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A criterion for the uniform asymptotic stability of the equilibrium point of impulsive delayedHopfield neural networks is presented
by using Lyapunov functions and linear matrix inequality approach. The criterion is a less restrictive version of a recent result. By
means of constructing the extended impulsive Halanay inequality, we also analyze the exponential stability of impulsive delayed
Hopfield neural networks. Some new sufficient conditions ensuring exponential stability of the equilibrium point of impulsive
delayed Hopfield neural networks are obtained. An example showing the effectiveness of the present criterion is given.

1. Introduction

In the last several years, Hopfield neural networks (HNN)
have received especially considerable attention due to their
extensive applications in solving optimization problem, trav-
eling salesman problem, and many other subjects in recent
years [1–9]. In hardware implementation of neural networks,
time delays are inevitably present due to the finite switching
speeds of the amplifiers. Hence, it is vital to investigate the
stability of delayedHNN. Recently, various results for the sta-
bility of delayed HNN are obtained via different approaches.
In [3], Rakkiyappan and Balasubramaniam studied the expo-
nential stability for fuzzy impulsive neural networks by
utilizing the Lyapunov-Krasovskii functional and the linear
matrix inequality approach. In [8], Li studied the global
robust stability for stochastic interval neural networks with
continuously distributed delays of neutral type based on the
similarmethods. In [9], Xia et al. derived some sufficient con-
ditions for the synchronization problem of coupled identical
Yang-Yang type fuzzy cellular neural networks with time-
varying delays based on using the invariance principle of
functional differential equations.

On the other hand, impulsive differential equations have
attracted a great deal of attention due to its potential appli-
cations in biological systems, chemical reactions, and various
results are obtained; for instance, see [10–14]. Impulses can
make unstable systems stable, and stable systems can become
unstable after impulse effects. Hence, the stability proper-
ties of impulsive HNN with time delays have become an
important topic of theoretical studies and have been inves-
tigated by many researchers; see [5, 6, 15–22]. In [5], Zhang
and Sun obtained a result for the uniform stability of the
equilibrium point of the impulsive HNN systems with time
delays by using Lyapunov functions and analysis technique.
In [6], global exponential stability of impulsive delay HNN
is investigated by applying the piecewise continuous vector
Lyapunov function.

The purpose of this paper is to present some sufficient
conditions for uniform asymptotic stability and global expo-
nential stability of impulsive HNNwith time delays bymeans
of constructing the extended impulsive Halanay inequal-
ity which is different from that given in [23], Lyapunov
functional methods, and linear matrix inequality approach.
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The results here are also discussed from the point of view of
thier comparison with the earlier results. Our results improve
and generalize the earlier results. At last, we discuss an
example to illustrate the advantage of the results we obtained.

2. Systems Description and Preliminaries

Let R denote the set of real numbers, let R
+
denote the

set of nonnegative real numbers, and let R𝑛 denote the 𝑛-
dimensional real space equippedwith the Euclideannorm ‖⋅‖.

Consider the following impulsive and delayed HNN
model:

𝑥
󸀠

𝑖
(𝑡) = −𝑐

𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑗
(𝑡))) + 𝐼

𝑖
, 𝑡 ̸= 𝑡

𝑘
, 𝑡 ≥ 𝑡

0
,

Δ𝑥
𝑖
|
𝑡=𝑡𝑘

= 𝑥
𝑖
(𝑡
𝑘
) − 𝑥

𝑖
(𝑡
−

𝑘
) , 𝑖 ∈ Λ, 𝑘 = 1, 2, . . . ,

(1)

where Λ = {1, 2, . . . , 𝑛}. 𝑛 ≥ 2 corresponds to the number
of units in a neural network; the impulse times 𝑡

𝑘
satisfy

0 ≤ 𝑡
0

< 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑘

< ⋅ ⋅ ⋅ , lim
𝑘→+∞

𝑡
𝑘

= +∞; 𝑥
𝑖

corresponds to the membrane potential of the unit 𝑖 at time 𝑡;
𝑐
𝑖
is positive constant;𝑓

𝑗
,𝑔

𝑗
denote, respectively, themeasures

of response or activation to its incoming potentials of the unit
𝑗 at time 𝑡 and 𝑡 − 𝜏

𝑗
(𝑡); constant 𝑎

𝑖𝑗
denotes the synaptic

connectionweight of the unit 𝑗on the unit 𝑖 at time 𝑡; constant
𝑏
𝑖𝑗
denotes the synaptic connection weight of the unit 𝑗 on the

unit 𝑖 at time 𝑡 − 𝜏
𝑗
(𝑡); 𝐼

𝑖
is the input of the unit 𝑖; 𝜏

𝑗
(𝑡) is the

transmission delay of the 𝑗th neuron such that 0 < 𝜏
𝑗
(𝑡) ≤

𝜏, 𝑡 ≥ 𝑡
0
, and 𝑗 ∈ Λ.

Assume that system (1) is supplemented with initial
conditions of the form

𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [𝑡
0
− 𝜏, 𝑡

0
] , (2)

where 𝑥(𝑠) = (𝑥
1
(𝑠), 𝑥

2
(𝑠), . . . , 𝑥

𝑛
(𝑠))

𝑇

, 𝜙(𝑠) = (𝜙
1
(𝑠), 𝜙

2
(𝑠),

. . . , 𝜙
𝑛
(𝑠))

𝑇

∈ 𝑃𝐶([𝑡
0
− 𝜏, 𝑡

0
],R𝑛

), and 𝑃𝐶(𝐼,R𝑛
) = {𝜓 : 𝐼 →

R𝑛, which is continuous everywhere except at finite number
of points 𝑡

𝑘
, at which𝜓(𝑡

+

𝑘
) and𝜓(𝑡

−

𝑘
) exist and𝜓(𝑡

+

𝑘
) = 𝜓(𝑡

𝑘
)}.

For any given 𝑡 ≥ 𝑡
0
, 𝜓 ∈ 𝑃𝐶([𝑡 − 𝜏, 𝑡],R𝑛

), the norm of
𝜓 is defined by ‖𝜓‖

𝜏
= sup

𝑡−𝜏≤𝜃≤𝑡
|𝜓(𝜃)|. For any 𝜎 ≥ 0,

let 𝑃𝐶
𝛿
(𝜎) = {𝜓 ∈ 𝑃𝐶([𝜎 − 𝜏, 𝜎],R𝑛

) : ‖𝜓‖ < 𝛿}.
In this paper, we assume that some conditions are satis-

fied, so that the equilibrium point of (1) without impulse does
exist denoted by 𝑥

∗
= (𝑥

∗

1
, 𝑥

∗

2
, . . . , 𝑥

∗

𝑛
)
𝑇; see [2, 5]. Impulsive

operator is viewed as perturbation of the equilibrium point
of system (1) without impulsive effects. We assume that
Δ𝑥

𝑖
|
𝑡=𝑡𝑘

= 𝑥
𝑖
(𝑡
𝑘
) − 𝑥

𝑖
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(𝑖)
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(𝑥
𝑖
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−

𝑘
) − 𝑥

∗
), 𝑑(𝑖)

𝑘
∈ R, and

𝑖 ∈ Λ, 𝑘 = 1, 2, . . ..

Since 𝑥
∗ is an equilibrium point of (1), one can derive

from (1) that the transformation 𝑦
𝑖

= 𝑥
𝑖
− 𝑥

∗

𝑖
, 𝑖 ∈ Λ,

transforms system (1) into the following system:

𝑦
󸀠

𝑖
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𝑦
𝑖
(𝑡) +

𝑛
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𝑎
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Ω
𝑗
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+
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Γ
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𝑘
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0
,

𝑦
𝑖
(𝑡
𝑘
) = (1 + 𝑑

(𝑖)

𝑘
) 𝑦

𝑖
(𝑡
−

𝑘
) , 𝑖 ∈ Λ, 𝑘 = 1, 2, . . . ,

(3)

whereΩ
𝑗
(𝑦
𝑗
(𝑡)) = 𝑓

𝑗
(𝑥
∗

𝑗
+𝑦

𝑗
(𝑡))−𝑓

𝑗
(𝑥
∗

𝑗
), Γ

𝑗
(𝑦
𝑗
(𝑡)) = 𝑔

𝑗
(𝑥
∗

𝑗
+

𝑦
𝑗
(𝑡 − 𝜏

𝑗
(𝑡))) − 𝑔

𝑗
(𝑥
∗

𝑗
).

Clearly, 𝑥∗ is uniformly asymptotically stable for system
(1) if and only if the trivial solution of system (3) is uniformly
asymptotically stable. Hence, we only need to prove the
stability of the trivial solution of system (3).

Remark 1. If 𝑥
𝑖
(𝑡
𝑘
) = 𝑑

(𝑖)

𝑘
𝑥
𝑖
(𝑡
−

𝑘
), then we cannot get 𝑦

𝑖
(𝑡
𝑘
) =

𝑑
(𝑖)

𝑘
𝑦
𝑖
(𝑡
−

𝑘
) through the transformation 𝑦

𝑖
= 𝑥

𝑖
− 𝑥

∗

𝑖
. So some

of the results [5] are incorrect.

The following notations will be used throughout the
paper. The notation 𝐴

𝑇 and 𝐴
−1 means the transpose of and

the inverse of a square matrix 𝐴. Let 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . ,

𝑦
𝑛
(𝑡))

𝑇,𝑦
𝜏
= (𝑦

1
(𝑡−𝜏

1
(𝑡)),𝑦

2
(𝑡−𝜏

2
(𝑡)), . . . , 𝑦

𝑛
(𝑡−𝜏

𝑛
(𝑡)))

𝑇;𝐶 =

diag[−𝑐
1
, −𝑐

2
, . . . , −𝑐

𝑛
]
𝑇, 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

, 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

, 𝐷
𝑘

=

diag[1 + 𝑑
(1)

𝑘
, 1 + 𝑑

(2)

𝑘
, . . . , 1 + 𝑑

(𝑛)

𝑘
]
𝑇; Ω(𝑦) = [Ω

1
(𝑦
1
),

Ω
2
(𝑦
2
), . . . , Ω

𝑛
(𝑦
𝑛
)]
𝑇, Γ(𝑦

𝜏
) = [Γ

1
(𝑦
1
(𝑡 − 𝜏

1
(𝑡))), Γ

2
(𝑦
2
(𝑡 −

𝜏
2
(𝑡))), . . . , Γ

𝑛
(𝑦
𝑛
(𝑡 − 𝜏

𝑛
(𝑡)))]

𝑇. Then system (3) with initial
condition becomes

𝑦
󸀠

(𝑡) = 𝐶𝑦 (𝑡) + 𝐴Ω (𝑦 (𝑡)) + 𝐵Γ (𝑦
𝜏
) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ≥ 𝑡

0
,

𝑦 (𝑡
𝑘
) = 𝐷

𝑘
𝑦 (𝑡

−

𝑘
) , 𝑘 = 1, 2, . . . ,

𝑦 (𝑡
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(4)

where 𝜑(𝜃) = 𝑥(𝑡
0
+ 𝜃) − 𝑥

∗.
We introduce some definitions as follows.

Definition 2 (see [10]). The function 𝑉(𝑡, 𝑠) : [0,∞) × R𝑛
→

R
+
belongs to class V

0
if

(𝐴
1
) 𝑉 is continuous on each of the sets [𝑡

𝑘−1
, 𝑡
𝑘
) ×R𝑛 and

lim
(𝑡,𝑧)→ (𝑡

−

𝑘
,𝑠)
𝑉(𝑡, 𝑧) = 𝑉(𝑡

−

𝑘
, 𝑠) exists;

(𝐴
2
) 𝑉(𝑡, 𝑠) is locally Lipschitzian in 𝑠 and 𝑉(𝑡, 0) ≡ 0.

Definition 3 (see [10]). Let 𝑉 ∈ V
0
, for any (𝑡, 𝑠) ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) ×

R𝑛; the upper right-hand Dini derivative of 𝑉(𝑡, 𝑠) along the
solution of (4) is defined by

𝐷
+

𝑉 (𝑡, 𝜓 (0))

=

lim sup
ℎ→0

+ {𝑉 (𝑡 + ℎ, 𝑦 (𝑡, 𝜓) (𝑡 + ℎ)) − 𝑉 (𝑡, 𝜓 (0))}

ℎ

.

(5)
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Definition 4 (see [11]). Assume that 𝑦(𝑡) = 𝑦(𝜎, 𝜑)(𝑡) is the
solution of (4) through (𝜎, 𝜑). Then the zero solution of (4)
is said to be

(1) uniformly stable, if for any 𝜎 ≥ 𝑡
0
and 𝜀 > 0, there

exists a 𝛿 = 𝛿(𝜀) > 0 such that 𝜑 ∈ 𝑃𝐶
𝛿
(𝜎) implies

that ‖𝑦(𝜎, 𝜑)(𝑡)‖ < 𝜀, 𝑡 ≥ 𝜎;
(2) uniformly asymptotically stable, if it is uniformly

stable, and there exists a 𝛿 > 0 such that for any 𝜀 > 0,
𝜎 ≥ 𝑡

0
, there is a 𝑇 = 𝑇(𝜀) > 0 such that 𝜑 ∈ 𝑃𝐶

𝛿
(𝜎)

implies that ‖𝑦(𝜎, 𝜑)(𝑡)‖ < 𝜀, 𝑡 ≥ 𝜎 + 𝑇;
(3) globally exponentially stable, if for any 𝜑 ∈ 𝑃𝐶([−𝜏,

0],R𝑛
), there exist constants 𝑀,𝜇 > 0 such that

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩
< 𝑀

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩𝜏

𝑒
−𝜇(𝑡−𝜎)

, 𝑡 ≥ 𝜎. (6)

In this paper, we always assume that the following assu-
mption holds:

(𝐻
0
) there exist constants 𝑀,𝑁 > 0 such that

Ω
𝑇

(𝑦)Ω (𝑦) ≤ 𝑀𝑦
𝑇

𝑦, Γ
𝑇

(𝑦
𝜏
) Γ (𝑦

𝜏
) ≤ 𝑁𝑦

𝑇

𝜏
𝑦
𝜏
. (7)

In addition, we have the following basic lemmas.

Lemma 5 (see [24]). For any vectors 𝑎, 𝑏 ∈ R𝑛, the inequality

±2𝑎
𝑇

𝑏 ≤ 𝑎
𝑇

𝑋𝑎 + 𝑏
𝑇

𝑋
−1

𝑏 (8)

holds, in which 𝑋 is any 𝑛 × 𝑛 matrix with 𝑋 > 0.

Lemma 6 (see [25]). Assume that there exist constants 𝑃,𝑄 >

0 and 𝑚(𝑡) ∈ 𝑃𝐶([𝑡
0
− 𝜏,∞),R

+
) such that

(i) for 𝑡 = 𝑡
𝑘
, 𝑚(𝑡

𝑘
) ≤ 𝛾

𝑘
𝑚(𝑡

−

𝑘
), 𝛾

𝑘
> 0 are constants and

satisfymax
𝑘∈Z+

{1/𝛾
𝑘
, 1} < 𝑃/𝑄;

(ii) for 𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

𝐷
+

𝑚(𝑡) ≤ −𝑃𝑚 (𝑡) + 𝑄𝑚̃ (𝑡) , (9)

where 𝑚̃(𝑡) = sup
𝑡−𝜏≤𝑠≤𝑡

𝑚(𝑠).

Then for 𝑡 ≥ 𝑡
0
,

𝑚(𝑡) ≤ 𝑚̃ (𝑡
0
)( ∏

𝑡0<𝑡𝑘≤𝑡

𝛾
𝑘
)𝑒

−𝜆(𝑡−𝑡0)

, (10)

where 𝜆 satisfies the following inequality:

0 < 𝜆 ≤ 𝑃 − 𝑄max
𝑘∈Z+

{

1

𝛾
𝑘

, 1} ⋅ 𝑒
𝜆𝜏

. (11)

3. Main Results

In this section, we will establish some theorems which pro-
vide sufficient conditions for uniformly asymptotically stable
and global exponential stability of system (1).

Theorem 7. The equilibrium point the system (1) is uniformly
asymptotically stable, if there exists 𝑛 × 𝑛 symmetric, and posi-
tive definite matrix 𝑃 satisfies the following conditions:

(𝐻
1
) 𝜂 ≐ ∏

∞

𝑘=1
max{𝜂

𝑘
, 1} < ∞, where 𝜂

𝑘
is the largest eig-

envalue of 𝑃−1𝐷
𝑘
𝑃𝐷

𝑘
;

(𝐻
2
) 𝜆

3
< (−𝑀−𝑁)/𝜆

1
, where 𝜆

1
is the smallest eigenvalue

of 𝑃 and 𝜆
3
is the largest eigenvalue of 𝑃−1(𝐶𝑃 + 𝑃𝐶 +

𝑃𝐴𝐴
𝑇
𝑃 + 𝑃𝐵𝐵

𝑇
𝑃).

Proof. First, we will prove that the zero solution of system (4)
is uniformly stable. For any 𝜀 > 0, we may choose a 𝛿 > 0

such that 𝛿 ≤ √(𝜆
1
/𝜂𝜆

2
)𝜀, where 𝜆

2
is the largest eigenvalue

of 𝑃. For any 𝜎 ≥ 𝑡
0
, 𝜑 ∈ 𝑃𝐶

𝛿
(𝜎), let 𝑦(𝑡) = 𝑦(𝜎, 𝜑)(𝑡) be a

solution of (4) through (𝜎, 𝜑), 𝜎 ≥ 𝑡
0
(for convenience, that

we assume 𝜎 = 𝑡
0
); then we can prove that ‖𝑦(𝑡)‖ < 𝜀, 𝑡 ≥ 𝑡

0
.

Consider the following Lyapunov function: 𝑉(𝑡, 𝑦(𝑡)) =

𝑦
𝑇
(𝑡)𝑃𝑦(𝑡); then we have

𝜆
1

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑉 (𝑡, 𝑦 (𝑡)) ≤ 𝜆
2

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩

2

. (12)

By virtue of Lemma 5, we obtain for 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 1, 2, . . .,

𝐷
+

𝑉 (𝑡, 𝑦 (𝑡))
󵄨
󵄨
󵄨
󵄨(4)

= (𝑦
𝑇

(𝑡))

󸀠

𝑃𝑦 (𝑡) + 𝑦
𝑇

(𝑡) 𝑃𝑦
󸀠

(𝑡)

= (𝐶𝑦 (𝑡) + 𝐴Ω (𝑦 (𝑡)) + 𝐵Γ (𝑦
𝜏
))
𝑇

𝑃𝑦 (𝑡)

+ 𝑦
𝑇

(𝑡) 𝑃 (𝐶𝑦 (𝑡) + 𝐴Ω (𝑦 (𝑡)) + 𝐵Γ (𝑦
𝜏
))

= 𝑦
𝑇

(𝑡) 𝐶𝑃𝑦 (𝑡) + Ω
𝑇

(𝑦 (𝑡)) 𝐴
𝑇

𝑃𝑦 (𝑡)

+ Γ
𝑇

(𝑦
𝜏
) 𝐵

𝑇

𝑃𝑦 (𝑡) + 𝑦
𝑇

(𝑡) 𝑃𝐶𝑦 (𝑡)

+ 𝑦
𝑇

(𝑡) 𝑃𝐴Ω (𝑦 (𝑡)) + 𝑦
𝑇

(𝑡) 𝑃𝐵Γ (𝑦
𝜏
)

= 𝑦
𝑇

(𝑡) (𝐶𝑃 + 𝑃𝐶) 𝑦 (𝑡)

+ 2Ω
𝑇

(𝑦 (𝑡)) 𝐴
𝑇

𝑃𝑦 (𝑡) + 2Γ
𝑇

(𝑦
𝜏
) 𝐵

𝑇

𝑃𝑦 (𝑡)

≤ 𝑦
𝑇

(𝑡) (𝐶𝑃 + 𝑃𝐶) 𝑦 (𝑡)

+ Ω
𝑇

(𝑦 (𝑡))Ω (𝑦 (𝑡)) + 𝑦
𝑇

(𝑡) 𝑃𝐴𝐴
𝑇

𝑃𝑦 (𝑡)

+ Γ
𝑇

(𝑦
𝜏
) Γ (𝑦

𝜏
) + 𝑦

𝑇

(𝑡) 𝑃𝐵𝐵
𝑇

𝑃𝑦 (𝑡)

≤ 𝑦
𝑇

(𝑡) (𝐶𝑃 + 𝑃𝐶 + 𝑃𝐴𝐴
𝑇

𝑃 + 𝑃𝐵𝐵
𝑇

𝑃) 𝑦 (𝑡)

+ Ω
𝑇

(𝑦 (𝑡))Ω (𝑦 (𝑡)) + Γ
𝑇

(𝑦
𝜏
) Γ (𝑦

𝜏
)

≤ 𝜆
3
𝑦
𝑇

(𝑡) 𝑃𝑦 (𝑡) + 𝑀𝑦
𝑇

(𝑡) 𝑦 (𝑡) + 𝑁𝑦
𝑇

𝜏
𝑦
𝜏

≤ 𝜆
3
𝑦
𝑇

(𝑡) 𝑃𝑦 (𝑡) + 𝑀𝜆
−1

1
𝑦
𝑇

(𝑡) 𝑃𝑦 (𝑡)

+ 𝑁𝜆
−1

1
𝑦
𝑇

𝜏
𝑃𝑦

𝜏

≤ [𝜆
3
+ 𝑀𝜆

−1

1
] 𝑦

𝑇

(𝑡) 𝑃𝑦 (𝑡) + 𝑁𝜆
−1

1
𝑦
𝑇

𝜏
𝑃𝑦

𝜏
.

(13)

First, it is obvious that for 𝑡
0
− 𝜏 ≤ 𝑡 ≤ 𝑡

0
,

𝜆
1

󵄩
󵄩
󵄩
󵄩
𝑦(𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑉 (𝑡, 𝑦 (𝑡)) ≤ 𝜆
2
𝛿
2

≤ 𝜂
−1

𝜆
1
𝜀
2

. (14)

Then we can prove that for 𝑡 ∈ [𝑡
0
, 𝑡
1
),

𝑉 (𝑡, 𝑦 (𝑡)) ≤ 𝜂
−1

𝜆
1
𝜀
2

. (15)
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Suppose that this is not true; then there exists 𝑡̂ ∈ [𝑡
0
, 𝑡
1
) such

that 𝑉( 𝑡̂, 𝑦( 𝑡̂ ) ) > 𝜂
−1

𝜆
1
𝜀
2.

Set

̌𝑡 = sup {𝑡 | 𝑠 ∈ [𝑡
0
, 𝑡) , 𝑉 (𝑠, 𝑦 (𝑠)) ≤ 𝜂

−1

𝜆
1
𝜀
2

} . (16)

It is obvious that ̌𝑡 < 𝑡̂. Then it follows that

(𝐼
𝑎
) 𝑉(𝑡, 𝑦(𝑡)) ≤ 𝜂

−1

𝜆
1
𝜀
2
, 𝑡 ∈ [𝑡

0
, ̌𝑡);

(𝐼𝐼
𝑎
) 𝑉( ̌𝑡, 𝑦( ̌𝑡)) = 𝜂

−1

𝜆
1
𝜀
2;

(𝐼𝐼𝐼
𝑎
) for any 𝛿 > 0, there exists 𝑡

𝛿
∈ ( ̌𝑡, ̌𝑡 + 𝛿) such that

𝑉(𝑡
𝛿
, 𝑦(𝑡

𝛿
)) > 𝜂

−1

𝜆
1
𝜀
2.

So

𝑉( ̌𝑡, 𝑦 ( ̌𝑡)) = 𝜂
−1

𝜆
1
𝜀
2

≥ 𝑉 (𝑡, 𝑦
𝜏
) , ̌𝑡 − 𝜏 ≤ 𝑡 ≤ ̌𝑡. (17)

In view of condition (𝐻
2
), from (13), we obtain

𝐷
+

𝑉( ̌𝑡, 𝑦 ( ̌𝑡)) ≤ [𝜆
3
+ 𝑀𝜆

−1

1
] 𝑦

𝑇

( ̌𝑡) 𝑃𝑦 ( ̌𝑡) + 𝑁𝜆
−1

1
𝑦
𝑇

𝜏
𝑃𝑦

𝜏

≤ [𝜆
3
+ 𝑀𝜆

−1

1
+ 𝑁𝜆

−1

1
]𝑉 ( ̌𝑡, 𝑦 ( ̌𝑡))

< 0,

(18)

which is a contradiction with (𝐼𝐼𝐼
𝑎
). Hence, (15) holds.

Considering

𝑉 (𝑡
1
, 𝑦 (𝑡

1
)) = 𝑦

𝑇

(𝑡
1
) 𝑃𝑦 (𝑡

1
)

= 𝑦
𝑇

(𝑡
−

1
)𝐷

1
𝑃𝐷

1
𝑦 (𝑡

−

1
)

≤ 𝜂
1
𝑦
𝑇

(𝑡
−

1
) 𝑃𝑦 (𝑡

−

1
)

= 𝜂
1
𝑉 (𝑡

−

1
, 𝑦 (𝑡

−

1
))

≤ 𝜂
1
𝜂
−1

𝜆
1
𝜀
2

≤ max {𝜂
1
, 1} 𝜂

−1

𝜆
1
𝜀
2

,

(19)

we will prove that for 𝑡 ∈ [𝑡
1
, 𝑡
2
),

𝑉 (𝑡, 𝑦 (𝑡)) ≤ max {𝜂
1
, 1} 𝜂

−1

𝜆
1
𝜀
2

. (20)

Suppose that this is false; then we can define

⃗𝑡 = sup {𝑡 | 𝑠 ∈ [𝑡
1
, 𝑡) , 𝑉 (𝑠, 𝑦 (𝑠)) ≤ max {𝜂

1
, 1} 𝜂

−1

𝜆
1
𝜀
2

} .

(21)

Similarly, we can obtain

(𝐼
𝑏
) 𝑉(𝑡, 𝑦(𝑡)) ≤ max{𝜂

1
, 1}𝜂

−1

𝜆
1
𝜀
2
, 𝑡 ∈ [𝑡

1
, ⃗𝑡);

(𝐼𝐼
𝑏
) 𝑉( ⃗𝑡, 𝑦( ⃗𝑡)) = max{𝜂

1
, 1}𝜂

−1

𝜆
1
𝜀
2;

(𝐼𝐼𝐼
𝑏
) for any 𝛿 > 0, there exists 𝑡

𝛿
∈ ( ⃗𝑡, ⃗𝑡 + 𝛿) such that

𝑉(𝑡
𝛿
, 𝑦(𝑡

𝛿
)) > max{𝜂

1
, 1}𝜂

−1

𝜆
1
𝜀
2.

So

𝑉( ⃗𝑡, 𝑦 ( ⃗𝑡)) = max {𝜂
1
, 1} 𝜂

−1

𝜆
1
𝜀
2

≥ 𝑉 (𝑡, 𝑦
𝜏
) ,

⃗𝑡 − 𝜏 ≤ 𝑡 ≤ ⃗𝑡.

(22)

In fact, if ⃗𝑡−𝜏 ≥ 𝑡
1
, then it is obvious that inequality (22) holds.

If ⃗𝑡 − 𝜏 < 𝑡
1
, then 𝑉(𝑡, 𝑦

𝜏
) ≤ 𝜂

−1

𝜆
1
𝜀
2
≤ max{𝜂

1
, 1}𝜂

−1

𝜆
1
𝜀
2
=

𝑉( ⃗𝑡, 𝑦( ⃗𝑡)). So, inequality (22) still holds.
Considering condition (𝐻

2
), from (13), we obtain

𝐷
+

𝑉( ⃗𝑡, 𝑦 ( ⃗𝑡)) ≤ [𝜆
3
+ 𝑀𝜆

−1

1
] 𝑦

𝑇

( ⃗𝑡) 𝑃𝑦 ( ⃗𝑡) + 𝑁𝜆
−1

1
𝑦
𝑇

𝜏
𝑃𝑦

𝜏

≤ [𝜆
3
+ 𝑀𝜆

−1

1
+ 𝑁𝜆

−1

1
]𝑉 ( ⃗𝑡, 𝑦 ( ⃗𝑡))

< 0,

(23)

which contradicts (𝐼𝐼𝐼
𝑏
). Hence, (20) holds.

By induction hypothesis, we may prove, in general, that
for 𝑡 ∈ [𝑡

𝑚
, 𝑡
𝑚+1

),

𝑉 (𝑡, 𝑦 (𝑡)) ≤

𝑚

∏

𝑘=1

max {𝜂
𝑘
, 1} 𝜂

−1

𝜆
1
𝜀
2

; (24)

that is,

𝑉 (𝑡, 𝑦 (𝑡)) ≤ ∏

𝑡0<𝑡𝑘≤𝑡

max {𝜂
𝑘
, 1} 𝜂

−1

𝜆
1
𝜀
2

. (25)

Finally, we arrive at

𝜆
1

󵄩
󵄩
󵄩
󵄩
𝑦(𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑉 (𝑡, 𝑦 (𝑡)) ≤ 𝜆
1
𝜀
2

, 𝑡 ≥ 𝑡
0
. (26)

Therefore, we obtain ‖𝑦(𝑡)‖ < 𝜀, 𝑡 ≥ 𝑡
0
. In view of the choice

of 𝛿, the zero solution of (4) is uniformly stable; that is, the
equilibrium point of (1) is uniformly stable.

Next we show the uniformly asymptotical stability. For
any given 𝐺 > 0, we find a corresponding 𝛿 > 0 such that
for any 𝜑 ∈ 𝑃𝐶

𝛿
(𝜎) implies that ‖𝑦(𝑡)‖ = ‖𝑦(𝑡

0
, 𝜑)(𝑡)‖ ≤ 𝐺,

𝑡 ≥ 𝜎 = 𝑡
0
; that is, 𝑉(𝑡, 𝑦(𝑡)) ≤ 𝜆

2
𝐺
2.

For any small 𝜀 ∈ (0, 𝐺), we choose 𝑁⃗ = 𝑁⃗(𝜀) ∈ Z
+
such

that

√
𝑁⃗𝜆

1

2𝜆
2

𝜀 < 𝐺 ≤
√

(𝑁⃗ + 1) 𝜆
1

2𝜆
2

𝜀,
(27)

𝑁⃗ >

−𝑁

𝜆
3
𝜆
1
+ 𝑀 + 𝑁

. (28)

In fact, it is feasible to choose small enough 𝜀 ∈ (0, 𝐺) such
that 𝑁⃗ in (27) is large enough to satisfy (28).

Since 𝜂 ≐ ∏
∞

𝑘=1
max{𝜂

𝑘
, 1} < ∞ implies that

∑
∞

𝑘=1
(max{𝜂

𝑘
, 1} − 1) < ∞, there exists sufficient large 𝑁

⋆
∈

Z
+
such that

∞

∑

𝑖=𝑁
⋆

(max {𝜂
𝑖
, 1} − 1) ≤

𝜆
1
𝜀
2

6𝜆
2
𝐺
2
,

max {𝜂
𝑘
, 1} <

1

6𝑁⃗

+ 1, 𝑘 ≥ 𝑁
⋆

.

(29)

Let

𝑤
1
=

[1 + ∑
∞

𝑘=1
(max {𝜂

𝑘
, 1} − 1)] 𝜆

2
𝐺
2

󵄨
󵄨
󵄨
󵄨
󵄨
[𝜆

1
𝜆
3
+ 𝑀 + 𝑁] 𝑁⃗ + 𝑁

󵄨
󵄨
󵄨
󵄨
󵄨

⋅

2

𝜀
2
+ 1. (30)
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Next we show that there exists 𝑇
1
∈ [𝑁

⋆
, 𝑁

⋆
+ 𝑤

1
] such that

𝑉 (𝑇
1
, 𝑦 (𝑇

1
)) <

𝜆
1
𝜀
2

2

𝑁⃗. (31)

Or else, for all 𝑡 ∈ [𝑁
⋆
, 𝑁

⋆
+ 𝑤

1
],

𝑉 (𝑡, 𝑦 (𝑡)) ≥

𝜆
1
𝜀
2

2

𝑁⃗. (32)

Thus, we get

𝑉 (𝑡, 𝑦 (𝑡)) +

𝜆
1
𝜀
2

2

≥

𝜆
1
𝜀
2

2

(𝑁⃗ + 1) ≥ 𝜆
2
𝐺
2

> 𝑉 (𝜉, 𝑦
𝜏
) ,

𝑡 − 𝜏 ≤ 𝜉 ≤ 𝑡.

(33)

From (13), we have

𝐷
+

𝑉 (𝑡, 𝑦 (𝑡))
󵄨
󵄨
󵄨
󵄨(4)

≤ [𝜆
3
+ 𝑀𝜆

−1

1
] 𝑦

𝑇

(𝑡) 𝑃𝑦 (𝑡)

+ 𝑁𝜆
−1

1
𝑦
𝑇

𝜏
𝑃𝑦

𝜏

≤ [𝜆
3
+ 𝑀𝜆

−1

1
]𝑉 (𝑡, 𝑦 (𝑡))

+ 𝑁𝜆
−1

1
(𝑉 (𝑡, 𝑦 (𝑡)) +

𝜆
1
𝜀
2

2

)

≤ [𝜆
3
+ 𝑀𝜆

−1

1
+ 𝑁𝜆

−1

1
]𝑉 (𝑡, 𝑦 (𝑡)) +

𝜀
2

2

𝑁

≤ [𝜆
3
+ 𝑀𝜆

−1

1
+ 𝑁𝜆

−1

1
]

𝜆
1
𝜀
2

2

𝑁⃗ +

𝜀
2

2

𝑁

≤ {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁] 𝑁⃗ + 𝑁}

𝜀
2

2

.

(34)

Integrating the above inequality from𝑁
⋆ to𝑁

⋆
+𝑤

1
, we have

𝑉 (𝑁
⋆

+ 𝑤
1
, 𝑦 (𝑁

⋆

+ 𝑤
1
))

≤ 𝑉 (𝑁
⋆

, 𝑦 (𝑁
⋆

)) + {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁] 𝑁⃗ + 𝑁}

𝜀
2

2

𝑤
1

+ ∑

𝑁
⋆
<𝑡𝑘<𝑁

⋆
+𝑤1

[𝑉 (𝑡
𝑘
) − 𝑉 (𝑡

−

𝑘
)]

≤ 𝑉 (𝑁
⋆

, 𝑦 (𝑁
⋆

)) + {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁] 𝑁⃗ + 𝑁}

𝜀
2

2

𝑤
1

+ ∑

𝑁
⋆
<𝑡𝑘<𝑁

⋆
+𝑤1

[max {𝜂
𝑘
, 1} − 1]𝑉 (𝑡

−

𝑘
)

≤ 𝜆
2
𝐺
2

+ {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁] 𝑁⃗ + 𝑁}

𝜀
2

2

𝑤
1

+ ∑

𝑁
⋆
<𝑡𝑘<𝑁

⋆
+𝑤1

[max {𝜂
𝑘
, 1} − 1] 𝜆

2
𝐺
2

≤ {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁] 𝑁⃗ + 𝑁}

𝜀
2

2

𝑤
1

+

{

{

{

1 + ∑

𝑁
⋆
<𝑡𝑘<𝑁

⋆
+𝑤1

[max {𝜂
𝑘
, 1} − 1]

}

}

}

𝜆
2
𝐺
2

< 0,

(35)

which is a contradiction. So (31) holds. We may choose 𝑇
1
=

𝑁
⋆
+ 𝑤

1
.

We next claim that for all 𝑡 > 𝑇
1
,

𝑉 (𝑡, 𝑦 (𝑡)) < (

𝑁⃗

2

+

1

4

)𝜆
1
𝜀
2

. (36)

Suppose that this is not true; then there exists a 𝜏
2
> 𝑇

1
such

that

𝑉 (𝜏
2
, 𝑦 (𝜏

2
)) ≥ (

𝑁⃗

2

+

1

4

)𝜆
1
𝜀
2

, (37)

and for 𝑇
1
< 𝑡 < 𝜏

2
,

𝑉 (𝑡, 𝑦 (𝑡)) < (

𝑁⃗

2

+

1

4

)𝜆
1
𝜀
2

. (38)

Suppose that 𝑇
1

∈ [𝑡
𝑚
, 𝑡
𝑚+1

), 𝑚 ∈ Z
+
. We claim that 𝜏

2
≥

𝑡
𝑚+1

. Otherwise, 𝜏
2

∈ [𝑇
1
, 𝑡
𝑚+1

). Since (31) holds, it is clear
that there exists a 𝜏

1
∈ [𝑇

1
, 𝜏
2
) such that

𝑉 (𝜏
1
, 𝑦 (𝜏

1
)) =

𝑁⃗

2

𝜆
1
𝜀
2

,

𝑉 (𝜏
1
, 𝑦 (𝜏

1
)) ≤ 𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝑉 (𝜏

2
, 𝑥 (𝜏

2
)) ,

𝜏
1
≤ 𝑡 ≤ 𝜏

2
.

(39)

Furthermore, we note that

𝑉 (𝑡, 𝑦 (𝑡)) +

𝜆
1
𝜀
2

2

≥

𝜆
1
𝜀
2

2

(𝑁⃗ + 1) ≥ 𝜆
2
𝐺
2

> 𝑉 (𝜉, 𝑦
𝜏
) ,

𝑡 − 𝜏 ≤ 𝜉 ≤ 𝑡.

(40)

From (13), we have

𝐷
+

𝑉 (𝑡, 𝑦 (𝑡)) ≤ {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁] 𝑁⃗ + 𝑁}

𝜀
2

2

< 0,

𝜏
1
≤ 𝑡 ≤ 𝜏

2
,

(41)

which implies that

𝑉 (𝜏
2
, 𝑦 (𝜏

2
)) ≤ 𝑉 (𝜏

1
, 𝑦 (𝜏

1
)) . (42)

This is a contradiction.
Hence, we obtain 𝜏

2
≥ 𝑡

𝑚+1
; without loss of generality, we

may suppose that 𝜏
2

∈ [𝑡
𝑚+𝑞

, 𝑡
𝑚+𝑞+1

), 𝑞 ≥ 1. Next we first
claim that there exists 𝜏

1
> 0 satisfying 𝜏

2
> 𝜏

1
> 𝑇

1
such that

𝑉 (𝜏
1
, 𝑦 (𝜏

1
)) ≥

𝑁⃗

2

𝜆
1
𝜀
2

. (43)
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Suppose that this is false; then for all 𝑡 ∈ (𝑇
1
, 𝜏
2
),

𝑉 (𝑡, 𝑦 (𝑡)) <

𝑁⃗

2

𝜆
1
𝜀
2

, (44)

which implies that 𝜏
2

= 𝑡
𝑚+𝑞

in view of (37). Consequently,
we have

𝑉(𝑡
𝑚+𝑞

, 𝑦 (𝑡
𝑚+𝑞

)) ≥ (

𝑁⃗

2

+

1

4

)𝜆
1
𝜀
2

,

𝑉 (𝑡
−

𝑚+𝑞
, 𝑦 (𝑡

−

𝑚+𝑞
)) <

𝑁⃗

2

𝜆
1
𝜀
2

,

(45)

which implies that

(max {𝜂
𝑚+𝑞

, 1} − 1) 𝜆
2
𝐺
2

≥ (max {𝜂
𝑚+𝑞

, 1} − 1)𝑉 (𝑡
−

𝑚+𝑞
, 𝑦 (𝑡

−

𝑚+𝑞
)) >

1

4

𝜆
1
𝜀
2

.

(46)

Hence, we get max{𝜂
𝑚+𝑞

, 1} > 1 + (𝜆
1
𝜀
2
/4𝜆

2
𝐺
2
), which

contradicts (29). So (43) holds.
Therefore, there are two situations 𝜏

2
> 𝑡

𝑚+𝑞
and 𝜏

2
=

𝑡
𝑚+𝑞

. Next we discuss them, respectively.

(𝑏
1
) If 𝜏

2
> 𝑡

𝑚+𝑞
, let

𝜏
1
= inf
𝜏1≤𝑡<𝜏2

{𝑡 | 𝑠 ∈ [𝑡, 𝜏
2
] ,

𝑁⃗

2

𝜆
1
𝜀
2

≤ 𝑉 (𝑠, 𝑦 (𝑠))

< 𝑉 (𝜏
2
, 𝑦 (𝜏

2
)) } .

(47)

We first show that 𝜏
1

< 𝑡
𝑚+𝑞

. Suppose on the contrary that
𝜏
1
∈ [𝑡

𝑚+𝑞
, 𝜏
2
); then

𝑉 (𝑡, 𝑦 (𝑡)) +

𝜆
1
𝜀
2

2

≥

𝜆
1
𝜀
2

2

(𝑁⃗ + 1)

≥ 𝜆
2
𝐺
2

> 𝑉 (𝜉, 𝑦
𝜏
) ,

𝑡 − 𝜏 ≤ 𝜉 ≤ 𝑡, 𝑡 ∈ [𝜏
1
, 𝜏
2
] .

(48)

From (13), we have

𝐷
+

𝑉 (𝑡, 𝑦 (𝑡)) ≤ {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁] 𝑁⃗ + 𝑁}

𝜀
2

2

< 0,

𝜏
1
≤ 𝑡 ≤ 𝜏

2
,

(49)

which implies that

𝑉 (𝜏
2
, 𝑦 (𝜏

2
)) ≤ 𝑉 (𝜏

1
, 𝑦 (𝜏

1
)) ; (50)

which is a contradiction with the definition of 𝜏
1
. Thus we

obtain that 𝜏
1

< 𝑡
𝑚+𝑞

. Suppose that 𝜏
1

∈ [𝑡
𝑚+𝑘

, 𝑡
𝑚+𝑘+1

), 1 ≤

𝑘 < 𝑞.
We also have two cases.

(𝑏
1𝑎
) If 𝜏

1
is not impulsive point, that is to say 𝜏

1
> 𝑡

𝑚+𝑘
,

then considering the definition of 𝜏
1
, we have

𝑉 (𝜏
1
, 𝑦 (𝜏

1
)) =

𝑁⃗

2

𝜆
1
𝜀
2

. (51)

By the same argument as the abovementioned, we obtain that
(48) still holds.

Hence, from (13), we get

(

𝑁⃗

2

+

1

4

)𝜆
1
𝜀
2

≤ 𝑉 (𝜏
2
, 𝑦 (𝜏

2
))

≤ 𝑉 (𝜏
1
, 𝑦 (𝜏

1
)) +

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

[𝑉 (𝑡
𝑖
) − 𝑉 (𝑡

−

𝑖
)]

≤

𝑁⃗

2

𝜆
1
𝜀
2

+

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1)𝑉 (𝑡

−

𝑖
)

≤

𝑁⃗

2

𝜆
1
𝜀
2

+

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1) 𝜆

2
𝐺
2

,

(52)

which implies that

1

4

𝜆
1
𝜀
2

≤

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1) 𝜆

2
𝐺
2

, (53)

which is a contradiction with (29). So 𝜏
1
is some impulsive

point.

(𝑏
1𝑏
) If 𝜏

1
is some impulsive point, that is to see 𝜏

1
= 𝑡

𝑚+𝑘
,

then from the definition of 𝜏
1
, it is clear that

𝑉 (𝜏
1

−

, 𝑦 (𝜏
1

−

)) = 𝑉 (𝑡
−

𝑚+𝑘
, 𝑦 (𝑡

−

𝑚+𝑘
)) <

𝑁⃗

2

𝜆
1
𝜀
2

, (54)

which implies that

𝑉 (𝜏
1
, 𝑦 (𝜏

1
)) = 𝑉 (𝑡

𝑚+𝑘
, 𝑦 (𝑡

𝑚+𝑘
))

≤ 𝜂
𝑚+𝑘

𝑉 (𝑡
−

𝑚+𝑘
, 𝑦 (𝑡

−

𝑚+𝑘
))

< 𝜂
𝑚+𝑘

𝑁⃗

2

𝜆
1
𝜀
2

≤ max {𝜂
𝑚+𝑘

, 1}

𝑁⃗

2

𝜆
1
𝜀
2

.

(55)
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On the other hand, note that inequality (48) still holds; from
(13) and (29), we have

(

𝑁⃗

2

+

1

4

)𝜆
1
𝜀
2

≤ 𝑉 (𝜏
2
, 𝑦 (𝜏

2
))

≤ 𝑉 (𝜏
1
, 𝑦 (𝜏

1
))

+

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

[𝑉 (𝑡
𝑖
) − 𝑉 (𝑡

−

𝑖
)]

< max {𝜂
𝑚+𝑘

, 1}

𝑁⃗

2

𝜆
1
𝜀
2

+

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1)𝑉 (𝑡

−

𝑖
) ,

(56)

which implies that

1

4

𝜆
1
𝜀
2

≤ (max {𝜂
𝑚+𝑘

, 1} − 1)

𝑁⃗

2

𝜆
1
𝜀
2

+

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1) 𝜆

2
𝐺
2

≤

1

6𝑁⃗

𝑁⃗

2

𝜆
1
𝜀
2

+

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1) 𝜆

2
𝐺
2

.

(57)

That means

1

6

𝜆
1
𝜀
2

<

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1) 𝜆

2
𝐺
2

, (58)

which contradicts (29).
Hence, the first situation 𝜏

2
> 𝑡

𝑚+𝑞
is impossible.

(𝑏
2
) If 𝜏

2
= 𝑡

𝑚+𝑞
, then by the same arguments as in the

proof in (𝑏
1
) and (43), we have

𝑉 (𝜏
−

2
, 𝑦 (𝜏

−

2
)) >

𝑁⃗

2

𝜆
1
𝜀
2

. (59)

Then let

𝜏
1
= inf
𝜏1≤𝑡<𝜏2

{𝑡 | 𝑠 ∈ [𝑡, 𝜏
2
] ,

𝑁⃗

2

𝜆
1
𝜀
2

≤ 𝑉 (𝑠, 𝑦 (𝑠)) < 𝑉 (𝜏
2
, 𝑦 (𝜏

2
)) } .

(60)

The rest of the arguments are omitted. Finally we can find our
desirable contradiction. Hence, (36) holds.

With above mentioned, the same arguments as before, if
we replace 𝑇

1
with 𝑁

⋆, then there exists a 𝑇
2

= 𝑇
1
+ 𝑤

1
=

𝑁
⋆
+ 2𝑤

1
such that for 𝑡 > 𝑇

2
,

𝑉 (𝑡, 𝑦 (𝑡)) <

𝑁⃗

2

𝜆
1
𝜀
2

. (61)

Let 𝑇
2
replace 𝑇

1
; then there exists a 𝑇

3
= 𝑁

⋆
+ 3𝑤

1
such that

for 𝑡 > 𝑇
3
,

𝑉 (𝑡, 𝑦 (𝑡)) < (

𝑁⃗

2

−

1

4

)𝜆
1
𝜀
2

. (62)

By induction hypothesis, we may prove, in general, that there
exists a 𝑇

2𝑁⃗
= 𝑁

⋆
+ 2𝑁⃗𝑤

1
such that 𝑡 > 𝑇

2

←󳨀

𝑁

,

𝑉 (𝑡, 𝑦 (𝑡)) < (

𝑁⃗

2

−

𝑁⃗ − 2

2

)𝜆
1
𝜀
2

= 𝜆
1
𝜀
2

. (63)

Therefore, we obtain that ‖𝑦(𝑡)‖ < 𝜀, 𝑡 > 𝑁
⋆

+ 2𝑁𝑤
1
. In

view of the choice of 𝑁⋆
, 𝑁⃗, and 𝑤

1
, the zero solution of (4)

is uniformly asymptotically stable; that is, the equilibrium
point of (1) is uniformly asymptotically stable. The proof of
Theorem 7 is therefore complete.

Let |1 + 𝑑
(𝑖)

𝑘
| ̸= |1 + 𝑑

(𝑗)

𝑘
|, 𝑐

𝑖
̸= 𝑐
𝑗
, 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ Λ, 𝑘 = 1, 2, . . . ,

in Theorem 7; then we can have the following result.

Corollary 8. The equilibrium point of system (1) is uniformly
asymptotically stable, if there exists 𝑛×𝑛 symmetric and positive
definite matrix 𝑃 satisfying

(𝐼
1
) 𝜂 ≐ ∏

∞

𝑘=1
max{max

𝑖∈Λ
(1 + 𝑑

(𝑖)

𝑘
)
2

, 1} < ∞;
(𝐼
2
) 𝜆

3
< (−𝑀−𝑁)/𝜆

1
, where 𝜆

1
is the smallest eigenvalue

of 𝑃 and 𝜆
3
is the largest eigenvalue of 2𝐶 + 𝐴𝐴

𝑇
𝑃 +

𝐵𝐵
𝑇
𝑃.

Remark 9. For using the less conservative conditions in
Theorem 7, our results obviously improve some results estab-
lished in the earlier references. In [5], condition 𝑦(𝑡

𝑘
) =

𝐷𝑦(𝑡
−

𝑘
) holds for all 𝑘 ∈ Z

+
; here note in our Theorem 7

that we only require that the solutions satisfy the hypothesis
(𝐻

1
) at impulsive points. In addition, our conditions are

without requirement of the range of the largest eigenvalues
of 𝑃−1𝐷𝑇

𝑃𝐷 on (0, 1), which are milder than the restrictions
in [5].

By utilizing Lemma 6, we will give some sufficient con-
ditions for globally exponential stability of the equilibrium
point of system (1).

Theorem 10. Assume that there exists 𝑛 × 𝑛 symmetric and
positive definite matrix𝑃 such that 𝜆

1
> 0 is the smallest eigen-

value of 𝑃, 𝜆
3
is the largest eigenvalue of 𝑃

−1
(𝐶𝑃 + 𝑃𝐶 +

𝑃𝐴𝐴
𝑇
𝑃 + 𝑃𝐵𝐵

𝑇
𝑃), 𝜂

𝑘
is the largest eigenvalue of 𝑃−1𝐷

𝑘
𝑃𝐷

𝑘
,

and 𝜆
1
, 𝜆

3
and 𝜂

𝑘
satisfy the following conditions:

(𝐻
3
) one has

𝜆
3
+

𝑀

𝜆
1

+

𝑁

𝜆
1

⋅ max
𝑘∈Z+

{

1

𝜂
𝑘

, 1} < 0, (64)

(𝐻
4
) there exist constants U(> 0), 𝛿(≥ 0) such that 𝛿 < 𝜇

and the following inequality
𝑚

∑

𝑘=1

ln 𝜂
𝑘
− 𝛿 (𝑡

𝑚
− 𝑡

0
) < U ∀𝑚 ∈ Z

+
ℎ𝑜𝑙𝑑𝑠, (65)
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where 𝜇 satisfies the following inequality:

0 < 𝜇 ≤ −𝜆
3
−

𝑀

𝜆
1

−

𝑁

𝜆
1

max
𝑘∈Z+

{

1

𝜂
𝑘

, 1} ⋅ 𝑒
𝜇𝜏

. (66)

Then the equilibrium point of the system (1) is globally expo-
nentially stable, and the exponential convergence rate is equal
to (𝜇 − 𝛿)/2.

Proof. Let 𝑦(𝑡) = 𝑦(𝜎, 𝜑)(𝑡) be a solution of (4) through
(𝜎, 𝜑), 𝜎 ≥ 𝑡

0
(for convenience, we assume that 𝜎 = 𝑡

0
). We

next will prove that the zero solution of (4) is globally
exponentially stable. Construct the Lyapunov functional as
inTheorem 7; that is,𝑉(𝑡, 𝑦(𝑡)) = 𝑦

𝑇
(𝑡)𝑃𝑦(𝑡); then we obtain

the following:

(1) 𝜆
1
‖𝑦(𝑡)‖

2

≤ 𝑉(𝑡, 𝑦(𝑡)) ≤ 𝜆
2
‖𝑦(𝑡)‖

2, where 𝜆
2
is the

largest eigenvalue of 𝑃;
(2) for 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

), 𝑘 = 1, 2, . . .,

𝐷
+

𝑉 (𝑡, 𝑦 (𝑡))
󵄨
󵄨
󵄨
󵄨(4)

≤ [𝜆
3
+ 𝑀𝜆

−1

1
] 𝑦

𝑇

(𝑡) 𝑃𝑦 (𝑡)

+ 𝑁𝜆
−1

1
𝑦
𝑇

𝜏
𝑃𝑦

𝜏
;

(67)

(3) 𝑉(𝑡
𝑘
, 𝑦(𝑡

𝑘
)) ≤ 𝜂

𝑘
𝑉(𝑡

−

𝑘
, 𝑦(𝑡

−

𝑘
)).

From (2), we have for 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 1, 2, . . .,

𝐷
+

𝑉 (𝑡, 𝑦 (𝑡))
󵄨
󵄨
󵄨
󵄨(4)

≤ −𝑃𝑉 (𝑡, 𝑦 (𝑡)) + 𝑄𝑉̃ (𝑡, 𝑦 (𝑡)) , (68)

where 𝑉̃(𝑡) = sup
𝑡−𝜏≤𝑠≤𝑡

𝑉(𝑠), 𝑃 = −𝜆
3
− 𝑀𝜆

−1

1
, and 𝑄 =

𝑁𝜆
−1

1
.

For any 𝑡 ≥ 𝑡
0
, suppose that 𝑡 ∈ [𝑡

𝑚
, 𝑡
𝑚+1

), 𝑚 ≥ 0. By
Lemma 6 and condition (𝐻

4
), we obtain

𝑉 (𝑡) ≤ 𝑉̃ (𝑡
0
)(

𝑚

∏

𝑘=1

𝜂
𝑘
)𝑒

−𝜇(𝑡−𝑡0)

≤ 𝑉̃ (𝑡
0
) 𝑒

U
⋅ 𝑒
𝛿(𝑡𝑚−𝑡0)

⋅ 𝑒
−𝜇(𝑡−𝑡0)

≤ 𝑉̃ (𝑡
0
) 𝑒

U
⋅ 𝑒
𝛿(𝑡−𝑡0)

⋅ 𝑒
−𝜇(𝑡−𝑡0)

≤ 𝜆
2
𝑒
U󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

2

𝜏
𝑒
−(𝜇−𝛿)(𝑡−𝑡0)

,

(69)

where 𝜇 satisfies inequality (66).
Hence, we obtain for any 𝑡 ≥ 𝑡

0
,

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩
≤ 𝑒

(1/2)U
√

𝜆
2

𝜆
1

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩𝜏

𝑒
−((𝜇−𝛿)/2)(𝑡−𝑡0)

, 𝑡 ≥ 𝑡
0
, (70)

where 𝜇 satisfies inequality (66).
Therefore, the zero solution of system (4) is globally

exponentially stable; that is, the equilibrium point of system
(1) is globally exponentially stable. The proof of Theorem 10
is complete.

Remark 11. InTheorem 10, if sup
𝑛∈Z+

(∏
𝑛

𝑘=1
𝜂
𝑘
) < ∞, then we

can choose 𝛿 = 0 in condition (𝐻
3
).

Let 𝜂
𝑘

∈ (0, 1], 𝑘 = 1, 2, . . . in Theorem 7; then we can
have the following result.

Corollary 12. Assume that there exists 𝑛 × 𝑛 symmetric and
positive definitematrix𝑃 such that 𝜆

1
is the smallest eigenvalue

of 𝑃, 𝜆
3
is the largest eigenvalue of 𝑃−1(𝐶𝑃 + 𝑃𝐶 + 𝑃𝐴𝐴

𝑇
𝑃 +

𝑃𝐵𝐵
𝑇
𝑃), 𝜂

𝑘
is the largest eigenvalue of 𝑃−1𝐷

𝑘
𝑃𝐷

𝑘
, and condi-

tion

𝜆
1
𝜆
3
+ 𝑀 + 𝑁 < 0 ℎ𝑜𝑙𝑑𝑠. (71)

Then the equilibrium point of the system (1) is globally expo-
nentially stable, and the exponential convergence rate is equal
to 𝜇/2, where 𝜇 satisfies the following inequality:

0 < 𝜇 ≤ −𝜆
3
−

𝑀

𝜆
1

−

𝑁

𝜆
1

max
𝑘∈Z+

𝜂
𝑘
⋅ 𝑒
𝜇𝜏

. (72)

4. Example

In this section, we present a numerical example to illustrate
our results.

Example 1. We consider Example 1 in [2] as follows:

𝑢
󸀠

1
(𝑡) = −2.5𝑢

1
(𝑡) − 0.5𝑓 (𝑢

1
(𝑡))

+ 0.1𝑓 (𝑢
2
(𝑡)) − 0.1𝑓 (𝑢

1
(𝑡 − 𝜏))

+ 0.2𝑓 (𝑢
2
(𝑡 − 𝜏)) − 1,

𝑢
󸀠

2
(𝑡) = −2𝑢

1
(𝑡) + 0.2𝑓 (𝑢

1
(𝑡))

− 0.1𝑓 (𝑢
2
(𝑡)) + 0.2𝑓 (𝑢

1
(𝑡 − 𝜏))

+ 0.1𝑓 (𝑢
2
(𝑡 − 𝜏)) + 4,

(73)

with impulses

𝑑
(1)

𝑘
= √1 +

1

2𝑘
2
− 1,

𝑑
(2)

𝑘
= √1 +

1

𝑘
2
− 1, 𝑡

𝑘
= 𝑘, 𝑘 ∈ Z

+
.

(74)

The delayed feedback matrixes 𝐴, 𝐵, and 𝐶 are

𝐶 = (

−2.5 0

0 −2
) , 𝐴 = (

−0.5 0.1

0.2 −0.1
) ,

𝐵 = (

−0.1 0.2

0.2 0.1
) .

(75)

Since the activation function in [2] is described by 𝑓 = 𝑓
𝑖
=

0.5(|𝑥 + 1| − |𝑥 − 1|), 𝑖 = 1, 2, then we have 𝑀 = 𝑁 = 1. We
may choose 𝑃 = 𝐸 (unit matrix); then 𝜆

1
= 𝜆

2
= 1. Note that

𝑃
−1

𝐷
𝑘
𝑃𝐷

𝑘
= 𝐷

2

𝑘
= (

1 +

1

2𝑘
2

0

0 1 +

1

𝑘
2

),

𝑃
−1

(𝐶𝑃 + 𝑃𝐶 + 𝑃𝐴𝐴
𝑇

𝑃 + 𝑃𝐵𝐵
𝑇

𝑃)

= 2𝐶 + 𝐴𝐴
𝑇

+ 𝐵𝐵
𝑇

= (

−4.69 −0.11

−0.11 −3.9
) = Δ.

(76)
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Figure 1: (a) State trajectories of system (73) with impulses (74) and 𝜏 = 3. (b) State trajectories of system (73) with impulses (79) and 𝜏 = 0.17.

then we get 𝜂
𝑘
= 1 + 1/𝑘

2
, 𝜂 = ∏

∞

𝑘=1
(1 + 1/𝑘

2
) < ∞. Matrix

Δ
,s characteristic equation is

𝜆
2

+ 8.59𝜆 + 18.2789 = 0. (77)

By a straightforward calculation, we obtain that the largest
characteristic root 𝜆

3
≈ −3.885 < −2. By Theorem 7, the

equilibrium point of system (73) is uniformly asymptotically
stable with impulses (74) for any 𝜏 > 0, which is shown in
Figure 1(a).

However, the criteria in [5] are invalid here. In fact,
condition 𝑦(𝑡

𝑘
) = 𝐷𝑦(𝑡

−

𝑘
) is not satisfied here. Moreover,

because of the impulsive effect, the criteria in [2] are also
invalid here. Therefore, our results are less conservative than
those given result in [2, 5].

Furthermore, let 𝜏 = 0.17. Note that ∏
∞

𝑘=1
(1 + 1/𝑘

2
) <

∞, 𝜆
3

= −3.885 < −2; then one can choose 𝛿 = 0 in
Theorem 10. So all conditions of Theorem 10 are satisfied.
Therefore, the equilibrium point of system (73) is globally
exponentially stable, and the exponential convergence rate is
equal to 𝜇, where 𝜇 > 0 satisfies

𝜇 + 𝑒
0.17𝜇

− 2.885 < 0. (78)

If 𝑑(1)
𝑘

, 𝑑
(2)

𝑘
in above example are given as follows:

𝑑
(1)

𝑘
= {

√2.2 − 1, 𝑘 = 2𝑛 − 1,

√0.23 − 1, 𝑘 = 2𝑛, 𝑛 ∈ Z
+
,

𝑑
(2)

𝑘
{

√1.7 − 1, 𝑘 = 2𝑛 − 1,

√0.4 − 1, 𝑘 = 2𝑛, 𝑛 ∈ Z
+
,

(79)

then we finally get 𝜆
3

= −3.885 < −3.500, 𝛿 = 0. So
all conditions of Theorem 10 are still satisfied. Therefore, the
equilibrium point of system (73) is globally exponentially
stable with impulses (79), and the exponential convergence
rate is equal to 𝜇, where 𝜇 > 0 satisfies

𝜇 + 2.5𝑒
0.17𝜇

− 2.885 < 0. (80)

The simulation is shown in Figure 1(b). However, it is easy to
check that the impulsive delayed Halanay inequality in [23,
26] is not feasible here. Thus our results can be applied to the
case not covered in [23, 26].

5. Conclusion

The uniform asymptotic stability and global exponential
stability of impulsive HNN with time delays are considered
in this paper. Some new stability conditions are obtained
by means of constructing the extended impulsive Halanay
inequality, Lyapunov functional methods, and linear matrix
inequality approach. Moreover, our results can be applied to
the case not covered in some other existing criteria. Hence,
the results extend and improve the earlier publications. An
example is given to illustrate the feasibility of the results and
the effects of impulses.
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