), for all 𝜆 > 0, and 𝑥, 𝑦 ∈ 𝑋;
(iii) 𝜔𝜆+𝜇(𝑥, 𝑦) ≤ 𝜔𝜆(𝑥, 𝑧) + 𝜔𝜇(𝑧, 𝑦), for all 𝜆, 𝜇 > 0 and

𝑥, 𝑦, 𝑧 ∈ 𝑋.

If, instead of (i), we have only the condition (i󸀠)

𝜔𝜆 (𝑥, 𝑥) = 0, ∀𝜆 > 0, 𝑥 ∈ 𝑋, (2)

then 𝜔 is said to be a pseudomodular (metric) on 𝑋. A
modular metric 𝜔 on 𝑋 is said to be regular if the following
weaker version of (i) is satisfied:

𝑥 = 𝑦 iff 𝜔𝜆 (𝑥, 𝑦) = 0,

for some 𝜆 > 0.

(3)

Finally, 𝜔 is said to be convex if, for 𝜆, 𝜇 > 0 and 𝑥, 𝑦, 𝑧 ∈ 𝑋,
it satisfies the inequality

𝜔𝜆+𝜇 (𝑥, 𝑦) ≤

𝜆

𝜆 + 𝜇

𝜔𝜆 (𝑥, 𝑧) +

𝜇

𝜆 + 𝜇

𝜔𝜇 (𝑧, 𝑦) . (4)

Note that, for a metric pseudomodular 𝜔 on a set 𝑋, and
any 𝑥, 𝑦 ∈ 𝑋, the function 𝜆 → 𝜔𝜆(𝑥, 𝑦) is nonincreasing on
(0,∞). Indeed, if 0 < 𝜇 < 𝜆, then

𝜔𝜆 (𝑥, 𝑦) ≤ 𝜔𝜆−𝜇 (𝑥, 𝑥) + 𝜔𝜇 (𝑥, 𝑦) = 𝜔𝜇 (𝑥, 𝑦) . (5)

Definition 2 (see [1, 2]). Let 𝜔 be a pseudomodular on𝑋. Fix
𝑥0 ∈ 𝑋. The two sets:

𝑋𝜔 = 𝑋𝜔 (𝑥0) = {𝑥 ∈ 𝑋 : 𝜔𝜆 (𝑥, 𝑥0) 󳨀→ 0 as 𝜆 󳨀→ ∞} ,

𝑋
∗

𝜔
= 𝑋
∗

𝜔
(𝑥0) = {𝑥 ∈ 𝑋 : ∃𝜆 = 𝜆 (𝑥) > 0

such that 𝜔𝜆 (𝑥, 𝑥0) < ∞}

(6)

are said to be modular spaces (around 𝑥0).

It is clear that 𝑋𝜔 ⊂ 𝑋
∗

𝜔
but this inclusion may be

proper in general. It follows from [1, 2] that if 𝜔 is a modular
on 𝑋, then the modular space 𝑋𝜔 can be equipped with a
(nontrivial) metric, generated by 𝜔 and given by

𝑑𝜔 (𝑥, 𝑦) = inf {𝜆 > 0 : 𝜔𝜆 (𝑥, 𝑦) ≤ 𝜆} , (7)

for any 𝑥, 𝑦 ∈ 𝑋𝜔. If𝜔 is a convexmodular on𝑋, according to
[1, 2] the two modular spaces coincide, that is 𝑋∗

𝜔
= 𝑋𝜔, and

this common set can be endowed with the metric 𝑑∗
𝜔
given by

𝑑
∗

𝜔
(𝑥, 𝑦) = inf {𝜆 > 0 : 𝜔𝜆 (𝑥, 𝑦) ≤ 1} , (8)

for any 𝑥, 𝑦 ∈ 𝑋𝜔. These distances will be called Luxemburg
distances (see example below for the justification).

Definition 3. Let𝑋𝜔 be a modular metric space.

(1) The sequence (𝑥𝑛)𝑛∈N in𝑋𝜔 is said to be𝜔-convergent
to 𝑥 ∈ 𝑋𝜔 if and only if 𝜔1(𝑥𝑛, 𝑥) → 0, as 𝑛 → ∞. 𝑥
will be called the 𝜔-limit of (𝑥𝑛).

(2) The sequence (𝑥𝑛)𝑛∈𝑁 in𝑋𝜔 is said to be 𝜔-Cauchy if
𝜔1(𝑥𝑚, 𝑥𝑛) → 0, as𝑚, 𝑛 → ∞.

(3) A subset 𝐶 of 𝑋𝜔 is said to be 𝜔-closed if the 𝜔-limit
of a 𝜔-convergent sequence of 𝐶 always belongs to 𝐶.

(4) A subset 𝐶 of 𝑋𝜔 is said to be 𝜔-complete if any 𝜔-
Cauchy sequence in𝐶 is a𝜔-convergent sequence and
its 𝜔-limit is in 𝐶.

(5) Let 𝑥 ∈ 𝑋𝜔 and 𝐶 ⊂ 𝑋𝜔. The 𝜔-distance between 𝑥
and 𝐶 is defined as

𝑑𝜔 (𝑥, 𝐶) = inf {𝜔1 (𝑥, 𝑦) ; 𝑦 ∈ 𝐶} . (9)

(6) A subset 𝐶 of𝑋𝜔 is said to be 𝜔-bounded if we have

𝛿𝜔 (𝐶) = sup {𝜔1 (𝑥, 𝑦) ; 𝑥, 𝑦 ∈ 𝐶} < ∞. (10)

In general if lim𝑛→∞𝜔𝜆(𝑥𝑛, 𝑥) = 0, for some 𝜆 > 0,
then we may not have lim𝑛→∞𝜔𝜆(𝑥𝑛, 𝑥) = 0, for all 𝜆 >

0. Therefore, as it is done in modular function spaces, we
will say that 𝜔 satisfies Δ 2 condition if this is the case;
that is lim𝑛→∞𝜔𝜆(𝑥𝑛, 𝑥) = 0, for some 𝜆 > 0 implies
lim𝑛→∞𝜔𝜆(𝑥𝑛, 𝑥) = 0, for all 𝜆 > 0. In [1, 2], one will find a
discussion about the connection between𝜔-convergence and
metric convergence with respect to the Luxemburg distances.
In particular, we have

lim
𝑛→∞

𝑑𝜔 (𝑥𝑛, 𝑥) = 0 iff lim
𝑛→∞

𝜔𝜆 (𝑥𝑛, 𝑥) = 0, ∀𝜆 > 0,

(11)
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for any {𝑥𝑛} ∈ 𝑋𝜔 and 𝑥 ∈ 𝑋𝜔. And in particular we have
that𝜔-convergence and 𝑑𝜔-convergence are equivalent if and
only if the modular 𝜔 satisfies the Δ 2-condition. Moreover, if
the modular 𝜔 is convex, then we know that 𝑑∗

𝜔
and 𝑑𝜔 are

equivalent which implies that

lim
𝑛→∞

𝑑
∗

𝜔
(𝑥𝑛, 𝑥) = 0 iff lim

𝑛→∞
𝜔𝜆 (𝑥𝑛, 𝑥) = 0, ∀𝜆 > 0,

(12)

for any {𝑥𝑛} ∈ 𝑋𝜔 and 𝑥 ∈ 𝑋𝜔 [1, 2]. Another question that
arises in this setting is the uniqueness of the 𝜔-limit. Assume
𝜔 is regular, and let {𝑥𝑛} ∈ 𝑋𝜔 be a sequence such that {𝑥𝑛} 𝜔-
converges to 𝑎 ∈ 𝑋𝜔 and 𝑏 ∈ 𝑋𝜔. Then we have

𝜔2 (𝑎, 𝑏) ≤ 𝜔1 (𝑎, 𝑥𝑛) + 𝜔1 (𝑥𝑛, 𝑏) , (13)

for any 𝑛 ≥ 1. Our assumptions will imply 𝜔2(𝑎, 𝑏) = 0. Since
𝜔 is regular, we get 𝑎 = 𝑏; that is, the 𝜔-limit of a sequence is
unique.

Let (𝑋, 𝜔) be a modular metric space. Throughout the
rest of this work, we will assume that 𝜔 satisfies the Fatou
property; that is, if {𝑥𝑛} 𝜔-converges to 𝑥 and {𝑦𝑛} 𝜔-
converges to 𝑦, then we must have

𝜔1 (𝑥, 𝑦) ≤ lim inf
𝑛→∞

𝜔1 (𝑥𝑛, 𝑦𝑛) . (14)

For any 𝑥 ∈ 𝑋𝜔 and 𝑟 ≥ 0, we define the modular ball

𝐵𝜔 (𝑥, 𝑟) = {𝑦 ∈ 𝑋𝜔; 𝜔1 (𝑥, 𝑦) ≤ 𝑟} . (15)

Note that if 𝜔 satisfies the Fatou property, then modular balls
(𝜔-balls) are 𝜔-closed. An admissible subset of𝑋𝜔 is defined
as an intersection of modular balls. We say𝐴 is an admissible
subset of 𝐶 if

𝐴 = ⋂

𝑖∈𝐼

𝐵𝜔 (𝑏𝑖, 𝑟𝑖) ∩ 𝐶, (16)

where 𝑏𝑖 ∈ 𝐶, 𝑟𝑖 ≥ 0, and 𝐼 is an arbitrary index set. Denote
byA𝜔(𝑋𝜔) the family of admissible subsets of 𝑋𝜔. Note that
A𝜔(𝑋𝜔) is stable by intersection. At this point we will need to
define the concept ofChebyshev center and radius inmodular
metric spaces. Let 𝐴 ⊂ 𝑋 be a nonempty 𝜔-bounded subset.
For any 𝑥 ∈ 𝐴, define

𝑟𝑥 (𝐴) = sup {𝜔1 (𝑥, 𝑦) ; 𝑦 ∈ 𝐴} . (17)

The Chebyshev radius of 𝐴 is defined by

𝑅𝜔 (𝐴) = inf {𝑟𝑥 (𝐴) ; 𝑥 ∈ 𝐴} . (18)

Obviously we have 𝑅𝜔(𝐴) ≤ 𝑟𝑥(𝐴) ≤ 𝛿𝜔(𝐴), for any 𝑥 ∈ 𝐴.
The Chebyshev center of 𝐴 is defined as

C𝜔 (𝐴) = {𝑥 ∈ 𝐴; 𝑟𝑥 (𝐴) = 𝑅𝜔 (𝐴)} . (19)

Definition 4. Let (𝑋, 𝜔) be a modular metric space. Let 𝐶 be
a nonempty subset of𝑋𝜔.

(i) We will say that A𝜔(𝐶) is compact if any family
(𝐴𝛼)𝛼∈Γ of elements ofA𝜔(𝐶) has a nonempty inter-
section provided ∩𝛼∈𝐹𝐴𝛼 ̸= 0, for any finite subset 𝐹 ⊂

Γ.

(ii) We will say that A𝜔(𝐶) is normal if for any 𝐴 ∈

A𝜔(𝐶), not reduced to one point,𝜔-bounded,we have
𝑅𝜔(𝐴) < 𝛿𝜔(𝐴).

Remark 5. Note that if A𝜔(𝑋𝜔) is compact, then 𝑋𝜔 is 𝜔-
complete.

Definition 6. Let (𝑋, 𝜔) be a modular metric space. Let 𝐶 be
a nonempty subset of 𝑋𝜔. A mapping 𝑇 : 𝐶 → 𝐶 is said to
be 𝜔-nonexpansive if

𝜔1 (𝑇 (𝑥) , 𝑇 (𝑦)) ≤ 𝜔1 (𝑥, 𝑦) for any 𝑥, 𝑦 ∈ 𝐶. (20)

For suchmappingwewill denote by Fix (𝑇) the set of its fixed
points; that is, Fix (𝑇) = {𝑥 ∈ 𝐶; 𝑇(𝑥) = 𝑥}.

In [1, 2] the author defined Lipschitzian mappings in
modular metric spaces and proved some fixed point theo-
rems. Our definition is more general. Indeed, in the case of
modular function spaces, it is proved in [10] that

𝜔𝜆 (𝑇 (𝑥) , 𝑇 (𝑦)) ≤ 𝜔𝜆 (𝑥, 𝑦) , for any 𝜆 > 0 (21)

if and only if 𝑑𝜔(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝑑𝜔(𝑥, 𝑦), for any 𝑥, 𝑦 ∈ 𝐶.
Next we give an example, which first appeared in [10], of a
mapping which is 𝜔-nonexpansive in our sense but fails to be
nonexpansive with respect to 𝑑𝜔.

Example 7. Let 𝑋 = (0,∞). Define the Musielak-Orlicz
function modular on the space of all Lebesgue measurable
functions by

𝜌 (𝑓) =

1

𝑒
2
∫

∞

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨

𝑥+1
𝑑𝑚 (𝑥) . (22)

Let 𝐵 be the set of all measurable functions 𝑓 : (0,∞) → R

such that 0 ≤ 𝑓(𝑥) ≤ 1/2. Consider the map

𝑇 (𝑓) (𝑥) = {

𝑓 (𝑥 − 1) , for 𝑥 ≥ 1

0, for 𝑥 ∈ [0, 1] .

(23)

Clearly, 𝑇(𝐵) ⊂ 𝐵. In [10], it was proved that, for every 𝜆 ≤ 1

and for all 𝑓, 𝑔 ∈ 𝐵, we have

𝜌 (𝜆 (𝑇 (𝑓) − 𝑇 (𝑔))) ≤ 𝜆𝜌 (𝜆 (𝑓 − 𝑔)) . (24)

This inequality clearly implies that 𝑇 is 𝜔-nonexpansive. On
the other hand, if we take 𝑓 = 1[0,1], then

󵄩
󵄩
󵄩
󵄩
𝑇(𝑓)

󵄩
󵄩
󵄩
󵄩𝜌
> 𝑒 ≥

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝜌
, (25)

which clearly implies that 𝑇 is not 𝑑𝜔-nonexpansive.

Next we present the analog of Kirk’s fixed point theorem
[24] in modular metric spaces.

Theorem 8 (see [30]). Let (𝑋, 𝜔) be a modular metric space
and 𝐶 be a nonempty 𝜔-closed 𝜔-bounded subset of 𝑋𝜔.
Assume that the family A𝜔(𝐶) is normal and compact. Let
𝑇 : 𝐶 → 𝐶 be 𝜔-nonexpansive. Then 𝑇 has a fixed point.
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3. One-Local Retract Subsets in
Modular Metric Spaces

Let 𝐶 be a nonempty subset of 𝑋𝜔. A nonempty subset 𝐷
of 𝐶 is said to be a one-local retract of 𝐶 if, for every family
{𝐵𝑖; 𝑖 ∈ 𝐼} of 𝜔-balls centered in 𝐷 such that 𝐶 ∩ (∩𝑖∈𝐼𝐵𝑖) ̸= 0,
it is the case that 𝐷 ∩ (∩𝑖∈𝐼𝐵𝑖) ̸= 0. It is immediate that each
𝜔-nonexpansive retract of 𝑋𝜔 is a one-local retract (but not
conversely). Recall that𝐷 ⊂ 𝐶 is a 𝜔-nonexpansive retract of
𝐶 if there exists a 𝜔-nonexpansive map 𝑅 : 𝐶 → 𝐷 such that
𝑅(𝑥) = 𝑥, for every 𝑥 ∈ 𝐷.

The result in [26] may be stated in modular metric spaces
as follows.

Theorem 9. Let (𝑋, 𝜔) be a modular metric space and 𝐶 be
a nonempty 𝜔-closed 𝜔-bounded subset of 𝑋𝜔. Assume that
A𝜔(𝐶) is normal and compact. Then, for any 𝜔-nonexpansive
mapping 𝑇 : 𝐶 → 𝐶, the fixed point set Fix (𝑇) is nonempty
one-local retract of 𝐶.

Proof. Theorem 8 shows that Fix (𝑇) is nonempty. Let us
complete the proof by showing that it is a one-local retract
of 𝐶. Let {𝐵𝜔(𝑥𝑖, 𝑟𝑖)}𝑖∈𝐼 be any family of 𝜔-closed balls such
that 𝑥𝑖 ∈ Fix (𝑇), for any 𝑖 ∈ 𝐼, and

𝐶0 = 𝐶 ∩ (⋂

𝑖∈𝐼

𝐵𝜔 (𝑥𝑖, 𝑟𝑖)) ̸= 0. (26)

Let us prove that Fix (𝑇) ∩ (∩𝑖∈𝐼𝐵𝜔(𝑥𝑖, 𝑟𝑖)) ̸= 0. Since {𝑥𝑖}𝑖∈𝐼 ⊂
Fix (𝑇) and 𝑇 is 𝜔-nonexpansive, then 𝑇(𝐶0) ⊂ 𝐶0.
Clearly, 𝐶0 ∈ A𝜔(𝐶) and is nonempty. Then we have
A𝜔(𝐶0) ⊂ A𝜔(𝐶).Therefore,A𝜔(𝐶0) is compact and normal.
Theorem 8will imply that𝑇 has a fixed point in𝐶0 which will
imply

Fix (𝑇) ∩ (⋂

𝑖∈𝐼

𝐵𝜔 (𝑥𝑖, 𝑟𝑖)) ̸= 0. (27)

Now, we discuss some properties of one-local retract
subsets.

Theorem 10. Let (𝑋, 𝜔) be a modular metric space. Let 𝐶
be a nonempty 𝜔-closed 𝜔-bounded subset of 𝑋𝜔. Let 𝐷 be a
nonempty subset of 𝐶. The following are equivalent.

(i) 𝐷 is a one-local retract of 𝐶.
(ii) 𝐷 is a 𝜔-nonexpansive retract of 𝐷 ∪ {𝑥} → 𝐷, for

every 𝑥 ∈ 𝐶.

Proof. Let us prove (i) ⇒ (ii). Let 𝑥 ∈ 𝐶. We may assume
that 𝑥 does not belong to 𝐷. In order to construct a 𝜔-
nonexpansive retract 𝑅 : 𝐷 ∪ {𝑥} → 𝐷, we only need to
find 𝑅(𝑥) ∈ 𝐷 such that

𝜔1 (𝑅 (𝑥) , 𝑦) ≤ 𝜔1 (𝑥, 𝑦) , for every 𝑦 ∈ 𝐷. (28)

Since 𝑥 ∈ ∩𝑦∈𝐷𝐵𝜔(𝑦, 𝜔1(𝑥, 𝑦)) and 𝑥 ∈ 𝐶, then

𝐶 ∩ (⋂

𝑦∈𝐷

𝐵𝜔 (𝑦, 𝜔1 (𝑥, 𝑦))) ̸= 0. (29)

Since𝐷 is one-local retract of 𝐶, we get

𝐷0 = 𝐷 ∩ (⋂

𝑦∈𝐷

𝐵𝜔 (𝑦, 𝜔1 (𝑥, 𝑦))) ̸= 0. (30)

Any point in𝐷0 will work as 𝑅(𝑥).

Next, we prove that (ii) ⇒ (i). In order to prove that 𝐷
is a one-local retract of 𝐶, let {𝐵𝜔(𝑥𝑖, 𝑟𝑖)}𝑖∈𝐼 be any family of
𝜔-closed balls such that 𝑥𝑖 ∈ 𝐷, for any 𝑖 ∈ 𝐼, and

𝐶0 = 𝐶 ∩ (⋂

𝑖∈𝐼

𝐵𝜔 (𝑥𝑖, 𝑟𝑖)) ̸= 0. (31)

Let us prove that 𝐷 ∩ (∩𝑖∈𝐼𝐵𝜔(𝑥𝑖, 𝑟𝑖)) ̸= 0. Let 𝑥 ∈ 𝐶0. If 𝑥 ∈

𝐷, we have nothing to prove. Assume otherwise that 𝑥 does
not belong to 𝐷. Property (ii) implies the existence of a 𝜔-
nonexpansive retract 𝑅 : 𝐷 ∪ {𝑥} → 𝐶. It is easy to check
that 𝑅(𝑥) ∈ 𝐷 ∩ (∩𝑖∈𝐼𝐵𝜔(𝑥𝑖, 𝑟𝑖)) = 0, which completes the
proof of our theorem.

For the rest of this work, we will need the following
technical result.

Lemma 11. Let (𝑋, 𝜔) be a modular metric space and 𝐶 be
a nonempty 𝜔-closed 𝜔-bounded subset of 𝑋𝜔. Let 𝐷 be a
nonempty one-local retract of 𝐶. Set co𝐶(𝐷) = 𝐶 ∩ (∩{𝐴; 𝐴 ∈

A𝜔(𝐶) 𝑎𝑛𝑑 𝐷 ⊂ 𝐴}). Then

(i) 𝑟𝑥(𝐷) = 𝑟𝑥(co𝐶(𝐷)), for any 𝑥 ∈ 𝐶;
(ii) 𝑅𝜔(co𝐶(𝐷)) = 𝑅𝜔(𝐷);
(iii) 𝛿𝜔(co𝐶(𝐷)) = 𝛿𝜔(𝐷).

Proof. Let us first prove (i). Fix 𝑥 ∈ 𝐶. Since 𝐷 ⊂ co𝐶(𝐷),
we get 𝑟𝑥(𝐷) ≤ 𝑟𝑥(co𝐶(𝐷)). On the other hand we have
𝐷 ⊂ 𝐵𝜔(𝑥, 𝑟𝑥(𝐷)) ∈ A𝜔(𝐶). The definition of co𝐶(𝐷) implies
co𝐶(𝐷) ⊂ 𝐵𝜔(𝑥, 𝑟𝑥(𝐷)). Hence 𝑟𝑥(co𝐶(𝐷)) ≤ 𝑟𝑥(𝐷), which
implies

𝑟𝑥 (co𝐶 (𝐷)) = 𝑟𝑥 (𝐷) . (32)

Next, we prove (ii). Let 𝑥 ∈ 𝐷. We have 𝑥 ∈ co𝐶(𝐷). Using
(i), we get

𝑟𝑥 (co𝐶 (𝐷)) = 𝑟𝑥 (𝐷) ≥ 𝑅𝜔 (co𝐶 (𝐷)) . (33)

Hence, 𝑅𝜔(𝐷) ≥ 𝑅𝜔(co𝐶(𝐷)). Next, let 𝑥 ∈ co𝐶(𝐷). We
have 𝐷 ⊂ co𝐶(𝐷) ⊂ 𝐵𝜔(𝑥, 𝑟𝑥(co𝐶(𝐷))). Hence, 𝑥 ∈

∩𝑦∈𝐷𝐵𝜔(𝑦, 𝑟𝑥(co𝐶(𝐷))). Hence

𝐶 ∩ (⋂

𝑦∈𝐷

𝐵𝜔 (𝑦, 𝑟𝑥 (co𝐶 (𝐷)))) = 0. (34)

Since𝐷 is a one-local retract of 𝐶, we get

𝐷0 = 𝐷 ∩ (⋂

𝑦∈𝐷

𝐵𝜔 (𝑦, 𝑟𝑥 (co𝐶 (𝐷)))) = 0. (35)
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Let 𝑦 ∈ 𝐷0. Then it is easy to see that 𝑟𝑦(𝐷) ≤ 𝑟𝑥(co𝐶(𝐷)).
Hence 𝑅𝜔(𝐷) ≤ 𝑟𝑥(co𝐶(𝐷)). Since 𝑥 was arbitrary taken in
co𝐶(𝐷), we get

𝑅𝜔 (𝐷) ≤ 𝑅𝜔 (co𝐶 (𝐷)) , (36)

which implies

𝑅𝜔 (𝐷) = 𝑅𝜔 (co𝐶 (𝐷)) . (37)

Finally, let us prove (iii). Since𝐷 ⊂ co𝐶(𝐷), we get

𝛿𝜔 (𝐷) ≤ 𝛿𝜔 (co𝐶 (𝐷)) . (38)

Now, for any 𝑥 ∈ 𝐷, we have

𝐷 ⊂ 𝐵𝜔 (𝑥, 𝛿𝜔 (𝐷)) . (39)

Hence

co𝐶 (𝐷) ⊂ 𝐵𝜔 (𝑥, 𝛿𝜔 (𝐷)) . (40)

This implies

𝑥 ∈ ⋂

𝑦∈co𝐶(𝐷)
𝐵𝜔 (𝑦, 𝛿𝜔 (𝐷)) . (41)

Since 𝑥 was taken arbitrary in𝐷, we get

𝐷 ⊂ ⋂

𝑦∈co𝐶(𝐷)
𝐵𝜔 (𝑦, 𝛿𝜔 (𝐷)) . (42)

The definition of co𝐶(𝐷) implies

co𝐶 (𝐷) ∈ ⋂

𝑦∈co𝐶(𝐷)
𝐵𝜔 (𝑦, 𝛿𝜔 (𝐷)) . (43)

So for any 𝑥, 𝑦 ∈ co𝐶(𝐷), we have

𝜔1 (𝑥, 𝑦) ≤ 𝛿𝜔 (𝐷) . (44)

Hence

𝛿𝜔 (co𝐶 (𝐷)) ≤ 𝛿𝜔 (𝐷) , (45)

which implies

𝛿𝜔 (co𝐶 (𝐷)) = 𝛿𝜔 (𝐷) . (46)

As an application of this lemma we have the following
result.

Theorem 12. Let (𝑋, 𝜔) be a modular metric space and 𝐶 be
a nonempty 𝜔-closed 𝜔-bounded subset of 𝑋𝜔. Assume that
A𝜔(𝐶) is normal and compact. If 𝐷 is a nonempty one-local
retract of 𝐶, thenA𝜔(𝐷) is compact and normal.

Proof. Using the definition of one-local retract, it is easy to see
thatA𝜔(𝐷) is compact. Let us show thatA𝜔(𝐷) is normal. Let
𝐴0 ∈ A𝜔(𝐷) be nonempty and reduced to one point. Set

co𝐶 (𝐴0) = 𝐶 ∩ (∩ {𝐴; 𝐴 ∈ A𝜔 (𝐶) and 𝐴0 ⊂ 𝐴}) . (47)

Then from Lemma 11, we get

𝑅𝜔 (co𝐶 (𝐴0)) = 𝑅𝜔 (𝐴0) ,

𝛿𝜔 (co𝐶 (𝐴0)) = 𝛿𝜔 (𝐴0) .
(48)

Since co𝐶(𝐴0) ∈ A𝜔(𝐶), then we must have

𝑅𝜔 (co𝐶 (𝐴0)) < 𝛿𝜔 (co𝐶 (𝐴0)) , (49)

becauseA𝜔(𝐶) is normal. Therefore, we have

𝑅𝜔 (𝐴0) < 𝛿𝜔 (𝐴0) , (50)

which completes the proof of our claim.

The following result has foundmany application inmetric
spaces. Most of the ideas in its proof go back to Baillon’s work
[31].

Theorem 13. Let (𝑋, 𝜔) be a modular metric space and 𝐶 be
a nonempty 𝜔-closed 𝜔-bounded subset of 𝑋𝜔. Assume that
A𝜔(𝐶) is normal and compact. Let (𝐶𝛽)𝛽∈Γ be a decreasing
family of one-local retracts of 𝐶, where (Γ, ≺) is totally ordered.
Then ∩𝛽∈Γ𝐶𝛽 is not empty and is one-local retract of 𝐶.

Proof. Consider the family

F =

{

{

{

∏

𝛽∈Γ

𝐴𝛽 : 𝐴𝛽 ∈ A𝜔 (𝐶𝛽) , (𝐴𝛽) is decreasing
}

}

}

.

(51)

F is not empty since ∏
𝛽∈Γ

𝐶𝛽 ∈ F. F will be ordered by
inclusion; that is,∏

𝛽∈Γ
𝐴𝛽 ⊂ ∏

𝛽∈Γ
𝐵𝛽 if and only if 𝐴𝛽 ⊂ 𝐵𝛽

for any 𝛽 ∈ Γ. From Theorem 12, we know that A𝜔(𝐶𝛽)
is compact, for every 𝛽 ∈ Γ. Therefore, F satisfies the
hypothesis of Zorn’s Lemma. Hence for every 𝐷 ∈ F, there
exists a minimal element 𝐴 ∈ F such that 𝐴 ⊂ 𝐷. We claim
that if 𝐴 = ∏

𝛽∈Γ
𝐴𝛽 is minimal, then there exists 𝛽0 ∈ Γ

such that 𝛿𝜔(𝐴𝛽) = 0, for every 𝛽 > 𝛽0. Assume not, that
is, 𝛿𝜔(𝐴𝛽) > 0, for every 𝛽 ∈ Γ. Fix 𝛽 ∈ Γ. For every 𝐾 ⊂ 𝐶,
set

co𝛽 (𝐾) = ⋂

𝑥∈𝐶𝛽

𝐵𝜔 (𝑥, 𝑟𝑥 (𝐾)) . (52)

Consider, 𝐴󸀠 = ∏
𝛼∈Γ

𝐴
󸀠

𝛼
where

𝐴
󸀠

𝛼
= co𝛽 (𝐴𝛽) ∩ 𝐴𝛼 if 𝛼 ≤ 𝛽,

𝐴
󸀠

𝛼
= 𝐴𝛼 if 𝛼 ≥ 𝛽.

(53)

The family (𝐴󸀠
𝛼≥𝛽

) is decreasing since 𝐴 ∈ F. Let 𝛼 ≤ 𝛾 ≤ 𝛽.
Then 𝐴󸀠

𝛾
⊂ 𝐴
󸀠

𝛼
, since 𝐴𝛾 ⊂ 𝐴𝛼 and 𝐴𝛽 = co𝛽(𝐴𝛽) ∩ 𝐴𝛽.

Hence the family (𝐴󸀠
𝛼
) is decreasing. On the other hand if 𝛼 ≺

𝛽, then co𝛽(𝐴𝛽) ∩ 𝐴𝛼 ∈ A𝜔(𝐶𝛼) since 𝐶𝛽 ⊂ 𝐶𝛼. Hence 𝐴
󸀠

𝛼
∈

A𝜔(𝐶𝛼).Therefore, we have𝐴󸀠 ∈ F. Since𝐴 is minimal, then
𝐴 = 𝐴

󸀠. Hence

𝐴𝛼 = co𝛽 (𝐴𝛽) ∩ 𝐴𝛼, for every 𝛼 < 𝛽. (54)
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Let 𝑥 ∈ 𝐶𝛽 and 𝛼 < 𝛽. Since 𝐴𝛽 ⊂ 𝐴𝛼, then

𝑟𝑥 (𝐴𝛽) ≤ 𝑟𝑥 (𝐴𝛼) . (55)

Because co𝛽(𝐴𝛽) = ∩𝑦∈𝐶𝛽𝐵𝜔(𝑦, 𝑟𝑦(𝐴𝛽)), then we have

co𝛽 (𝐴𝛽) ⊂ 𝐵𝜔 (𝑦, 𝑟𝑦 (𝐴𝛽)) , (56)

which implies

𝑟𝑦 (𝐴𝛽) ≤ 𝑟𝑦 (𝐴𝛼) . (57)

Since 𝐴𝛼 ⊂ co𝛽(𝐴𝛽), then

𝑟𝑦 (𝐴𝛽) ≤ 𝑟𝑦 (𝐴𝛼) ≤ 𝑟𝑦 (co𝛽 (𝐴𝛽)) ≤ 𝑟𝑦 (𝐴𝛽) . (58)

Therefore, we have

𝑟𝑦 (𝐴𝛼) ≤ 𝑟𝑦 (𝐴𝛽) , for every 𝑦 ∈ 𝐶𝛽. (59)

Using the definition of Chebyshev radius 𝑅𝜔, we get

𝑅𝜔 (𝐴𝛼) ≤ 𝑅𝜔 (𝐴𝛽) . (60)

Let 𝑥 ∈ 𝐴𝛼 and set 𝑠 = 𝑟𝑥(𝐴𝛼). Then 𝑥 ∈ co𝛽(𝐴𝛽) since
𝐴𝛼 ⊂ co𝛽(𝐴𝛽). Hence,

𝑥 ∈ ( ⋂

𝑦∈𝐴𝛽

𝐵𝜔 (𝑦, 𝑠)) ∩ co𝛽 (𝐴𝛽) . (61)

Since 𝐶𝛽 is one-local retract of 𝐶, then

𝑆𝛽 = 𝐶𝛽 ∩ ( ⋂

𝑦∈𝐴𝛽

𝐵𝜔 (𝑦, 𝑠)) ∩ co𝛽 (𝐴𝛽) ̸= 0. (62)

Since 𝐴𝛽 = 𝐶𝛽 ∩ co𝛽(𝐴𝛽), then we have

𝑆𝛽 = 𝐴𝛽 ∩ ( ⋂

𝑦∈𝐴𝛽

𝐵𝜔 (𝑦, 𝑠)) . (63)

Let ℎ ∈ 𝑆𝛽, then ℎ ∈ ∩𝑦∈𝐴𝛽𝐵𝜔(𝑦, 𝑠). Hence, 𝑟ℎ(𝐴𝛽) ≤ 𝑠, which
implies

𝑅𝜔 (𝐴𝛽) ≤ 𝑠 = 𝑟𝑥 (𝐴𝛼) , for every 𝑥 ∈ 𝐴𝛼. (64)

Hence, 𝑅𝜔(𝐴𝛽) ≤ 𝑅𝜔(𝐴𝛼). Therefore, we have

𝑅𝜔 (𝐴𝛽) = 𝑅𝜔 (𝐴𝛼) , for every 𝛼, 𝛽 ∈ Γ. (65)

Since 𝛿𝜔(𝐴𝛽) > 0, for every 𝛽 ∈ Γ, set 𝐴󸀠󸀠
𝛽
to the Chebyshev

center of 𝐴𝛽, that is, 𝐴
󸀠󸀠

𝛽
= 𝐶𝜔(𝐴𝛽), for every 𝛽 ∈ Γ. Since

𝑅𝜔(𝐴𝛽) = 𝑅𝜔(𝐴𝛼), for every 𝛼, 𝛽 ∈ Γ, then the family (𝐴󸀠󸀠
𝛽
)

is decreasing. Indeed, let 𝛼 ≺ 𝛽 and 𝑥 ∈ 𝐴
󸀠󸀠

𝛽
. Then we have

𝑟𝑥(𝐴𝛽) = 𝑅𝜔(𝐴𝛽). Since we proved that

𝑟𝑦 (𝐴𝛽) = 𝑟𝑦 (𝐴𝛼) , for every 𝑎 ∈ 𝐶𝛽, (66)

then

𝑟𝑥 (𝐴𝛼) = 𝑟𝑥 (𝐴𝛽) = 𝑅𝜔 (𝐴𝛽) = 𝑅𝜔 (𝐴𝛼) , (67)

which implies that 𝑥 ∈ 𝐴
󸀠󸀠

𝛼
. Therefore, we have 𝐴

󸀠󸀠
=

∏
𝛽∈Γ

𝐴
󸀠󸀠

𝛽
∈ F. Since 𝐴󸀠󸀠 ⊂ 𝐴 and 𝐴 is minimal, we get

𝐴 = 𝐴
󸀠󸀠. Therefore, we have 𝐶𝜔(𝐴𝛽) = 𝐴𝛽 for every 𝛽 ∈ Γ.

This contradicts the fact that A𝜔(𝐶𝛽) is normal for every
𝛽 ∈ Γ. Hence there exists 𝛽0 ∈ Γ such that

𝛿𝜔 (𝐴𝛽) = 0, for every 𝛽 ≻ 𝛽0. (68)

The proof of our claim is therefore complete. Then we have
𝐴𝛽 = {𝑥}, for every 𝛽 ≻ 𝛽0. This clearly implies that 𝑥 ∈

∩𝛽∈Γ𝐶𝛽 ̸= 0. In order to complete the proof, we need to show
that 𝑆 = ∩𝛽∈Γ𝐶𝛽 is one-local retract of 𝐶. Let (𝐵𝑖)𝑖∈𝐼 be a
family of 𝜔-balls centered in 𝑆 such that ∩𝑖∈𝐼(𝐵𝑖) ̸= 0. Set

𝐷𝛽 = (⋂

𝑖∈𝐼

𝐵𝑖) ∩ 𝐶𝛽, for any 𝛽 ∈ Γ. (69)

Since 𝐶𝛽 is a one-local retract of 𝐶 and the family (𝐵𝑖) is
centered in 𝐶𝛽, then 𝐷𝛽 is not empty and 𝐷𝛽 ∈ A𝜔(𝐶𝛽).
Therefore,

𝐷 =∏

𝛽∈Γ

𝐷𝛽 ∈ F. (70)

Let 𝐴 = ∏
𝛽∈Γ

𝐴𝛽 ⊂ 𝐷 be a minimal element ofF. The above
proof shows that

⋂

𝛽∈Γ

𝐴𝛽 ⊂ ⋂

𝛽∈Γ

𝐷𝛽 ̸= 0. (71)

The proof of our theorem is complete.

The next theorem will be useful to prove the main result
of the next section.

Theorem 14. Let (𝑋, 𝜔) be a modular metric space and 𝐶 be
a nonempty 𝜔-closed 𝜔-bounded subset of 𝑋𝜔. Assume that
A𝜔(𝐶) is normal and compact. Let (𝐶𝛽)𝛽∈Γ be a family of one-
local retracts of 𝐶 such that for any finite subset 𝐼 of Γ. Then
∩𝛽∈Γ𝐶𝛽 is not empty and is one-local retract of 𝐶.

Proof. Consider the family F of subsets 𝐼 ⊂ Γ such that, for
any finite subset 𝐽 ⊂ Γ (empty or not), we have ∩𝛼∈𝐼∪𝐽𝐶𝛼 that
is nonempty one-local retract of 𝐶. Note thatF is not empty
since any finite subset of Γ is inF. UsingTheorem 13, we can
show thatF satisfies the hypothesis of Zorn’s lemma. Hence
F has a maximal element 𝐼 ⊂ Γ. Assume 𝐼 ̸= Γ. Let 𝛼 ∈ Γ \ 𝐼.
Obviously we have 𝐼 ∪ {𝛼} ∈ F. This is a clear contradiction
with the maximality of 𝐼. Therefore we have 𝐼 = Γ ∈ F; that
is, ∩𝛽∈Γ𝐶𝛽 is not empty and is a one-local retract of 𝐶.

4. Common Fixed Point Result

In this section we discuss the existence of a common fixed
point of a family of commutative 𝜔-nonexpansive mappings
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in modular metric space which either generalize or improve
the corresponding recent common fixed point results of [26,
27].

First, we will need to discuss the case of finite families.

Theorem 15. Let (𝑋, 𝜔) be a modular metric space and 𝐶 be
a nonempty 𝜔-closed 𝜔-bounded subset of 𝑋𝜔. Assume that
A𝜔(𝐶) is normal and compact. Let F = {𝑇1, 𝑇2, . . . , 𝑇𝑛} be
a family of commutative 𝜔-nonexpansive mappings defined on
𝐶. Then the familyF has a common fixed point. Moreover, the
common fixed point set Fix (F) is a one-local retract of 𝐶.

Proof. First, let us prove that Fix (F) is not empty. Using
Theorem 9, Fix (𝑇1) is nonempty one-local retract of 𝐶, and
then Theorem 12 implies that A𝜔( Fix (𝑇1)) is compact and
normal. On the other hand since 𝑇1 and 𝑇2 are commutative,
we have

𝑇2 ( Fix (𝑇1)) ⊂ Fix (𝑇1) . (72)

Hence𝑇2 has a fixed point in Fix (𝑇1). If we restrict ourselves
to Fix (𝑇1, 𝑇2), the common fixed point set of 𝑇1 and 𝑇2,
then one can prove in an identical argument that 𝑇3 has a
fixed point in Fix (𝑇1, 𝑇2). Step by step, we can prove that
the common fixed point set Fix (F) of 𝑇1, 𝑇2, . . . , 𝑇𝑛 is not
empty. The same argument used to prove that the fixed point
set of 𝜔-nonexpansive map is a one-local retract can be
reduced here to prove that Fix (F) is one-local retract.

The following result extends [26,Theorem8] to the setting
of modular metric space.

Theorem 16. Let (𝑋, 𝜔) be a modular metric space and let 𝐶
be a nonempty 𝜔-closed 𝜔-bounded subset of𝑋𝜔. Assume that
A𝜔(𝐶) is normal and compact. Let F = (𝑇𝑖)𝑖∈𝐼 be a family
of commutative 𝜔-nonexpansive mappings defined on 𝐶. Then
the familyF has a common fixed point.Moreover, the common
fixed point set Fix (F) is a one-local retract of 𝐶.

Proof. Let Γ = {𝛽 : 𝛽 be a nonempty finite subset of 𝐼}.
Theorem 15 implies that, for every 𝛽 ∈ Γ, the set 𝐹𝛽 =

∩𝑖∈𝛽 Fix (𝑇𝑖) of common fixed point set of the mappings
𝑇𝑖, 𝑖 ∈ 𝛽, is nonempty one-local retract of 𝐶. Clearly the
family (𝐹𝛽)𝛽∈Γ is decreasing and satisfies the assumptions of
Theorem 14. Therefore, we deduced that ∩𝛽∈Γ𝐹𝛽 is nonempty
and is a one-local retract of 𝐶.
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