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The concepts of preinvex and invex are extended to the interval-valued functions. Under the assumption of invexity, the Karush-
Kuhn-Tucker optimality sufficient and necessary conditions for interval-valued nonlinear programming problems are derived.
Based on the concepts of having no duality gap in weak and strong sense, the Wolfe duality theorems for the invex interval-valued
nonlinear programming problems are proposed in this paper.

1. Introduction

In real world applications ofmathematical programming, one
cannot ignore the possibility that a small uncertainty in the
data can make the usual optimal solution completely mean-
ingless from a practical viewpoint. So the major difficulty
we are faced with is how to seek a solution for these real
world optimization problems. There are several optimization
models to deal with these problems. If the coefficients of
optimization problem are assumed as random variables with
known distributions, the problem can be categorized as the
stochastic optimization problem. Stochastic optimization is a
widely used and a standard approach to dealwith uncertainty;
for the detail of this topic one can see the books written by
Birge and Louveaux [1], Kall and Mayer [2], and Prékopa [3].
If the coefficients of optimization problem are assumed as
fuzzy variables, the problem can be categorized as the fuzzy
optimization problem.The book written by Delgado et al. [4]
gives themain stream of this topic. However, there are several
drawbacks of stochastic optimization and fuzzy optimization
in real world applications. Firstly, the specifications of the
distributions and membership functions in the stochastic
optimization problems and fuzzy optimization problems are
very subjective. Secondly, the approach of stochastic opti-
mization (fuzzy optimization) requires the evaluation of the
solution on the whole uncertainty set in order to determine
its expected cost, which is computationally hard in general.

Finally, one cannot guarantee that the real cost matches the
expected cost in stochastic optimization, since the expected
cost is only an estimator of the possible solutions.

In recent years, some deterministic frameworks of opti-
mization methods are studied to overcome the drawbacks of
stochastic optimization and fuzzy optimization. One of these
deterministic optimization methods is robust optimization,
which is the worst case based method and does not need a
probability distribution on the uncertainty set. The earliest
date of studies on robust optimization can be back to 1973
([5]); Soyster proposed the first robust model for linear
optimization problems with uncertain data. However, the
model is very conservative in the sense that they protect
against the worst case scenario. The interest in robust for-
mulations in the optimization community was revived in
the 1990s. A number of important robust formulations and
applications were introduced by Ben-Tal et al. [6], El Ghaoui
et al. [7, 8] and Bertsimas and Sim [9], who provided a
detailed analysis of the robust optimization framework in
linear optimization and general convex programming. In
robust optimization, the considered uncertainty set plays a
crucial role, since it determines the level of protection of the
solution. The solution of robust optimization models might
be too conservative if all scenarios are considered. Another
one of these deterministic optimization methods is interval-
valued optimization, which provides an alternative choice
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for considering the uncertainty into the optimization prob-
lems. The coefficients in the interval-valued optimization
are assumed as closed intervals. The bounds of uncertain
data in interval-valued optimization are easier to be handled
than specifying the distributions and membership functions
in stochastic optimization and fuzzy optimization problems,
respectively.

Duality theory has played a fundamental role in the area
of constrained optimization and has been studied for over a
century. The duality theory for interval linear programming
problems with real-valued objective function was discussed
by Rohn [10]. Wu [11–14] has studied the duality theory
for interval-valued programming problems. In [11], Wu has
proposed the Wolfe duality for interval-valued nonlinear
programming problems.The Lagrangian duality for interval-
valued nonlinear programming problems was also studied
by Wu in [13]. Although the Wolfe and Lagrangian duality
theory obtained in [11–13] can be applied to the problems
of interval-valued linear programming, the results obtained
using this method will be complicated. Based on the con-
cept of a scalar product of closed intervals, Wu [14] has
proposed the new weak and strong duality theorems for
interval-valued linear programming problems. Zhou and
Wang [15] have established the optimality sufficient condi-
tion and a mixed dual model for interval-valued nonlinear
programming problems. However, these results were mainly
established for the interval-valued programming problems
involving the optimization of convex objective functions over
convex feasible regions. In real world applications, not all
practical problems fulfill the requirements of convexity.Then,
generalized convex functions [16–21] have been introduced
in order to weaken as much as possible the convexity
requirements for results related to optimality conditions and
duality results.

In this paper, we study the Karush-Kuhn-Tucker opti-
mality sufficient and necessary conditions for interval-valued
optimization problems under the assumption of generalized
convexity. We extend the concepts of preinvex and invex for
real-valued functions to interval-valued functions. Under the
assumption of invexity, the Karush-Kuhn-Tucker optimality
sufficient and necessary conditions for interval-valued opti-
mization problems are derived for the purpose of proving
the strong duality theorems. By using the concept of having
no duality gap in weak and strong sense, the strong duality
theorems in weak and strong sense are then proposed. The
results in this paper improve and extend the results of Wu in
[11–14] for interval-valued nonlinear optimization problems.

In Section 2 we present some basic concepts and proper-
ties for closed intervals and interval-valued functions, respec-
tively. In Section 3,TheWolfe’s primal and dual pair problems
are proposed for interval-valued optimization problems. In
Section 4, We extend the concepts of preinvex and invex for
real-valued functions to interval-valued functions. Under the
assumption of invexity, the Karush-Kuhn-Tucker optimality
sufficient and necessary conditions for interval-valued opti-
mization problems are derived. In Section 5, we discuss the
solvability for Wolfe’s primal and dual problems under the
assumption of invexity. In Section 6, the duality theorems in

weak and strong sense are established for the invex interval-
valued nonlinear optimization problems.

2. Preliminaries

Let us denote by I the class of all closed intervals in 𝑅 if
𝐴 = [𝑎

𝐿
, 𝑎
𝑈

] ∈ I denotes a closed interval, where 𝑎
𝐿 and

𝑎
𝑈 mean the lower and upper bounds of 𝐴, respectively. Let

𝐴 = [𝑎
𝐿
, 𝑎
𝑈

] and 𝐵 = [𝑏
𝐿
, 𝑏
𝑈

] be inI; we have

(i) 𝐴+𝐵 = {𝑎+𝑏 : 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵} = [𝑎
𝐿

+𝑏
𝐿
, 𝑎
𝑈

+𝑏
𝑈

];
(ii) −𝐴 = {−𝑎 : 𝑎 ∈ 𝐴} = [−𝑎

𝑈
, −𝑎
𝐿
];

(iii) 𝐴 × 𝐵 = {𝑎𝑏 : 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵} = [min
𝑎𝑏

,max
𝑎𝑏

],
where min

𝑎𝑏
= min{𝑎

𝐿
𝑏
𝐿
, 𝑎
𝐿
𝑏
𝑈

, 𝑎
𝑈

𝑏
𝐿
, 𝑎
𝑈

𝑏
𝑈

} and
max
𝑎𝑏

= max{𝑎
𝐿
𝑏
𝐿
, 𝑎
𝐿
𝑏
𝑈

, 𝑎
𝑈

𝑏
𝐿
, 𝑎
𝑈

𝑏
𝑈

}.

Then, we can see that

𝐴 − 𝐵 = 𝐴 + (−𝐵) = [𝑎
𝐿

− 𝑏
𝑈

, 𝑎
𝑈

− 𝑏
𝐿
] , (1)

𝑘𝐴 = {𝑘𝑎 : 𝑎 ∈ 𝐴}

= {
[𝑘𝑎
𝐿
, 𝑘𝑎
𝑈

] if 𝑘 ≥ 0,

|𝑘| [−𝑎
𝑈

, −𝑎
𝐿
] if 𝑘 < 0,

(2)

where 𝑘 is a real number. The real number 𝑎 ∈ 𝑅 can be
regarded as a closed interval 𝐴

𝑎
= [𝑎, 𝑎]. Let 𝐵 ∈ I be a

closed interval; we write that 𝑎 + 𝐵 will mean 𝐴
𝑎

+ 𝐵. For
more details on the topic of interval analysis, one can refer to
[22].

We say that 𝐴 and 𝐵 are comparable if and only if 𝐴 ⪯ 𝐵

or 𝐴 ⪰ 𝐵. We write that 𝐴⪯
𝐿𝑈

𝐵 if and only if 𝑎
𝐿

≤ 𝑏
𝐿 and

𝑎
𝑈

≤ 𝑏
𝑈 and that 𝐴≺

𝐿𝑈
𝐵 if and only if 𝐴⪯

𝐿𝑈
𝐵 and 𝐴 ̸= 𝐵; that

is, the following (a1) or (a2) or (a3) is satisfied:

(a1) 𝑎
𝐿

< 𝑏
𝐿 and 𝑎

𝑈
≤ 𝑏
𝑈;

(a2) 𝑎
𝐿

≤ 𝑏
𝐿 and 𝑎

𝑈
< 𝑏
𝑈;

(a3) 𝑎
𝐿

< 𝑏
𝐿 and 𝑎

𝑈
< 𝑏
𝑈.

Therefore if 𝐴 and 𝐵 are not comparable, then the
following (b1) or (b2) or (b3) or (b4) or (b5) or (b6) is satisfied:

(b1) 𝑎
𝐿

≤ 𝑏
𝐿 and 𝑎

𝑈
> 𝑏
𝑈; (b2) 𝑎

𝐿
< 𝑏
𝐿 and 𝑎

𝑈
≥ 𝑏
𝑈;

(b3) 𝑎
𝐿

< 𝑏
𝐿 and 𝑎

𝑈
> 𝑏
𝑈; (b4) 𝑎

𝐿
≥ 𝑏
𝐿 and 𝑎

𝑈
< 𝑏
𝑈;

(b5) 𝑎
𝐿

> 𝑏
𝐿 and 𝑎

𝑈
≤ 𝑏
𝑈; (b6) 𝑎

𝐿
> 𝑏
𝐿 and 𝑎

𝑈
< 𝑏
𝑈.

In other words, if𝐴 and 𝐵 are not comparable, then𝐴 ̸= 𝐵

and 𝐴 ⊇ 𝐵 or 𝐴 ⊆ 𝐵.
The function𝑓 : 𝑅

𝑛
→ I defined on the Euclidean space

𝑅
𝑛 is called interval-valued function if 𝑓(x) = 𝑓(𝑥

1
, . . . , 𝑥

𝑛
) is

a closed interval in 𝑅 for each x ∈ 𝑅
𝑛. 𝑓 can be also written

as 𝑓(x) = [𝑓
𝐿
(x), 𝑓
𝑈

(x)], where 𝑓
𝐿 and 𝑓

𝑈 are real-valued
functions defined on 𝑅

𝑛 and satisfy 𝑓
𝐿
(x) ≤ 𝑓

𝑈
(x) for every

x ∈ 𝑅
𝑛. Wu ([23]) has shown the concepts of limit, continuity,

and two kinds of differentiation of interval-valued function.

Definition 1 (see [23]). Let𝑋 be an open set in𝑅. An interval-
valued function 𝑓 : 𝑋 → I with 𝑓(𝑥) = [𝑓

𝐿
(𝑥), 𝑓

𝑈
(𝑥)] is
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called weakly differentiable at 𝑥
0
if the real-valued functions

𝑓
𝐿 and 𝑓

𝑈 are differentiable at 𝑥
0
(in the usual sense).

Let 𝐴, 𝐵 ∈ I; if there exists a 𝐶 ∈ I such that 𝐴 = 𝐵 + 𝐶,
then 𝐶 is called theHukuhara difference.One also writes 𝐶 =

𝐴 ⊖ 𝐵, when we say that the Hukuhara difference 𝐶 exists,
whichmeans that 𝑎

𝐿
−𝑏
𝐿

≤ 𝑎
𝑈

−𝑏
𝑈 and𝐶 = [𝑎

𝐿
−𝑏
𝐿
, 𝑎
𝑈

−𝑏
𝑈

].

Definition 2 (see [23]). Let𝑋 be an open set in𝑅. An interval-
valued function 𝑓 : 𝑋 → I is called H-differentiable at 𝑥

0
if

there exists a closed interval 𝐴(𝑥
0
) ∈ I such that the limits

lim
ℎ→0

+

𝑓 (𝑥
0

+ ℎ) ⊖ 𝑓 (𝑥
0
)

ℎ
,

lim
ℎ→0

+

𝑓 (𝑥
0
) ⊖ 𝑓 (𝑥

0
− ℎ)

ℎ

(3)

both exist and are equal to 𝐴(𝑥
0
). In this case, 𝐴(𝑥

0
) is called

the H-derivative of 𝑓 at 𝑥
0
.

Let 𝑓 be an interval-valued function defined on 𝑅
𝑛. One

says that 𝑓 is continuous at c ∈ 𝑅
𝑛 if

lim
x→ c

𝑓 (x) = 𝑓 (c) . (4)

Definition 3 (see [23]). Let 𝑓 be an interval-valued function
defined on 𝑋 ⊆ 𝑅

𝑛 and let x
0

= (𝑥
0

1
, . . . , 𝑥

0

𝑛
) ∈ 𝑋 be fixed.

(i) One say that 𝑓 is weakly continuously differentiable at
x
0
if the real-valued functions𝑓

𝐿 and𝑓
𝑈 are continu-

ously differentiable at x
0
(i.e., all the partial derivatives

of 𝑓
𝐿 and 𝑓

𝑈 exist on some neighborhoods of x
0
and

are continuous at x
0
).

(ii) One says that 𝑓 is continuously H-differentiable at
x
0

if all of the partial H-derivatives
((𝜕𝑓/𝜕𝑥

1
)
𝐻

, . . . , (𝜕𝑓/𝜕𝑥
𝑛
)
𝐻

) exist on some
neighborhoods of x

0
and are continuous at x

0

(in the sense of interval-valued function).

Proposition 4 (see [23]). Let𝑓 be an interval-valued function
defined on 𝑋 ⊆ 𝑅

𝑛. If 𝑓 is H-differentiable at x
0

∈ 𝑋, then 𝑓 is
weakly differentiable at x

0
; if 𝑓 is continuously H-differentiable

at x
0

∈ 𝑋, then 𝑓 is weakly continuously differentiable at x
0
.

3. The Wolfe’s Primal and Dual Problems

In this section, we introduce theWolfe’s primal and dual pair
problems for conventional nonlinear programming problem
following Wu in [12]. We consider the interval-valued opti-
mization problem as follows:

(IVP) min 𝐹 (x)

subject to 𝑔
𝑖 (x) ≤ 0, 𝑖 = 1, . . . , 𝑚,

ℎ
𝑖 (x) ≤ 0, 𝑖 = 1, . . . , 𝑚,

x ≥ 0,

(5)

where 𝐹 : 𝑅
𝑛

→ I is an interval-valued function and 𝑔
𝑖

:

𝑅
𝑛

→ 𝑅 and ℎ
𝑖
: 𝑅
𝑛

→ 𝑅, 𝑖 = 1, . . . , 𝑚, are real-valued fun-
ctions.

We denote by

𝑋 = {x ∈ 𝑅
𝑛

: x ≥ 0, 𝑔
𝑖 (x) ≤ 0, ℎ

𝑖 (x) ≤ 0, 𝑖 = 1, . . . , 𝑚}

(6)

the feasible set of primal problem (IVP). We also denote by

Obj
𝑃

(𝐹, 𝑋) = {𝐹 (x) : x ∈ 𝑋} (7)

the set of all objective values of primal problem (IVP).

Definition 5 (see [12]). Let x∗ be a feasible solution of primal
problem (IVP). One says that x∗ is a nondominated solution of
problem (IVP) if there exists no x̃ ∈ 𝑋 such that𝐹(x̃) ≺ 𝐹(x∗).
In this case, 𝐹(x∗) is called the nondominated objective value
of 𝐹.

We denote by Min(𝐹, 𝑋) = {𝐹(x∗) : x∗ is a
non-dominated solution of (IVP)} the set of all nondomi-
nated objective values of problem (IVP).

If we assume that the interval-valued function 𝐹 and the
real-valued functions 𝑔

𝑖
and ℎ
𝑖
, 𝑖 = 1, . . . , 𝑚 are differentiable

on 𝑅
𝑛

+
, the dual problem of (IVP) is formulated as follows:

(DIVP) max 𝐹 (x) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ 𝑔
𝑖 (x) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ℎ
𝑖 (x)

subject to ∇𝐹
𝐿

(x) + ∇𝐹
𝑈

(x) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖 (x)

+

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖 (x) = 0,

𝜇 = (𝜇
1
, . . . , 𝜇

𝑚
) ≥ 0, 𝑖 = 1, . . . , 𝑚,

𝜆 = (𝜆
1
, . . . , 𝜆

𝑚
) ≥ 0, 𝑖 = 1, . . . , 𝑚,

x ≥ 0.

(8)

We denote by 𝑌 the feasible set of dual problem (DIVP)
consisting of elements (x,𝜇,𝜆) ∈ 𝑅

𝑛

+
× 𝑅
𝑚

+
× 𝑅
𝑚

+
. We write

𝐻 (x,𝜇,𝜆) = 𝐹 (x) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ 𝑔
𝑖 (x) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ℎ
𝑖 (x) (9)

and denote by

Obj
𝐷

(𝐻, 𝑌) = {𝐻 (x,𝜇,𝜆) : (x,𝜇,𝜆) ∈ 𝑌} (10)

the set of all objective values of primal problem (DIVP).

Definition 6 (see [12]). Let (x∗,𝜇∗,𝜆∗) be a feasible solution
of primal problem (DIVP). One says that (x∗,𝜇∗,𝜆∗) is a
nondominated solution of problem (DIVP) if there exists no
(x,𝜇,𝜆) such that 𝐻(x∗,𝜇∗,𝜆∗) ≺ 𝐻(x,𝜇,𝜆). In this case,
𝐻(x∗,𝜇∗,𝜆∗) is called the nondominated objective value of
problem (DIVP).

We denote by Max(𝐻, 𝑌) = {𝐻(x∗,𝜇∗,𝜆∗) : (x∗,𝜇∗,𝜆∗)
is a nondominated solution of (DIVP)} the set of all nondom-
inated objective values of problem (DIVP).
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4. The KKT Optimality Conditions for
Interval-Valued Optimization Problems

In this section, we extend the concepts of preinvex and
invex for real-valued functions to interval-valued functions.
Under the assumption of invexity, we propose the KKT
optimality sufficient and necessary conditions for interval-
valued optimization problems.

4.1. Preinvexity and Invexity of the Interval-Valued Functions.
The concept of convexity plays an important role in the
optimization theory. In recent years, the concept of convex-
ity has been generalized in several directions using novel
and innovative techniques. An important generalization of
convex functions is the introduction of preinvex function,
which was introduced by Weir and Mond ([19]) and by
Weir and Jeyakumar ([20]). Yang et al. ([21]) has established
the characterization of prequasi-invex functions under the
condition of lower semicontinuity, upper semicontinuity, and
semistrict prequasi-invexity, respectively.

Definition 7 (see [19, 20]). A set 𝐾 ⊆ 𝑅
𝑛 is said to be invex if

there exists a vector function 𝜂 : 𝑅
𝑛

× 𝑅
𝑛

→ 𝑅
𝑛 such that

x, y ∈ 𝐾, 𝜆 ∈ [0, 1] 󳨐⇒ y + 𝜆𝜂 (x, y) ∈ 𝐾. (11)

Definition 8 (see [19, 20]). Let 𝐾 ⊆ 𝑅
𝑛 be an invex set with

respect to 𝜂 : 𝑅
𝑛

× 𝑅
𝑛

→ 𝑅
𝑛. Let 𝑓 : 𝐾 → 𝑅. One says that

𝑓 is preinvex if

𝑓 (y + 𝜆𝜂 (x, y)) ≤ 𝜆𝑓 (x) + (1 − 𝜆) 𝑓 (y) ,

∀x, y ∈ 𝐾, 𝜆 ∈ [0, 1] .

(12)

Hanson has also introduced the concept of invex function in
[17].

Definition 9 (see [17]). Let𝐾 ⊆ 𝑅
𝑛 be an invex setwith respect

to 𝜂 : 𝑅
𝑛
×𝑅
𝑛

→ 𝑅
𝑛. Let𝑓 : 𝐾 → 𝑅. One says that𝑓 is invex

if

𝑓 (x) − 𝑓 (y) ≥ 𝜂
𝑇

(x, y) ∇𝑓 (y) . (13)

Pini ([18]) has shown that, if 𝑓 is defined on an invex set
𝐾 ⊆ 𝑅

𝑛 and if it is preinvex and differentiable, then 𝑓 is also
invex with respect to 𝜂, but the converse is not true in general.
Wu has extended the concept of convexity to the interval-
valued functions in [11–14].

Now, we extend the concepts of preinvexity and invexity
to the interval-valued functions.

Definition 10. Let 𝐾 ⊆ 𝑅
𝑛 be an invex set with respect to 𝜂 :

𝐾 × 𝐾 → 𝑅
𝑛, and let 𝑓 = [𝑓

𝐿
(x), 𝑓
𝑈

(x)] be an interval-
valued function defined on𝐾. One says that𝑓 is 𝐿𝑈-preinvex
at x∗ with respect to 𝜂 if

𝑓 (x + 𝜆𝜂 (x∗, x)) ⪯
𝐿𝑈

𝜆𝑓 (x∗) + (1 − 𝜆) 𝑓 (x) (14)

for each 𝜆 ∈ (0, 1) and each x ∈ 𝐾.

Definition 11. Let 𝐾 ⊆ 𝑅
𝑛 be an invex set with respect to 𝜂 :

𝐾 × 𝐾 → 𝑅
𝑛, and let 𝑓 = [𝑓

𝐿
(x), 𝑓
𝑈

(x)] be an interval-
valued function defined on 𝐾. One says that 𝑓 is invex at x∗
if the real-valued functions 𝑓

𝐿 and 𝑓
𝑈 are invex at x∗.

It is obvious that the particular case of H-differentiable
𝐿𝑈-convex interval-valued function is obtained by choosing
𝜂(x, y) = x−y in H-differentiable invex interval-valued func-
tion, but H-differentiable invex interval-valued functionmay
not be H-differentiable 𝐿𝑈-convex interval-valued function.

Example 12. Consider that 𝑓 : 𝑅 → 𝑅, 𝑓(𝑥) = [1 − 𝑒
−𝑥
2

,
1 − 0.2𝑒

−𝑥
2

]; this interval-valued function is invex since 𝑓
𝐿

and 𝑓
𝑈 have a unique global minimizer at 𝑥

∗
= 0, where

(𝑓
𝐿
)
󸀠

= (𝑓
𝑈

)
󸀠

= 0 and is therefore invex. However, 𝑓 is not
𝐿𝑈-convex at 𝑥

∗ and therefore not 𝐿𝑈-preinvex. As 𝑥
∗

= 0

and 𝑓
𝐿
(𝑥
∗
) = 0, then for 𝜆 ∈ (0, 1). Consider the following:

𝜆𝑓
𝐿

(𝑥
∗
) + (1 − 𝜆) 𝑓

𝐿
(𝑦) = (1 − 𝜆) 𝑓

𝐿
(𝑦) ,

𝑓
𝐿

(𝜆𝑥
∗

+ (1 − 𝜆) 𝑦) = 𝑓
𝐿

((1 − 𝜆) 𝑦) .

(15)

Taking 𝑦 = 5, 𝜆 = 0.5, we get (1 − 𝜆)𝑓
𝐿
(𝑦) ≈ 0.5 < 𝑓

𝐿
((1 −

𝜆)𝑦) ≈ 0.998. Then, (1 − 𝜆)𝑓
𝐿
(𝑦) < 𝑓

𝐿
((1 − 𝜆)𝑦), ∀𝑦 ∈ 𝑅, so

the real-valued function 𝑓
𝐿 is not convex at 𝑥

∗
= 0 and the

interval-valued function 𝑓 is not 𝐿𝑈-convex at 𝑥
∗

= 0.

Proposition 13. Let 𝐾 ⊆ 𝑅
𝑛 be an invex set with respect to

𝜂 : 𝐾 × 𝐾 → 𝑅
𝑛, and let 𝑓 = [𝑓

𝐿
(x), 𝑓
𝑈

(x)] be an interval-
valued function defined on 𝐾. The interval-valued function 𝑓

is 𝐿𝑈-preinvex at x∗ with respect to 𝜂 if and only if the real-
valued functions 𝑓

𝐿 and 𝑓
𝑈 are preinvex at x∗ with respect to

the same 𝜂.

Proof. By Definition 10, we have

𝑓
𝐿

(x + 𝜆𝜂 (x∗, x)) ≤ [𝜆𝑓 (x∗) + (1 − 𝜆) 𝑓 (x)]
𝐿
,

𝑓
𝑈

(x + 𝜆𝜂 (x∗, x)) ≤ [𝜆𝑓 (x∗) + (1 − 𝜆) 𝑓 (x)]
𝑈

.

(16)

Since 𝜆 > 0 and 1 − 𝜆 > 0, then

𝑓
𝐿

(x + 𝜆𝜂 (x∗, x)) ≤ 𝜆𝑓
𝐿

(x∗) + (1 − 𝜆) 𝑓
𝐿

(x) ,

𝑓
𝑈

(x + 𝜆𝜂 (x∗, x)) ≤ 𝜆𝑓
𝑈

(x∗) + (1 − 𝜆) 𝑓
𝑈

(x) .

(17)

The proof is complete.

Proposition 14. Let 𝐾 ⊆ 𝑅
𝑛 be an invex set with respect to

𝜂 : 𝐾 × 𝐾 → 𝑅
𝑛, and let 𝑓 = [𝑓

𝐿
(x), 𝑓
𝑈

(x)] be an interval-
valued function defined on 𝐾. If the interval-valued function
𝑓 is 𝐿𝑈-preinvex with respect to 𝜂 and H-differentiable at x∗,
then the interval-valued functions 𝑓 is invex at x∗ with respect
to the same 𝜂.

Proof. From Definition 10 and Proposition 13, we have

𝑓
𝐿

(x∗ + 𝜆𝜂 (x∗, x)) ≤ 𝜆𝑓
𝐿

(x) + (1 − 𝜆) 𝑓
𝐿

(x∗) ,

𝑓
𝑈

(x∗ + 𝜆𝜂 (x∗, x)) ≤ 𝜆𝑓
𝑈

(x) + (1 − 𝜆) 𝑓
𝑈

(x∗) .

(18)
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We can rewrite the two above inequalities as

𝑓
𝐿

(x∗ + 𝜆𝜂 (x∗, x)) − 𝑓
𝐿

(x∗) ≤ 𝜆 [𝑓
𝐿

(x) − 𝑓
𝐿

(x∗)] ,

𝑓
𝑈

(x∗ + 𝜆𝜂 (x∗, x)) − 𝑓
𝑈

(x∗) ≤ 𝜆 [𝑓
𝑈

(x) − 𝑓
𝑈

(x∗)] .

(19)

Since 𝜆 > 0, 1 − 𝜆 > 0, and the interval-valued function
𝑓 is H-differentiable at x∗, then the real-valued functions 𝑓

𝐿

and 𝑓
𝑈 are differentiable at x∗ by Definition 3. Divide by 𝜆 to

obtain
1

𝜆
[𝑓
𝐿

(x∗ + 𝜆𝜂 (x∗, x)) − 𝑓
𝐿

(x∗)] ≤ 𝑓
𝐿

(x) − 𝑓
𝐿

(x∗) ,

1

𝜆
[𝑓
𝑈

(x∗ + 𝜆𝜂 (x∗, x)) − 𝑓
𝑈

(x∗)] ≤ 𝑓
𝑈

(x) − 𝑓
𝑈

(x∗) .

(20)

Taking the limit as 𝜆 → 0
+
, we get

𝜂
𝑇

(x∗, x) ⋅ ∇𝑓
𝐿

(x∗) ≤ 𝑓
𝐿

(x) − 𝑓
𝐿

(x∗) ,

𝜂
𝑇

(x∗, x) ⋅ ∇𝑓
𝑈

(x∗) ≤ 𝑓
𝑈

(x) − 𝑓
𝑈

(x∗) .

(21)

From the two above inequalities, we can see that 𝑓
𝐿 and

𝑓
𝑈 are invex at x∗ with respect to the same 𝜂. ByDefinition 11,

it can be shown that the interval-valued function𝑓 is invex at
x∗ with respect to the same 𝜂.

4.2. The KKT Optimality Conditions for Invex Interval-Valued
Optimization Problems. Now we consider the following two
real-valued optimization problems:

(PLU) min 𝑓 (x) = 𝐹
𝐿

(x) + 𝐹
𝑈

(x)

subject to 𝑔
𝑖 (x) ≤ 0, 𝑖 = 1, . . . , 𝑚,

ℎ
𝑖 (x) ≤ 0, 𝑖 = 1, . . . , 𝑚,

x ≥ 0,

(DLU) max 𝑓 (x,𝜇,𝜆) = 𝐻
𝐿

(x,𝜇,𝜆) + 𝐻
𝑈

(x,𝜇,𝜆)

subject to ∇𝐹
𝐿

(x) + ∇𝐹
𝑈

(x) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖 (x)

+

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖 (x) = 0,

𝜇 = (𝜇
1
, . . . , 𝜇

𝑚
) ≥ 0, 𝑖 = 1, . . . , 𝑚,

𝜆 = (𝜆
1
, . . . , 𝜆

𝑚
) ≥ 0, 𝑖 = 1, . . . , 𝑚,

x ≥ 0.

(22)

Wu ([12]) has proposed the following result.

Proposition 15 (see [12]). (1) If x∗ is an optimal solution of
problem (P

𝐿𝑈
), then x∗ is a nondominated solution of problem

(𝐼𝑉𝑃);

(2) If (x∗,𝜇∗,𝜆∗) is an optimal solution of problem (D
𝐿𝑈

),
then (x∗,𝜇∗,𝜆∗) is a nondominated solution of problem
(𝐷𝐼𝑉𝑃).

Now, we show that the KKT conditions are necessary and
sufficient for optimality under the assumptions of invexity
and modified Slater condition is satisfied.

Let us rename the constraint functions ℎ
𝑖
for 𝑖 = 1, . . . , 𝑚

as 𝑔
𝑚+𝑖

= ℎ
𝑖
for 𝑖 = 1, . . . , 𝑚. Let 𝐽(x∗) denote the set of active

constraints at x∗, which is defined by

𝐽 (x∗) = {𝑖 : 𝑔
𝑖
(x∗) = 0 for 𝑖 = 1, . . . , 2𝑚} . (23)

Theorem 16 (KKT necessary conditions for PLU). Suppose
that x∗ is an optimal solution of the problem of 𝑃

𝐿𝑈
and there

exists a point x̂ such that 𝑔
𝑖
(x̂) < 0 and that 𝑔

𝑖
(𝑥
∗
) = 0 for

all 𝑖 ∈ 𝐽(𝑥
∗
). Suppose, also, that 𝑓(x) and 𝑔

𝑖
are differentiable

for 𝑖 = 1, . . . , 2𝑚 at x∗ and 𝑓(x) and 𝑔
𝑖
are invex with respect

to the same vector function 𝜂(x, x∗). Then there exist 0 ≤ 𝜇
𝑖
,

𝜆
𝑖
∈ 𝑅 for 𝑖 = 1, . . . , 𝑚 such that

∇𝐹
𝐿

(x∗) + ∇𝐹
𝑈

(x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0,

𝜇
𝑖
𝑔
𝑖
(x∗) = 0 = 𝜆

𝑖
ℎ
𝑖
(x∗) ∀𝑖 = 1, . . . , 𝑚.

(24)

Proof. Since 𝐽(x∗) denote the set of active constraints at x∗.
Then,

𝑔
𝑖
(x∗) = 0, ∀𝑖 ∈ 𝐽 (x∗) . (25)

If we can show that

y𝑇∇𝑔
𝑖
(x∗) ≤ 0 (∀𝑖 ∈ 𝐽 (x∗)) 󳨐⇒ y𝑇∇𝑓 (x∗) ≥ 0, (26)

the result will follow as in [16, 24] by applying Farkas’ Lemma,
where 𝑓(x) = 𝐹

𝐿
(x) + 𝐹

𝑈
(x) is a real-valued function.

Assume that (26) does not hold; then there exists y =

(𝑦
1
, . . . , 𝑦

𝑛
) ∈ 𝑅
𝑛 such that

y𝑇∇𝑔
𝑖
(x∗) ≤ 0 (∀𝑖 ∈ 𝐽 (x∗)) 󳨐⇒ y𝑇∇𝑓 (x∗) < 0. (27)

Since the Slater-type condition holds, then

𝑔
𝑖 (x̂) − 𝑔

𝑖
(x∗) < 0, 𝑖 ∈ 𝐽 (x∗) . (28)

By the invexity of 𝑔
𝑖
, we have

[𝜂 (x̂, x∗)]𝑇∇𝑔
𝑖
(x∗) < 0, 𝑖 ∈ 𝐽 (x∗) . (29)

Then

[y + 𝜌𝜂 (x̂, x∗)]𝑇∇𝑔
𝑖
(x∗) < 0, 𝑖 ∈ 𝐽 (x∗) (30)

for all 𝜌 > 0. Therefore, for some positive 𝜎 > 0 are small
enough such that

𝑔
𝑖
(x∗ + 𝜎 [y + 𝜌𝜂 (x̂, x∗)]) ≤ 𝑔

𝑖
(x∗) = 0, 𝑖 ∈ 𝐽 (x∗) ,

(31)
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which can shown that x∗+𝜎[y+𝜌𝜂(x̂, x∗)] is a feasible solution
of PLU. Since x∗ is an optimal solution of the problem of PLU,
we have

𝑓 (x∗ + 𝜎 [y + 𝜌𝜂 (x̂, x∗)]) ≥ 𝑓 (x∗) ; (32)

then

[y + 𝜌𝜂 (x̂, x∗)]𝑇∇𝑓 (x∗) ≥ 0, (33)

for all 𝜌 > 0. When 𝜌 → 0
+, we have

y𝑇∇𝑓 (x∗) ≥ 0. (34)

which contradicts to (27). Then, (26) is satisfied. By applying
Farkas’ Lemma and setting 𝑦

𝑖
= 0 for 𝑖 ∉ 𝐽(x∗), it can be

shown that there exists 0 ≤ 𝑦
∗

𝑖
∈ 𝑅, (𝑖 ∈ 𝐽(x∗)) such that

∇𝑓 (x∗) + ∑

𝑖∈𝐽(x∗)
𝑦
∗

𝑖
∇𝑔
𝑖
(x∗) = 0. (35)

From (35),𝑓(x) = 𝐹
𝐿
(x)+𝐹

𝑈
(x) and 𝑦

∗

𝑖
= 𝜇
𝑖
, 𝑖 = 1, . . . , 𝑚;

𝑦
∗

𝑖
= 𝜆
𝑖
, 𝑖 = 𝑚+1, . . . , 2𝑚;𝑔

𝑖
(x∗) = ℎ

𝑖
(x∗) if 𝑖 = 𝑚+1, . . . , 2𝑚.

Then, we get

∇𝐹
𝐿

(x∗) + ∇𝐹
𝑈

(x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0,

𝜇
𝑖
𝑔
𝑖
(x∗) = 0 = 𝜆

𝑖
ℎ
𝑖
(x∗) ∀𝑖 = 1, . . . , 𝑚.

(36)

The result follows.

Theorem 17 (KKT necessary conditions for (IVP)). Suppose
that x∗ is a nondominated solution of primal problem (IVP)
and there exists a point x̂ such that 𝑔

𝑖
(x̂) < 0 and that 𝑔

𝑖
(𝑥
∗
) =

0 for all 𝑖 ∈ 𝐽(𝑥
∗
). Suppose, also, that 𝐹(x) is H-differentiable

and 𝑔
𝑖
are differentiable for 𝑖 = 1, . . . , 2𝑚 at x∗ and 𝐹(x) and

𝑔
𝑖
are invex with respect to the same vector function 𝜂(x, x∗).

Then there exist 0 ≤ 𝜇
𝑖
, 𝜆
𝑖
∈ 𝑅 for 𝑖 = 1, . . . , 𝑚 such that

∇𝐹
𝐿

(x∗) + ∇𝐹
𝑈

(x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0,

𝜇
𝑖
𝑔
𝑖
(x∗) = 0 = 𝜆

𝑖
ℎ
𝑖
(x∗) ∀𝑖 = 1, . . . , 𝑚.

(37)

Proof. Since 𝐽(x∗) denote the set of active constraints at x∗.
Then,

𝑔
𝑖
(x∗) = 0, ∀𝑖 ∈ 𝐽 (x∗) . (38)

Suppose that there exists y ∈ 𝑅
𝑛 such that

y𝑇∇𝑔
𝑖
(x∗) ≤ 0 (∀𝑖 ∈ 𝐽 (x∗)) ,

y𝑇∇𝐹
𝐿

(x∗) < 0, y𝑇∇𝐹
𝑈

(x∗) < 0.

(39)

Since the Slater-type condition holds, then

𝑔
𝑖 (x̂) − 𝑔

𝑖
(x∗) < 0, 𝑖 ∈ 𝐽 (x∗) ; (40)

by the invexity of 𝑔
𝑖
, we have

[𝜂 (x̂, x∗)]𝑇∇𝑔
𝑖
(x∗) < 0, 𝑖 ∈ 𝐽 (x∗) ; (41)

then

[y + 𝜌𝜂 (x̂, x∗)]𝑇∇𝑔
𝑖
(x∗) < 0, 𝑖 ∈ 𝐽 (x∗) (42)

for all 𝜌 > 0. Therefore, for some positive 𝜎 > 0 are small
enough such that

𝑔
𝑖
(x∗ + 𝜎 [y + 𝜌𝜂 (x̂, x∗)]) ≤ 𝑔

𝑖
(x∗) = 0, 𝑖 ∈ 𝐽 (x∗) ,

(43)

which can show that x∗+𝜎[y+𝜌𝜂(x̂, x∗)] is a feasible solution
of primal problem (IVP). Since x∗ is a nondominated solution
of primal problem (IVP), there exists no feasible solution x
such that 𝐹(x) ≺ 𝐹(x∗), which means that there exists no
feasible solution 𝑥 such that the following are satisfied.

(1) 𝐹
𝐿
(x) < 𝐹

𝐿
(x∗), and 𝐹

𝑈
(x) ≤ 𝐹

𝑈
(x∗);

(2) 𝐹
𝐿
(x) ≤ 𝐹

𝐿
(x∗), and 𝐹

𝑈
(x) < 𝐹

𝑈
(x∗);

(3) 𝐹
𝐿
(x) < 𝐹

𝐿
(x∗), and 𝐹

𝑈
(x) < 𝐹

𝑈
(x∗).

That is to say, we have the following results for the feasible
solution x∗ + 𝜎[y + 𝜌𝜂(x̂, x∗)] of primal problem (IVP):

𝐹
𝐿

(x∗ + 𝜎 [y + 𝜌𝜂 (x̂, x∗)]) ≥ 𝐹
𝐿

(x∗)

or 𝐹
𝑈

(x∗ + 𝜎 [y + 𝜌𝜂 (x̂, x∗)]) ≥ 𝐹
𝑈

(x∗) ;

(44)

then

[y + 𝜌𝜂 (x̂, x∗)]𝑇∇𝐹
𝐿

(x∗) ≥ 0

or [y + 𝜌𝜂 (x̂, x∗)]𝑇∇𝐹
𝑈

(x∗) ≥ 0

(45)

for all 𝜌 > 0. When 𝜌 → 0
+, we have

y𝑇∇𝐹
𝐿

(x∗) ≥ 0 or y𝑇∇𝐹
𝑈

(x∗) ≥ 0, (46)

which contradicts to (39). Therefore, we conclude that the
system of inequalities presented in (39) has no solution.
According to Farkas’ lemma [24] and setting 𝑦

𝑖
= 0 for

𝑖 ∉ 𝐽(x∗), it can be shown that there exists 0 ≤ 𝑦
∗

𝑖
∈ 𝑅, (𝑖 ∈

𝐽(x∗)) such that

∇𝐹
𝐿

(x∗) + ∇𝐹
𝑈

(x∗) + ∑

𝑖∈𝐽(x∗)
𝑦
∗

𝑖
∇𝑔
𝑖
(x∗) = 0. (47)

From (47), 𝑦
∗

𝑖
= 𝜇
𝑖
, 𝑖 = 1, . . . , 𝑚; 𝑦

∗

𝑖
= 𝜆
𝑖
, 𝑖 = 𝑚 +

1, . . . , 2𝑚; 𝑔
𝑖
(x∗) = ℎ

𝑖
(x∗) if 𝑖 = 𝑚 + 1, , . . . , 2𝑚. Then, we

get

∇𝐹
𝐿

(x∗) + ∇𝐹
𝑈

(x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0,

𝜇
𝑖
𝑔
𝑖
(x∗) = 0 = 𝜆

𝑖
ℎ
𝑖
(x∗) ∀𝑖 = 1, . . . , 𝑚.

(48)

The result follows.
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We can also show that the KKT sufficient condition holds
under the assumption of invexity.

Theorem 18 (KKT sufficient conditions). Suppose that the
interval-valued function 𝐹 is H-differentiable and 𝑔

𝑖
is differ-

entiable for 𝑖 = 1, . . . , 2𝑚 at x∗ and 𝐹, ℎ
𝑖
, and 𝑔

𝑖
are invex

with respect to the same vector function 𝜂(x, x∗). If there exist
Lagrange multipliers 0 ≤ 𝜇

𝑖
, 𝜆
𝑖
∈ 𝑅 for 𝑖 = 1, . . . , 𝑚 such that

∇𝐹 (x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = [0, 0] , (49)

𝜇
𝑖
𝑔
𝑖
(x∗) = 0 = 𝜆

𝑖
ℎ
𝑖
(x∗) ∀𝑖 = 1, . . . , 𝑚, (50)

where [0, 0] = ([0, 0], . . . , [0, 0]) with 𝑛 components, then x∗ is
a nondominated solution of primal problem (𝐼𝑉𝑃).

Proof. Suppose the contrary that x∗ is not a nondominated
solution of (IVP). Then, there exists a feasible solution x̃ ∈

𝑋 such that 𝐹(x̃) ≺ 𝐹(x∗). From Definition 11 and the
assumptions, it can be shown that 𝐹

𝐿
, 𝐹
𝑈

, 𝑔
𝑖
, and ℎ

𝑖
are invex

at x∗ with respect to the same vector function 𝜂(x, x∗) for all
𝑖 = 1, . . . , 𝑚.

From the feasibility of x̃ ∈ 𝑋, we get

𝑔
𝑖 (x̃) ≤ 0, ℎ

𝑖 (x̃) ≤ 0 𝑖 = 1, . . . , 𝑚. (51)

From (49), we have

∇𝐹
𝐿

(x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0,

∇𝐹
𝑈

(x∗) +

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗) +

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0.

(52)

Since ℎ
𝑖
and 𝑔

𝑖
are invex at x∗ with respect to the same 𝜂,

𝜇
𝑖
≥ 0 and 𝜆

𝑖
≥ 0 for all 𝑖 = 1, . . . , 𝑚. Then

−

𝑚

∑

𝑖=1

𝜇
𝑖
∇𝑔
𝑇

𝑖
(x∗) 𝜂 (x̃, x∗) ≥

𝑚

∑

𝑖=1

𝜇
𝑖
[𝑔
𝑖
(x∗) − 𝑔

𝑖 (x̃)] ,

−

𝑚

∑

𝑖=1

𝜆
𝑖
∇ℎ
𝑇

𝑖
(x∗) 𝜂 (x̃, x∗) ≥

𝑚

∑

𝑖=1

𝜆
𝑖
[ℎ
𝑖
(x∗) − ℎ

𝑖 (x̃)] .

(53)

From (50) and (51), we have

𝑚

∑

𝑖=1

𝜇
𝑖
[𝑔
𝑖
(x∗) − 𝑔

𝑖 (x̃)] ≥

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(x∗) = 0,

𝑚

∑

𝑖=1

𝜆
𝑖
[ℎ
𝑖
(x∗) − ℎ

𝑖 (x̃)] ≥

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖
(x∗) = 0.

(54)

From (52), we get

[∇𝐹
𝐿

(x∗)]
𝑇

𝜂 (x̃, x∗) = −

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗)𝑇𝜂 (x̃, x∗)

−

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗)𝑇𝜂 (x̃, x∗) ,

(55)

[∇𝐹
𝑈

(x∗)]
𝑇

𝜂 (x̃, x∗) = −

𝑚

∑

𝑖=1

𝜇
𝑖
⋅ ∇𝑔
𝑖
(x∗)𝑇𝜂 (x̃, x∗)

−

𝑚

∑

𝑖=1

𝜆
𝑖
⋅ ∇ℎ
𝑖
(x∗)𝑇𝜂 (x̃, x∗) .

(56)

Since the interval-valued function 𝐹 is invex at x∗ with
respect to 𝜂, then 𝐹

𝐿 and 𝐹
𝑈 are invex at x∗ with respect to

the same 𝜂. We have

𝐹
𝐿

(x̃) ≥ 𝐹
𝐿

(x∗) + [∇𝐹
𝐿

(x∗)]
𝑇

𝜂 (x̃, x∗) , (57)

𝐹
𝑈

(x̃) ≥ 𝐹
𝑈

(x∗) + [∇𝐹
𝑈

(x∗)]
𝑇

𝜂 (x̃, x∗) . (58)

By (53)–(55), (57), we obtain

𝐹
𝐿

(x̃) ≥ 𝐹
𝐿

(x∗) . (59)

Similarly, from (53)–(54), (56), and (58), we have

𝐹
𝑈

(x̃) ≥ 𝐹
𝑈

(x∗) , (60)

which contradicts that 𝐹(x̃) ≺ 𝐹(x∗). The result follows.

5. Solvability

In this section, we discuss the solvability for Wolfe’s primal
and dual problems.

Lemma 19. Let 𝐹, 𝑔
𝑖
, ℎ
𝑖
, and 𝑖 = 1, . . . , 𝑚, be continuously

differentiable on 𝑅
𝑛

+
. Suppose that x̂ is a feasible solution of

primal problem (𝐼𝑉𝑃) and (x, 𝜇, 𝜆) is a feasible solution of
dual problem (𝐷𝐼𝑉𝑃). If 𝐹, 𝑔

𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚, are invex

at x with respect to the same vector function 𝜂(x̂, x), then the
following statements hold true.

(i) If 𝐹
𝑈

(x) ≥ 𝐹
𝑈

(x̂), then 𝐹
𝐿
(x̂) ≥ 𝐻

𝐿
(x, 𝜇, 𝜆).

(ii) If 𝐹
𝑈

(x) > 𝐹
𝑈

(x̂), then 𝐹
𝐿
(x̂) > 𝐻

𝐿
(x, 𝜇, 𝜆).

(iii) If 𝐹
𝐿
(x) ≥ 𝐹

𝐿
(x̂), then 𝐹

𝑈
(x̂) ≥ 𝐻

𝑈
(x, 𝜇, 𝜆).

(iv) If 𝐹
𝐿
(x) > 𝐹

𝐿
(x̂), then 𝐹

𝑈
(x̂) > 𝐻

𝑈
(x, 𝜇, 𝜆).

Proof. FromDefinitions 3 and 11, it can be shown that 𝐹
𝐿 and

𝐹
𝑈 are continuously differentiable on 𝑅

𝑛

+
and invex at x with

respect to the same 𝜂(x̂, x).
Since x̂ is a feasible solution of primal problem (IVP),

then

𝑔
𝑖 (x̂) ≤ 0, ℎ

𝑖 (x̂) ≤ 0, (61)
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for all 𝑖 = 1, . . . , 𝑚. Then we have

𝐹
𝐿

(x̂) ≥ 𝐹
𝐿

(x) + [∇𝐹
𝐿

(x)]
𝑇

𝜂 (x̂, x)

(by the invexity of 𝐹
𝐿
)

= 𝐹
𝐿

(x) − [∇𝐹
𝑈

(x)]
𝑇

𝜂 (x̂, x) −

𝑚

∑

𝑖=1

𝜇
𝑖
∇𝑔
𝑖(x)
𝑇
𝜂 (x̂, x)

−

𝑚

∑

𝑖=1

𝜆
𝑖
∇ℎ
𝑖(x)
𝑇
𝜂 (x̂, x)

(since (x, 𝜇, 𝜆) is a feasible solution of

dual problem (DIVP))

≥ 𝐹
𝐿

(x) + 𝐹
𝑈

(x) − 𝐹
𝑈

(x̂) +

𝑚

∑

𝑖=1

𝜇
𝑖
[𝑔
𝑖 (x) − 𝑔

𝑖 (x̂)]

+

𝑚

∑

𝑖=1

𝜆
𝑖
[ℎ
𝑖 (x) − ℎ

𝑖 (x̂)]

(by the invexity of 𝐹
𝑈

, 𝑔
𝑖
, ℎ
𝑖
, 𝜇
𝑖
, 𝜆
𝑖
≥ 0)

≥ 𝐹
𝐿

(x) + 𝐹
𝑈

(x) − 𝐹
𝑈

(x̂) +

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖 (x) +

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖 (x)

(by (61) , 𝜇
𝑖
, 𝜆
𝑖
≥ 0)

≥ 𝐹
𝐿

(x) +

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖 (x) +

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖 (x) ,

if 𝐹
𝑈

(x) − 𝐹
𝑈

(x̂) ≥ 0

= 𝐻
𝐿

(x, 𝜇, 𝜆) .

(62)

Then statement (i) holds true. If 𝐹
𝑈

(x) > 𝐹
𝑈

(x̂), then

𝐹
𝐿

(x̂) > 𝐹
𝐿

(x) +

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖 (x) +

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖 (x) = 𝐻

𝐿
(x, 𝜇, 𝜆) ;

(63)

it can be shown that statement (ii) holds. On the other hand,
considering the real-valued function 𝐹

𝑈, we can also obtain
statements (iii) and (iv) by using the similar arguments.

Lemma 20. Let 𝐹, 𝑔
𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚, be continuously

differentiable on 𝑅
𝑛

+
. Suppose that x̂ is a feasible solution of

primal problem (𝐼𝑉𝑃) and (x, 𝜇, 𝜆) is a feasible solution of
dual problem (𝐷𝐼𝑉𝑃). If 𝐹, 𝑔

𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚, are invex

at x with respect to the same vector function 𝜂(x̂, x), then the
following statements hold true.

(i) If 𝐹
𝐿
(x) ≤ 𝐹

𝐿
(x̂), then 𝐹

𝐿
(x̂) ≥ 𝐻

𝐿
(x, 𝜇, 𝜆).

(ii) If 𝐹
𝐿
(x) < 𝐹

𝐿
(x̂), then 𝐹

𝐿
(x̂) > 𝐻

𝐿
(x, 𝜇, 𝜆).

(iii) If 𝐹
𝑈

(x) ≤ 𝐹
𝑈

(x̂), then 𝐹
𝑈

(x̂) ≥ 𝐻
𝑈

(x, 𝜇, 𝜆).
(iv) If 𝐹

𝑈
(x) < 𝐹

𝑈
(x̂), then 𝐹

𝑈
(x̂) > 𝐻

𝑈
(x, 𝜇, 𝜆).

Proof. FromDefinitions 3 and 11, it can be shown that 𝐹
𝐿 and

𝐹
𝑈 are continuously differentiable on 𝑅

𝑛

+
and invex at x with

respect to the same 𝜂(x̂, x). Consider the following:

𝐹
𝐿

(x̂) − 𝐻
𝐿

(x, 𝜇, 𝜆)

= 𝐹
𝐿

(x̂) − 𝐹
𝐿

(x) −

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖 (x) −

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖 (x)

≥ [∇𝐹
𝐿

(x)]
𝑇

𝜂 (x̂, x) −

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖 (x) −

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖 (x)

(by the invexity of 𝐹
𝐿
)

≥ [∇𝐹
𝐿

(x)]
𝑇

𝜂 (x̂, x)

+ [−

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖 (x̂) +

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖 (x̂) −

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖 (x)]

+ [−

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖 (x̂) +

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖 (x̂) −

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖 (x)]

≥ [∇𝐹
𝐿

(x)]
𝑇

𝜂 (x̂, x)

+ [−

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖 (x̂) +

𝑚

∑

𝑖=1

𝜇
𝑖
∇𝑔
𝑖(x)
𝑇
𝜂 (x̂, x)]

+ [−

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖 (x̂) +

𝑚

∑

𝑖=1

𝜆
𝑖
∇ℎ
𝑖(x)
𝑇
𝜂 (x̂, x)]

(by the invexity of 𝑔
𝑖
, ℎ
𝑖
and 𝜇

𝑖
, 𝜆
𝑖
≥ 0)

= {[∇𝐹
𝐿

(x)]
𝑇

+

𝑚

∑

𝑖=1

𝜇
𝑖
∇𝑔
𝑖(x)
𝑇

+

𝑚

∑

𝑖=1

𝜆
𝑖
∇ℎ
𝑖(x)
𝑇
} 𝜂 (x̂, x)

−

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖 (x̂) −

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖 (x̂)

= −[∇𝐹
𝑈

(x)]
𝑇

𝜂 (x̂, x) −

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖 (x̂) −

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖 (x̂)

(since (x, 𝜇, 𝜆) is a feasible solution

of dual problem (DIVP))

≥ 𝐹
𝑈

(x) − 𝐹
𝑈

(x̂) −

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖 (x̂) −

𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
𝑖 (x̂)

= 𝐹
𝑈

(x) − 𝐻
𝑈

(x̂, 𝜇, 𝜆)

≥ 0, if 𝐹
𝐿

(x) ≤ 𝐹
𝐿

(x̂) (using Lemma 19 (iii)) .

(64)

Then statement (i) holds true. If 𝐹
𝐿
(x) < 𝐹

𝐿
(x̂), then

statement (ii) holds true by using Lemma 19(iv). On the other
hand, we can also obtain statements (iii) and (iv) by using the
similar arguments andLemma 19(i) and (ii), respectively.
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Proposition 21. Let𝐹, 𝑔
𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚, be continuously

differentiable on 𝑅
𝑛

+
. Suppose that x̂ is a feasible solution of

primal problem (𝐼𝑉𝑃) and (x, 𝜇, 𝜆) is a feasible solution of
dual problem (𝐷𝐼𝑉𝑃). If 𝐹, 𝑔

𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚, are invex

at x with respect to the same vector function 𝜂(x̂, x), then the
following statements hold true.

(i) If 𝐹(x) and 𝐹(x̂) are comparable, then 𝐹(x̂) ⪰

𝐻(x, 𝜇, 𝜆).

(ii) If 𝐹(x) and 𝐹(x̂) are not comparable, then 𝐹
𝐿
(x̂) >

𝐻
𝐿
(x, 𝜇, 𝜆) or 𝐹

𝑈
(x̂) > 𝐻

𝑈
(x, 𝜇, 𝜆).

Proof. If 𝐹(x) ⪰ 𝐹(x̂), then 𝐹(x̂) ⪰ 𝐻(x, 𝜇, 𝜆) using
Lemma 19(i) and (iii). On the other hand, if𝐹(x) ⪯ 𝐹(x̂), then
𝐹(x̂) ⪰ 𝐻(x, 𝜇, 𝜆) using Lemma 20(i) and (iii).

If 𝐹(x) and 𝐹(x̂) are not comparable, then we have

(1) 𝐹
𝐿
(x) ≤ 𝐹

𝐿
(x̂) and 𝐹

𝑈
(x) > 𝐹

𝑈
(x̂);

(2) 𝐹
𝐿
(x) < 𝐹

𝐿
(x̂) and 𝐹

𝑈
(x) ≥ 𝐹

𝑈
(x̂);

(3) 𝐹
𝐿
(x) < 𝐹

𝐿
(x̂) and 𝐹

𝑈
(x) > 𝐹

𝑈
(x̂);

(4) 𝐹
𝐿
(x) ≥ 𝐹

𝐿
(x̂) and 𝐹

𝑈
(x) < 𝐹

𝑈
(x̂);

(5) 𝐹
𝐿
(x) > 𝐹

𝐿
(x̂) and 𝐹

𝑈
(x) ≤ 𝐹

𝑈
(x̂);

(6) 𝐹
𝐿
(x) > 𝐹

𝐿
(x̂) and 𝐹

𝑈
(x) < 𝐹

𝑈
(x̂).

By using Lemma 19 (ii) and (iv), and Lemma 20 (ii) and
(iv), it can be shown that 𝐹

𝐿
(x̂) > 𝐻

𝐿
(x, 𝜇, 𝜆) or 𝐹

𝑈
(x̂) >

𝐻
𝑈

(x, 𝜇, 𝜆).

Theorem 22 (solvability). Let 𝐹, 𝑔
𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚,

be invex with respect to the same vector function 𝜂 and
continuously differentiable on𝑅

𝑛

+
. Suppose that (x∗, 𝜇∗, 𝜆∗) is a

feasible solution of dual problem (𝐷𝐼𝑉𝑃) and 𝐻(x∗, 𝜇∗, 𝜆∗) ∈

Obj
𝑃
(𝐹, 𝑋). Then (x∗, 𝜇∗, 𝜆∗) solves dual problem (𝐷𝐼𝑉𝑃);

that is, 𝐻(x∗, 𝜇∗, 𝜆∗) ∈ Max(𝐻, 𝑌).

Proof. Suppose that (x∗, 𝜇∗, 𝜆∗) is not a nondominated
solution of dual problem (DIVP). Then there exists a fea-
sible solution (x, 𝜇, 𝜆) of dual problem (DIVP) such that
𝐻(x∗, 𝜇∗, 𝜆∗) ≺ 𝐻(x, 𝜇, 𝜆). According to the assumption of
𝐻(x∗, 𝜇∗, 𝜆∗) ∈ Obj

𝑃
(𝐹, 𝑋), there exists a feasible solution x̂

of primal problem (IVP) such that

𝐹 (x̂) = 𝐻 (x∗, 𝜇∗, 𝜆∗) ≺ 𝐻 (x, 𝜇, 𝜆) . (65)

It means that the following (a1) or (a2) or (a3) is satisfied:

(a1) 𝐹
𝐿
(x̂) < 𝐻

𝐿
(x, 𝜇, 𝜆) and 𝐹

𝑈
(x̂) ≤ 𝐻

𝑈
(x, 𝜇, 𝜆);

(a2) 𝐹
𝐿
(x̂) ≤ 𝐻

𝐿
(x, 𝜇, 𝜆) and 𝐹

𝑈
(x̂) < 𝐻

𝑈
(x, 𝜇, 𝜆);

(a3) 𝐹
𝐿
(x̂) < 𝐻

𝐿
(x, 𝜇, 𝜆) and 𝐹

𝑈
(x̂) < 𝐻

𝑈
(x, 𝜇, 𝜆).

If 𝐹(x) and 𝐹(x̂) are comparable. Then, from
Proposition 21(i), we get 𝐹(x̂) ⪰ 𝐻(x, 𝜇, 𝜆), which
contradicts (65). If 𝐹(x) and 𝐹(x̂) are not comparable,
we have 𝐹

𝐿
(x̂) > 𝐻

𝐿
(x, 𝜇, 𝜆) or 𝐹

𝑈
(x̂) > 𝐻

𝑈
(x, 𝜇, 𝜆) by using

Proposition 21(ii), which contradicts one of (a1)–(a3). We
complete the proof.

Theorem 23 (solvability). Let 𝐹, 𝑔
𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚,

be invex with respect to the same vector function 𝜂 and
continuously differentiable on 𝑅

𝑛

+
. Suppose that x∗ is a feasible

solution of primal problem (𝐼𝑉𝑃) and 𝐹(x∗) ∈ Obj
𝐷

(𝐻, 𝑌).
Then x∗ solves primal problem (𝐼𝑉𝑃); that is, 𝐹(x∗) ∈

Min(𝐹, 𝑋).

Proof. Suppose that x∗ is not a nondominated solution of
primal problem (IVP). Then there exists a feasible solution x
of primal problem (IVP) such that 𝐹(x) ≺ 𝐹(x∗). According
to the assumption of 𝐹(x∗) ∈ Obj

𝐷
(𝐻, 𝑌), there exists a

feasible solution (x̂, 𝜇, 𝜆̂) of dual problem (DIVP) such that

𝐻 (x̂, 𝜇, 𝜆̂) = 𝐹 (x∗) ≻ 𝐹 (x) . (66)

It means that the following (c1) or (c2) or (c3) is satisfied:

(c1) 𝐹
𝐿
(x) < 𝐻

𝐿
(x̂, 𝜇, 𝜆̂) and 𝐹

𝑈
(x) ≤ 𝐻

𝑈
(x̂, 𝜇, 𝜆̂);

(c2) 𝐹
𝐿
(x) ≤ 𝐻

𝐿
(x̂, 𝜇, 𝜆̂) and 𝐹

𝑈
(x) < 𝐻

𝑈
(x̂, 𝜇, 𝜆̂);

(c3) 𝐹
𝐿
(x) < 𝐻

𝐿
(x̂, 𝜇, 𝜆̂) and 𝐹

𝑈
(x) < 𝐻

𝑈
(x̂, 𝜇, 𝜆̂).

If 𝐹(x) and 𝐹(x̂) are comparable, then, from
Proposition 21(i), we get 𝐹(x) ⪰ 𝐻(x̂, 𝜇, 𝜆̂), which
contradicts (66). If 𝐹(x) and 𝐹(x̂) are not comparable,
we have 𝐹

𝐿
(x) > 𝐻

𝐿
(x̂, 𝜇, 𝜆̂) or 𝐹

𝑈
(x) > 𝐻

𝑈
(x̂, 𝜇, 𝜆̂) by using

Proposition 21(ii), which contradicts one of (c1)–(c3). We
complete the proof.

Theorem 24 (solvability). Let 𝐹, 𝑔
𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚,

be invex with respect to the same vector function 𝜂 and
continuously differentiable on 𝑅

𝑛

+
. Suppose that x∗ is a feasible

solution of primal problem (𝐼𝑉𝑃) and (x̂, 𝜇, 𝜆̂) is a feasible
solution of dual problem (𝐷𝐼𝑉𝑃). If 𝐹(x∗) = 𝐻(x̂, 𝜇, 𝜆̂),
then x∗ solves primal problem (𝐼𝑉𝑃) and (x̂, 𝜇, 𝜆̂) solves dual
problem (𝐷𝐼𝑉𝑃).

Proof. The proof followsTheorems 22 and 23.

6. Duality Theorems

In this section, we present the weak and strong duality
theorems under the assumption of invexity. Our results
generalize the results of duality theorems by Wu in [11, 12].

Under the assumption convexity, Wu ([11, 12]) has intro-
duced two kinds of concepts of no duality gap and studied
strong duality theorems.

Definition 25 (see [11, 12]). Two kinds of concepts of no
duality gap are presented below.

(i) We say that the primal problem (IVP) and dual
problem (DIVP) have no duality gap in weak sense
if and only if Min(𝐹, 𝑋) ⋂Max(𝐻, 𝑌) ̸=Ø.

(ii) We say that the primal problem (IVP) and dual
problem (DIVP) have no duality gap in strong sense
if and only if there exist 𝐹(x∗) ∈ Min(𝐹, 𝑋) and
𝐻(x∗,𝜇∗,𝜆∗) ∈ Max(𝐻, 𝑌) such that 𝐹(x∗) =

𝐻(x∗,𝜇∗,𝜆∗).
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Wu ([11, 12]) has shown that the primal problem (IVP)
and dual problem (DIVP) have no duality gap in strong
sense which implies that the primal problem (IVP) and dual
problem (DIVP) have no duality gap in weak sense.

Now, we establish strong duality theorems in weak and
strong sense under the assumption of invexity, respectively.

Theorem 26 (strong duality theorem in weak sense). Let 𝐹,
𝑔
𝑖
, and ℎ

𝑖
, 𝑖 = 1, . . . , 𝑚, be invex with respect to the same

vector function 𝜂 and continuously differentiable on 𝑅
𝑛

+
. If one

of following conditions is satisfied:

(i) there exists a feasible solution x∗ of primal problem
(IVP) such that 𝐹(x∗) ∈ Obj

𝐷
(𝐻, 𝑌),

(ii) there exists a feasible solution (x∗,𝜇∗,𝜆∗) of dual
problem (DIVP) such that𝐻(x∗,𝜇∗,𝜆∗) ∈ Obj

𝑃
(𝐹, 𝑋),

Then the primal problem (IVP) and dual problem (DIVP)
have no duality gap in weak sense.

Proof. Since the condition (i) is satisfied, from Theorem 23,
it can be shown that 𝐹(x∗) ∈ Min(𝐹, 𝑋). According to
the assumption of 𝐹(x∗) ∈ Obj

𝐷
(𝐻, 𝑌), there exists a

feasible solution (x̂, 𝜇̂, 𝜆̂) of dual problem (DIVP) such that
𝐹(x∗) = 𝐻(x̂, 𝜇̂, 𝜆̂). Using the similar arguments in the
proof of Theorem 22 by looking at (65), we have 𝐻(x̂, 𝜇̂, 𝜆̂) ∈

Max(𝐻, 𝑌). Suppose that condition (ii) is satisfied; from
Theorem 22, we have 𝐻(x∗, 𝜇∗, 𝜆∗) ∈ Max(𝐻, 𝑌). Since
𝐻(x∗,𝜇∗,𝜆∗) ∈ Obj

𝑃
(𝐹, 𝑋), there exists a feasible solution

x̂ of primal problem (IVP) such that 𝐹(x̂) = 𝐻(x∗,𝜇∗,𝜆∗).
Using the similar arguments in the proof of Theorem 23 by
looking at (66), we have 𝐹(x̂) ∈ Min(𝐹, 𝑋). Then, the primal
problem (IVP) and dual problem (DIVP) have no duality gap
in weak sense.

Theorem 27 (strong duality theorem in strong sense). Let
𝐹, 𝑔
𝑖
, ℎ
𝑖
, 𝑖 = 1, . . . , 𝑚, be invex with respect to the same vector

function 𝜂 and continuously differentiable on 𝑅
𝑛

+
. Suppose that

x∗ is a solution of the problem P
𝐿𝑈

(also is a nondominated
solution of primal problem (IVP) by Proposition 15). If there
exists a point x̂ such that 𝑔

𝑖
(x̂) < 0 and that 𝑔

𝑖
(𝑥
∗
) = 0 for all

𝑖 ∈ 𝐽(𝑥
∗
), 𝑖 = 1, . . . , 2𝑚, and 𝑔

𝑖
= ℎ
𝑖
if 𝑖 = 𝑚 + 1, . . . , 2𝑚.

Then the primal problem (𝐼𝑉𝑃) and dual problem (𝐷𝐼𝑉𝑃)
have no duality gap in strong sense; that is to say, there exist
0 ≤ 𝜇

∗
, 𝜆
∗

∈ 𝑅
𝑚 such that (x∗,𝜇∗,𝜆∗) solves dual problem

(𝐷𝐼𝑉𝑃) and 𝐻(x∗,𝜇∗,𝜆∗) = 𝐹(x∗).

Proof. According to the assumptions and Theorem 16, there
exist 0 ≤ 𝜇

∗
, 𝜆
∗

∈ 𝑅
𝑚 such that

∇𝐹
𝐿

(x∗) + ∇𝐹
𝑈

(x∗) +

𝑚

∑

𝑖=1

𝜇
∗

𝑖
⋅ ∇𝑔
𝑖
(x∗)

+

𝑚

∑

𝑖=1

𝜆
∗

𝑖
⋅ ∇ℎ
𝑖
(x∗) = 0,

𝜇
∗

𝑖
𝑔
𝑖
(x∗) = 0 = 𝜆

∗

𝑖
ℎ
𝑖
(x∗) ∀𝑖 = 1, . . . , 𝑚.

(67)

It can be shown that (x∗,𝜇∗,𝜆∗) is a feasible solution of dual
problem (DIVP) and𝐻(x∗,𝜇∗,𝜆∗) = 𝐹(x∗)+∑

𝑚

𝑖=1
𝜇
∗

𝑖
⋅𝑔
𝑖
(x∗)+

∑
𝑚

𝑖=1
𝜆
∗

𝑖
⋅ ℎ
𝑖
(x∗) = 𝐹(x∗). UsingTheorem 24, we complete the

proof.

7. Conclusion

The Karush-Kuhn-Tucker optimality conditions and duality
for interval-valued nonlinear optimization problems under
the assumption of invexity are represented in this paper.
Our results generalize the results of Wu in [11, 12]. Interval-
valued optimization provides a deterministic framework for
studying mathematical programming problems in the face of
data uncertainty.The result of Karush-Kuhn-Tucker optimal-
ity conditions can be also used to obtain the nondominated
solution of interval-valued optimization problems. In the
future research, wemay extend to consider theKarush-Kuhn-
Tucker optimality conditions and duality for multiobjective
interval-valued nonlinear optimization problems under the
assumption of generalized convexity.
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