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We study the fractional Laplacian equation (−Δ)𝑠𝑢+𝜆𝐴(𝑥)𝑢 = 𝜇𝑢+|𝑢|2
∗

(𝑠)−2

𝑢, 𝑥 ∈ R𝑁, here𝑁 > 2𝑠, 𝑠 ∈ (0, 1), 2∗(𝑠) = 2𝑁/(𝑁−2𝑠)
is the critical exponent, and 𝐴(𝑥) ≥ 0 is a real potential function. Employing the variational method we prove the existence of
nontrivial solutions for 𝜇 small and 𝜆 large.

1. Introduction

We consider the nonlinear Schrödinger equation:

𝑖ℏ
𝜕𝜓

𝜕𝑡
= −ℏ

2

Δ𝜓 + 𝐴 (𝑥) 𝜓 −
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨
𝑝−2

𝜓, 𝑥 ∈ R
𝑁

, (1)

where ℏ is the Planck constant. When looking for stationary
waves of the form 𝜓(𝑡, 𝑥) = 𝑒−𝑖𝜇(ℏ𝑡)𝜑(𝑥) with 𝜇 ∈ R𝑁, one
is led to considering the elliptic equation in R𝑁; namely,
replacing ℏ by 𝜀, one sees that 𝜑must satisfy

−𝜀
2

Δ𝜑 + 𝐴 (𝑥) 𝜑 = 𝜀
2

𝜇𝜑 +
󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨
𝑝−2

𝜑. (2)

Setting 𝑢(𝑥) := 𝜀−2/(𝑝−2)𝜑(𝑥) and 𝜆 = 𝜀−2, this equation is
transformed into

−Δ𝑢 + 𝜆𝐴 (𝑥) 𝑢 = 𝜇𝑢 + |𝑢|
2
∗

−2

𝑢, 𝑥 ∈ R
𝑁

. (3)

Problem (3) has been widely studied in the literature (see, for
instance, [1, 2] and references therein), where 2∗ = 2𝑁/(𝑁 −

2) is the critical exponent𝑁 ≥ 4, and 𝐴(𝑥) ≥ 0 is a potential
well.

The study of existence and concentration of the semiclas-
sical states of Schrödinger equation goes back to the pioneer
work [3] by Floer andWeinstein. Ever since then, equations of
(3) type with subcritical nonlinearities (𝑝 < 2∗ = 2𝑁/(𝑁−2)
for 𝑁 ≥ 3) have been studied by many authors. For critical
nonlinearity (𝑝 = 2

∗ for 𝑁 ≥ 4), Clapp and Ding [1, 2]

established the existence andmultiplicity of positive solutions
andminimal nodal solutionswhich localize near the potential
well for 𝜇 small and 𝜆 large.

The fractional Schrödinger equation is a fundamental
equation of fractional quantum mechanics. It was discov-
ered by Nick Laskin as a result of extending the Feynman
path integral, from the Brownian-like to Lévy-like quantum
mechanical paths. The term fractional Schrödinger equation
was coined by Nick Laskin.

Recently, a great attention has been devoted to the
fractional and nonlocal operators of elliptic type, both for
their interesting theoretical structure and in view of con-
crete applications in many fields such as combustion and
dislocations in mechanical systems. This type of operator
seems to have a prevalent role in physical situations and has
been studied by many authors [4–9] and references therein.
In [5], Di Nezza et al. deal with the fractional Sobolev
space 𝑊𝑠,𝑝 and analyze their role in the trace theory. They
prove continuous and compact embeddings, investigating
the problem of the extension domains and other regularity
results. In [8], Felmer et al. proved the existence of positive
solutions of nonlinear Schrödinger equation involving the
fractional Laplacian in R𝑁. They further analyzed regularity,
decay, and symmetry properties of these solutions. Servadei
andValdinoci [9] studied the existence of nontrivial solutions
for equations driven by a nonlocal integrodifferential oper-
ator 𝐿

𝐾
with homogeneous Dirichlet boundary conditions.
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They give more general and more precise results about the
eigenvalues of a linear operator.

The aim of this paper is to study the fractional Laplacian
equation:

(−Δ)
𝑠

𝑢 + 𝜆𝐴 (𝑥) 𝑢 = 𝜇𝑢 + |𝑢|
2
∗

(𝑠)−2

𝑢 in R
𝑁

, (4)

where 𝑁 > 2𝑠, 𝜆 > 0, 𝜇 ∈ R, 𝑠 ∈ (0, 1), and 𝐻𝑠(R𝑁) is the
usual fractional Sobolev space, and 2∗(𝑠) = 2𝑁/(𝑁 − 2𝑠) is
the corresponding critical exponent. Suppose 𝐴(𝑥) satisfies
the following assumptions.

(𝐴1) 𝐴 ∈ 𝐶(R𝑁,R), 𝐴 ≥ 0, Ω := int𝐴−1(0) is a nonempty
bounded set with smooth boundary, andΩ = 𝐴−1(0).

(𝐴2) There exists𝑀
0
> 0 such that

𝐿 {𝑥 ∈ R
𝑁

: 𝐴 (𝑥) ≤ 𝑀
0
} < ∞, (5)

where 𝐿 denotes the Lebesgue measure in R𝑁.

The fractional Laplace operator (−Δ)𝑠 in (4) can be
defined as
− (−Δ)

𝑠

𝑢 (𝑥)

=
1

2
∫
R𝑁

𝑢 (𝑥 + 𝑦) + 𝑢 (𝑥 − 𝑦) − 2𝑢 (𝑥)

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑦, 𝑥 ∈ R
𝑁

.

(6)

We say that a function 𝑢 ∈ 𝐻𝑠(R𝑁) solves (4) in the weak
sense if

∫
R2𝑁

(𝑢 (𝑥) − 𝑢 (𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥) 𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

= 𝜇∫
R𝑁
𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

+ ∫
R𝑁
|𝑢 (𝑥)|

2
∗

(𝑠)−2

𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥,

∀𝜑 ∈ 𝐻
𝑠

(R
𝑁

) .

(7)

Define the energy functional by

𝐼
𝜆
(𝑢) =

1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+
1

2
𝜆∫

R𝑁
𝐴 (𝑥) |𝑢 (𝑥)|

2

𝑑𝑥

−
1

2
𝜇∫

R𝑁
|𝑢 (𝑥)|

2

𝑑𝑥 −
1

2∗ (𝑠)
∫
R𝑁
|𝑢 (𝑥)|

2
∗

(𝑠)

𝑑𝑥.

(8)

Then we know the critical points of 𝐼
𝜆
are exactly the weak

solutions of (7). In this sensewewill prove the existence of the
critical points of the functional 𝐼

𝜆
. Fréchet derivative of 𝐼

𝜆
is

⟨𝐼
󸀠

𝜆
(𝑢) , 𝜑⟩ = ∫

R2𝑁

(𝑢 (𝑥) − 𝑢 (𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥) 𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

− 𝜇∫
R𝑁
𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

− ∫
R𝑁
|𝑢 (𝑥)|

2
∗

(𝑠)−2

𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

∀𝜑 ∈ 𝐻
𝑠

(R
𝑁

) .

(9)

Concerning the Schrödinger equation:

−Δ𝑢 + 𝜆𝐴 (𝑥) 𝑢 = 𝜇𝑢 + |𝑢|
2
∗

−2

𝑢 in R
𝑁

,

𝑢 > 0 in R
𝑁

,

𝑢 ∈ 𝐻
1

(R
𝑁

) .

(10)

Clapp and Ding [1] proved the following.

(a) Assume (𝐴1) and (𝐴2) hold and 𝑁 ≥ 4. Then, for
every 0 < 𝜇 < 𝜇1

1
(Ω), there exists 𝜆(𝜇) > 0 such

that (4) has a least solution 𝑢
𝜆
for each 𝜆 ≥ 𝜆(𝜇),

where 𝜇1
1
(Ω) is the first eigenvalue of −Δ on Ω with

boundary condition 𝑢 = 0.
(b) Assume (𝐴1) and (𝐴2) hold and 𝑁 ≥ 4. Then, there

exist 0 < 𝜇∗ < 𝜇1
1
(Ω) and for each 0 < 𝜇 ≤ 𝜇∗

there exist two numbers Λ(𝜇) > 0 and 0 < 𝑐(𝜇) <

(1/𝑁)𝑆𝑁/2 such that if 𝜆 ≥ Λ(𝜇), then (4) has at
least 𝑐𝑎𝑡(Ω) (the number of solutions is bounded
from below by a topological invariant) solutions with
energy 𝐼

𝜆,𝜇
≤ 𝑐(𝜇).

(c) Every sequence of solutions (𝑢
𝑛
) of (10) such that 0 <

𝜇 < 𝜇1
1
(Ω),𝜆

𝑛
→ ∞ and 𝐼

𝜆
𝑛
,𝜇
(𝑢

𝑛
) → 𝑐 < (1/𝑁)𝑆𝑁/2

as 𝑛 → ∞ concentrates at a solution of

−Δ𝑢 = 𝜇𝑢 + |𝑢|
2
∗

−2

𝑢 in Ω,

𝑢 > 0 in Ω,

𝑢 = 0 on 𝜕Ω,

(11)

where 𝑆 is the best Sobolev constant.

Our aim is to show that (a) and (c) can be extended to
problem (4). In this paper, we have the following results.

Theorem1. Assume (𝐴1) and (𝐴2)hold𝑁 > 2𝑠 and 𝑠 ∈ (0, 1).
Then, for every 0 < 𝜇 < 𝜇

1
(Ω), there exists 𝜆(𝜇) > 0 such that

(4) has at least a solution 𝑢 for each 𝜆 ≥ 𝜆(𝜇), where 𝜇
1
(Ω)

is the first eigenvalue of (−Δ)𝑠 on Ω with boundary condition
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𝑢 = 0. There is a great deal of work on 𝜇
1
(Ω); see for example

[9]. We have

𝜇
1
(Ω)

= inf
𝑢∈𝐻
𝑠

0
(Ω)\{0}

∫
R2𝑁

(
󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)

󵄨󵄨󵄨󵄨
2

/
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝑁+2𝑠

) 𝑑𝑥 𝑑𝑦

∫
Ω

|𝑢 (𝑥)|
2

𝑑𝑥
.

(12)

Theorem 2. Every sequence of solutions (𝑢
𝑛
) of (4) such that

0 < 𝜇 < 𝜇
1
(Ω), 𝜆

𝑛
→ ∞, and 𝐼

𝜆
(𝑢

𝑛
) → 𝑐 < (𝑠/𝑁)𝑆𝑁/2𝑠

𝑠
as

𝑛 → ∞ concentrates at a solution of

(−Δ)
𝑠

𝑢 = 𝜇𝑢 + |𝑢|
2
∗

(𝑠)−2

𝑢 in Ω,

𝑢 = 0 𝑜𝑛 R
𝑁

\ Ω,

(13)

whereΩ is defined as in (𝐴1).

Here 𝑆
𝑠
is defined as

𝑆
𝑠
:= inf

𝑢∈𝐸\{0}

∫
R2𝑁

(
󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)

󵄨󵄨󵄨󵄨
2

/
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝑁+2𝑠

) 𝑑𝑥 𝑑𝑦

|𝑢|
2

2
∗
(𝑠)

, (14)

where𝐸 is an 𝐿2(R𝑁) space with potential and will be defined
in Section 2.

There is a great deal of work on (13); see, for example, [4,
6, 7] and the references therein. Among them Servadei and
Valdinoci [4, 6, 7] studied the problem

𝐿
𝐾
𝑢 + 𝜆𝑢 + |𝑢|

2
∗

(𝑠)−2

𝑢 + 𝑓 (𝑥, 𝑢) = 0 in Ω,

𝑢 = 0 in R
𝑁

\ Ω,

(15)

where Ω is an open bounded set with Lipschitz boundary in
R𝑁, 𝑁 > 2𝑠, 𝑠 ∈ (0, 1), 𝜆 > 0 is a real parameter. 𝐿

𝐾
is defined

as follows:

𝐿
𝐾
𝑢 (𝑥)=

1

2
∫
R𝑁
(𝑢 (𝑥 + 𝑦)+𝑢 (𝑥 − 𝑦) − 𝑢 (𝑥))𝐾 (𝑦) 𝑑𝑥 𝑑𝑦,

𝑥 ∈ R
𝑁

.

(16)

Here 𝐾 : R𝑁 \ {0} → (0, +∞) is a function such that

𝑚(𝑥) ⋅ 𝐾 ∈ 𝐿
1

(R
𝑁

) , where 𝑚(𝑥) = min {|𝑥|2, 1} ; (17)

there exists 𝜃 > 0 such that 𝐾(𝑥) ≥ 𝜃|𝑥|−(𝑁+2𝑠) and 𝐾(𝑥) =
𝐾(−𝑥) for any 𝑥 ∈ R𝑁 \ {0}. They proved that problem (15)
admits a nontrivial solution for any 𝜆 > 0. They also studied
the case 𝑓(𝑥, 𝑢) ≡ 0 and𝐾(𝑥) = |𝑥|−(𝑁+2𝑠), respectively.

Clapp and Ding [1] proved the existence of minimizing
sequence for energy function of (10) on Nehari manifold
and assumed that it is a Palais Smale sequence by Ekeland’s
variational principle. Since Palais Smale conditions hold, this
finished the proof of (a). For (c), they analyzed the problem
directly. We will show that their method can be extended to
the case 0 < 𝑠 < 1.

This paper is organized as follows. In Section 2, we give
some preliminary results. In Section 3, we finish the proof of
Theorem 1. In Section 4, we finish the proof of Theorem 2.

2. Preliminary Results

Throughout this paper we write | ⋅ |
𝑞
for the 𝐿𝑞 norm for 𝑞 ∈

[1,∞].We always assume that (𝐴1)-(𝐴2)hold,𝑁 > 2𝑠,𝜆 > 0,
𝜇 ∈ R, and 𝑠 ∈ (0, 1). 𝜇

1
(Ω) is the first eigenvalue of (−Δ)𝑠 on

Ω. Ω is a nonempty bounded set with smooth boundary.
We consider the fractional Sobolev space:

𝐻
𝑠

(R
𝑁

)

= {𝑢 ∈ 𝐿
2

(R
𝑁

) | ∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+∫
R𝑁
|𝑢 (𝑥)|

2

𝑑𝑥 < +∞}

(18)

with norm

‖𝑢‖
𝐻
𝑠 = (∫

R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦 + ∫
R𝑁
|𝑢 (𝑥)|

2

𝑑𝑥)

1/2

.

(19)

And let

𝐸 = {𝑢 ∈ 𝐻
𝑠

(R
𝑁

) | ∫
R𝑁
𝐴 (𝑥) 𝑢

2

𝑑𝑥 < +∞} (20)

be the Hilbert space equipped with norm

‖𝑢‖
𝐸
= (‖𝑢‖

2

𝐻
𝑠 + ∫

R𝑁
𝐴 (𝑥) 𝑢

2

𝑑𝑥)
1/2

. (21)

If 𝜆 > 0, then it is equivalent to the norms

‖𝑢‖
𝜆
= (‖𝑢‖

2

𝐻
𝑠 + 𝜆∫

R𝑁
𝐴 (𝑥) 𝑢

2

𝑑𝑥)
1/2

. (22)

Thus 𝐸 is continuously embedded in𝐻𝑠(R𝑁).

Remark 3. We know the embedding 𝐻𝑠(R𝑁) 󳨅→ 𝐿](R𝑁) is
continuous; see [5] or [8]. So the embedding 𝐸 󳨅→ 𝐿

]
(R𝑁

) is
also continuous for any ] ∈ [2, 2∗(𝑠)].

Thanks to Remark 3, we can define the constant 𝑆
𝑠
as in

formula (14) and get that 𝑆
𝑠
> 0.

Lemma 4. Let 𝑢
𝑛
∈ 𝐸 be such that 𝜆

𝑛
→ ∞ and ‖𝑢

𝑛
‖
2

𝜆
𝑛

< 𝐶.
Then, there is a 𝑢 ∈ 𝐻𝑠

0
(Ω) such that, up to a subsequence,

𝑢
𝑛
→ 𝑢 in 𝐿2(R𝑁).

Proof. If 𝑢
𝑛
→ 𝑢 strongly in 𝐿2(R𝑁), we prove 𝑢 ∈ 𝐻𝑠

0
(Ω).

Set 𝐹
𝑚
= {𝑥 : |𝑥| ≤ 𝑚,𝐴(𝑥) ≥ 1/𝑚}, and 𝑚 ∈ N. For 𝑛 large

enough that 𝜆
𝑛
≥ 1, thanks to 𝜆

𝑛
→ ∞. So ‖𝑢

𝑛
‖
2

𝐸
≤ ‖𝑢

𝑛
‖
2

𝜆
𝑛

<

𝐶, we get

∫
𝐹
𝑚

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
2

𝑑𝑥 ≤ 𝑚∫
𝐹
𝑚

𝐴 (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
2

𝑑𝑥 ≤
𝑚𝐶

𝜆
𝑛

󳨀→ 0

as 𝑛 󳨀→ ∞

(23)
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for every 𝑚. This implies that 𝑢(𝑥) = 0 for a.e. 𝑥 ∈ R𝑁 \ Ω.
Hence, since 𝜕Ω is smooth, 𝑢 ∈ 𝐻𝑠

0
(Ω).

We will show that 𝑢
𝑛
→ 𝑢 strongly in 𝐿2(R𝑁). Let 𝐹 =

{𝑥 ∈ R𝑁 : 𝐴(𝑥) ≤ 𝑀
0
} with 𝑀

0
as in (𝐴2), and let 𝐹𝑐 =

R𝑁 \ 𝐹. Then

∫
𝐹
𝑐

𝑢
2

𝑛
𝑑𝑥 ≤

1

𝜆
𝑛
𝑀

0

∫
𝐹
𝑐

𝜆
𝑛
𝐴 (𝑥) 𝑢

2

𝑛
𝑑𝑥 ≤

𝐶

𝜆
𝑛
𝑀

0

󳨀→ 0 (24)

as 𝑛 → ∞. Setting 𝐵𝑐
𝑅
= R𝑁 \ 𝐵

𝑅
, where 𝐵

𝑅
= {𝑥 ∈ R𝑁 :

|𝑥| ≤ 𝑅}, and choosing 𝑟 ∈ (1,𝑁/(𝑁−2𝑠)), and 𝑟
󸀠

= 𝑟/(𝑟−1),
we have

∫
𝐵
𝑐

𝑅
∩𝐹

(𝑢
𝑛
− 𝑢)

2

𝑑𝑥 ≤
󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢

󵄨󵄨󵄨󵄨
2

2𝑟
𝐿(𝐵

𝑐

𝑅
∩ 𝐹)

1/𝑟
󸀠

≤ 𝐶
1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
󵄩󵄩󵄩󵄩
2

𝐸
𝐿(𝐵

𝑐

𝑅
∩ 𝐹)

1/𝑟
󸀠

󳨀→ 0

(25)

as 𝑅 → ∞, thanks to (𝐴2). Since 𝑢
𝑛
→ 𝑢 in 𝐿2loc(R

𝑁),

∫
𝐵
𝑅

(𝑢
𝑛
− 𝑢)

2

𝑑𝑥 󳨀→ 0 (26)

as 𝑛 → ∞. By 𝑢 ∈ 𝐻𝑠

0
(Ω),

∫
R𝑁
(𝑢

𝑛
− 𝑢)

2

𝑑𝑥 = ∫
𝐹
𝑐

𝑢
2

𝑛
𝑑𝑥 + ∫

𝐹

(𝑢
𝑛
− 𝑢)

2

𝑑𝑥

≤ ∫
𝐹
𝑐

𝑢
2

𝑛
𝑑𝑥 + ∫

𝐵
𝑐

𝑅
∩𝐹

(𝑢
𝑛
− 𝑢)

2

𝑑𝑥

+ ∫
𝐵
𝑅

(𝑢
𝑛
− 𝑢)

2

𝑑𝑥 󳨀→ 0

(27)

as 𝑛 → ∞. Thus 𝑢
𝑛
→ 𝑢 strongly in 𝐿2(R𝑁).

We denote𝐴
𝜆
:= (−Δ)

𝑠

+ 𝜆𝐴(𝑥) and by ⟨⋅, ⋅⟩ the 𝐿2-inner
product and write

⟨𝐴
𝜆
𝑢, V⟩ = ∫

R2𝑁

(𝑢 (𝑥) − 𝑢 (𝑦)) (V (𝑥) − V (𝑦))
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥) 𝑢V 𝑑𝑥

(28)

for 𝑢, V ∈ 𝐸. Set 𝑎
𝜆
:= inf 𝜎

𝑝
(𝐴

𝜆
), the infimum of the point

spectrum of 𝐴
𝜆
. Observe that

0 ≤ 𝑎
𝜆
= inf {⟨𝐴

𝜆
𝑢, 𝑢⟩ : 𝑢 ∈ 𝐸, |𝑢|

2
= 1} (29)

and that 𝑎
𝜆
is nondecreasing in 𝜆.

Lemma 5. For each 0 < 𝜇 < 𝜇
1
(Ω), there exists 𝜆(𝜇) > 0 such

that 𝑎
𝜆
≥ (𝜇 + 𝜇

1
(Ω))/2 for 𝜆 ≥ 𝜆(𝜇). Consequently,

𝑐
𝜇
‖𝑢‖

2

𝜆
≤ ⟨(𝐴

𝜆
− 𝜇) 𝑢, 𝑢⟩ (30)

for all 𝑢 ∈ 𝐸, 𝜆 ≥ 𝜆(𝜇), where 𝑐
𝜇
> 0 is a constant.

Proof. Assume, by contradiction, that there exists a sequence
𝜆
𝑛
→ ∞ such that 𝑎

𝜆
𝑛

< (𝜇 + 𝜇
1
(Ω))/2 for all 𝑛 and 𝑎

𝜆
𝑛

→

𝑐
𝜆
≤ (𝜇 + 𝜇

1
(Ω))/2. Let 𝑢

𝑛
∈ 𝐸 be such that |𝑢

𝑛
|
2
= 1 and

⟨(𝐴
𝜆
𝑛

− 𝑎
𝜆
𝑛

)𝑢
𝑛
, 𝑢

𝑛
⟩ → 0. Then

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
2

𝜆
𝑛

= ∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦 + ∫
R𝑁

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

+ 𝜆
𝑛
∫
R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

= ⟨(𝐴
𝜆
𝑛

− 𝑎
𝜆
𝑛

) 𝑢
𝑛
, 𝑢

𝑛
⟩ + (1 + 𝑎

𝜆
𝑛

)
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
2

2

≤ 2 (1 + 𝜇
1
(Ω))

(31)

for all 𝑛 large. By Lemma 4 there is a 𝑢 ∈ 𝐻𝑠

0
(Ω) such that,

up to a subsequence, 𝑢
𝑛
→ 𝑢 in 𝐿2(R𝑁), and thus |𝑢|

2
= 1.

Using Fatou’s theorem, we know

∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦 − 𝑐
𝜆
∫
Ω

|𝑢 (𝑥)|
2

𝑑𝑥

≤ lim
𝑛→∞

inf (∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

− 𝑎
𝜆
𝑛

∫
R𝑁

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥)

≤ lim
𝑛→∞

inf ⟨(𝐴
𝜆
𝑛

− 𝑎
𝜆
𝑛

) 𝑢
𝑛
, 𝑢

𝑛
⟩ = 0.

(32)

Consequently,

∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦 ≤ 𝑐
𝜆
<
(𝜇 + 𝜇

1
(Ω))

2
< 𝜇

1
(Ω) .

(33)

Since 𝜇
1
(Ω) is the first eigenvalue of (−Δ)

𝑠 on Ω

with boundary condition 𝑢 = 0, we have 𝜇
1
(Ω) ≤

∫
R2𝑁
(|𝑢(𝑥) − 𝑢(𝑦)|

2

/|𝑥 − 𝑦|
𝑁+2𝑠

)𝑑𝑥 𝑑𝑦. This is a contradic-
tion.

In the following, enlarging 𝜆(𝜇) if necessary, we assume
𝜆(𝜇) ≥ 𝜇/𝑀

0
; thus

𝜆𝑀
0
− 𝜇 ≥ 0 ∀𝜆 ≥ 𝜆 (𝜇) . (34)

3. The Proof of Theorem 1

In this section we will finish the proof of Theorem 1.
The critical points of 𝐼

𝜆
lie on the Nehari manifold

𝑀 = {𝑢 ∈ 𝐸 \ {0} : ⟨𝐼
󸀠

𝜆
(𝑢) , 𝑢⟩ = 0} . (35)

Since 0 < 𝜇 < 𝜇
1
(Ω) and 2 < 2∗(𝑠), the function 𝑡 ∈ R

+
→

𝐼
𝜆
(𝑡𝑢) has a unique maximum point 𝑡(𝑢) > 0 and 𝑡(𝑢)𝑢 ∈ 𝑀.

Define
𝑐
1
:= inf

𝑀

𝐼
𝜆
, (36)
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and we observe that
𝑐
1
= inf

𝑢∈𝐸, 𝑢 ̸= 0

max
𝑡≥0

𝐼
𝜆
(𝑡𝑢) . (37)

FromLemma 5, the constant 𝑐
1
is positive. On the other hand,

we define
𝑐 = inf

𝛾∈Γ

max
𝑡∈[0,1]

𝐼
𝜆
(𝛾 (𝑡)) , (38)

where

Γ := {𝛾 ∈ 𝐶 ([0, 1] , 𝐸) : 𝛾 (0) = 0, 𝐼
𝜆
(𝛾 (1)) < 0} . (39)

Proposition 6. Consider 𝑐 = 𝑐
1
.

Proof. Proposition is proved, for instance, in [8, see Section
2].

𝑀 is radially diffeomorphic𝑉 = {V ∈ 𝐸 : |V|
2
∗
(𝑠)
= 1}. For

𝑢 ∈ 𝑀, the functional 𝐼
𝜆
is

𝐼
𝜆
(𝑢) =

𝑠

𝑁
⟨(𝐴

𝜆
− 𝜇) 𝑢, 𝑢⟩ =

𝑠

𝑁
|𝑢|

2
∗

(𝑠)

2
∗
(𝑠)
. (40)

So,

𝑐
1
:= inf

𝑢∈𝑀

𝐼
𝜆
(𝑢) = inf

V∈𝑉

𝑠

𝑁
⟨(𝐴

𝜆
− 𝜇) V, V⟩

𝑁/2𝑠

. (41)

We consider the functional

𝐼
Ω
(𝑢) =

1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦 −
1

2
𝜇∫

Ω

|𝑢 (𝑥)|
2

𝑑𝑥

−
1

2∗ (𝑠)
∫
Ω

|𝑢 (𝑥)|
2
∗

(𝑠)

𝑑𝑥

=
1

2
⟨(𝐴

0
− 𝜇) 𝑢, 𝑢⟩ −

1

2∗ (𝑠)
|𝑢|

2
∗

(𝑠)

2
∗
(𝑠)

(42)

on𝐻𝑠

0
(Ω). Its Nehari manifold

𝑀
Ω
= {𝑢 ∈ 𝐻

𝑠

0
(Ω) \ {0} : ⟨𝐼

󸀠

Ω
(𝑢) , 𝑢⟩ = 0} (43)

is radially diffeomorphic 𝑉
Ω
= {V ∈ 𝐻𝑠

0
(Ω) : |V|

2
∗
(𝑠)
= 1}. Set

𝑐 (Ω) := inf
𝑢∈𝑀
Ω

𝐼
Ω
(𝑢) = inf

V∈𝑉
Ω

𝑠

𝑁
⟨(𝐴

0
− 𝜇) V, V⟩

𝑁/2𝑠

. (44)

Proposition 7. If 0 < 𝜇 < 𝜇
1
(Ω) and 𝜆 ≥ 𝜆(𝜇), then

𝑠

𝑁
(𝑐

𝜇
𝑆
𝑠
)
𝑁/2𝑠

≤ 𝑐 < 𝑐 (Ω) <
𝑠

𝑁
𝑆
𝑁/2𝑠

𝑠
, (45)

where 𝑆
𝑠
is defined in formula (14) and 𝑐

𝜇
is given in Lemma 5.

Proof. By Lemma 5, 𝑐
𝜇
‖V‖2

𝐸
≤ 𝑐

𝜇
‖V‖2

𝜆
≤ ⟨(𝐴

𝜆
− 𝜇)V, V⟩ for all

V ∈ 𝐸. Taking infima over V ∈ 𝑉 gives the first inequality.
Since 𝑉

Ω
⊂ 𝑉 and ⟨𝐴

𝜆
V, V⟩ = ⟨𝐴

0
V, V⟩ for V ∈ 𝑉

Ω
, it follows

that 𝑐 ≤ 𝑐(Ω). By [6, see Section 7] and [10, see Section 8],
we know 𝑐(Ω) < (𝑠/𝑁)𝑆𝑁/2𝑠

𝑠
and 𝑐(Ω) is achieved at some

𝑢
0
. Thus 𝑐 < 𝑐(Ω), because other 𝑐 would be also achieved

at 𝑢
0
which vanishes outside Ω, contradicting the maximum

principle.
Hence, Proposition 7 is proved.

By definition of 𝑐
1
and Proposition 6, there exists a

minimizing sequence for 𝐼
𝜆
on 𝑀, and we note {𝑢

𝑗
}. By

Ekeland’s variational principle, we may assume that it is a
Palais Smale sequence. So we have

𝐼
𝜆
(𝑢

𝑗
) 󳨀→ 𝑐, (46)

sup {󵄨󵄨󵄨󵄨󵄨⟨𝐼
󸀠

𝜆
(𝑢

𝑗
) , 𝜑⟩

󵄨󵄨󵄨󵄨󵄨
: 𝜑 ∈ 𝐸,

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝜆 = 1} 󳨀→ 0 (47)

as 𝑗 → +∞.

Proposition 8. 𝐼
𝜆
has at least one critical point with critical

value 𝑐 for each 0 < 𝜇 < 𝜇
1
(Ω) and 𝜆 ≥ 𝜆(𝜇).

Proof. We proceed by steps.
Step 1. The sequence {𝑢

𝑗
} is bounded in 𝐸.

Proof. For any 𝑗 ∈ N by (46) and (47) it easily follows that
there exists 𝐶

1
> 0 such that

󵄨󵄨󵄨󵄨󵄨
𝐼
𝜆
(𝑢

𝑗
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

1
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨𝐼
󸀠

𝜆
(𝑢

𝑗
) ,

𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝜆

⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
1
.

(48)

As a consequence of (48) we have

𝐼
𝜆
(𝑢

𝑗
) −

1

2∗ (𝑠)
⟨𝐼

󸀠

𝜆
(𝑢

𝑗
) , 𝑢

𝑗
⟩ =

𝑠

𝑁
⟨(𝐴

𝜆
− 𝜇) 𝑢

𝑗
, 𝑢

𝑗
⟩

≤ 𝐶
1
(1 +

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝜆
) .

(49)

By (49) and the definition of 𝐼
𝜆
we have

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝜆

≤ 𝐶
2
(1 +

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝜆
) . (50)

Thus {𝑢
𝑗
} is bounded in 𝐸.

Step 2. Problem (7) admits a solution 𝑢
∞
∈ 𝐸.

Proof. By Step 1 and𝐸 is a reflexive space, up to a subsequence,
still denoted by 𝑢

𝑗
, there exists 𝑢

∞
∈ 𝐸 such that 𝑢

𝑗
→ 𝑢

∞

weakly in 𝐸; that is,

∫
R2𝑁

(𝑢
𝑗
(𝑥) − 𝑢

𝑗
(𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥) 𝑢

𝑗
(𝑥) 𝜑 (𝑥) 𝑑𝑥

󳨀→ ∫
R2𝑁

(𝑢
∞
(𝑥) − 𝑢

∞
(𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥) 𝑢

∞
(𝑥) 𝜑 (𝑥) 𝑑𝑥

(51)

as 𝑗 → +∞. Since Step 1 and Remark 3, we have that 𝑢
𝑗
is

bounded in 𝐿2
∗

(𝑠)(R𝑁). Since 𝐿2
∗

(𝑠)(R𝑁) is a reflexive space,
up to a subsequence

𝑢
𝑗
󳨀→ 𝑢

∞
weakly in 𝐿2

∗

(𝑠)

(R
𝑁

) (52)
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as 𝑗 → +∞. While by Lemma 4, up to a subsequence,

𝑢
𝑗
(𝑥) 󳨀→ 𝑢

∞
(𝑥) in 𝐿2 (R𝑁

) , (53)

𝑢
𝑗
󳨀→ 𝑢

∞
a.e. in R

𝑁 (54)

as 𝑗 → +∞. By (52) and the fact that |𝑢
𝑗
|2
∗

(𝑠)−2𝑢
𝑗
is bounded

in 𝐿2
∗

(𝑠)/(2
∗

(𝑠)−1)(R𝑁), we have
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗

󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)−2

𝑢
𝑗
󳨀→

󵄨󵄨󵄨󵄨𝑢∞
󵄨󵄨󵄨󵄨
2
∗

(𝑠)−2

𝑢
∞

weakly in 𝐿2
∗

(𝑠)/(2
∗

(𝑠)−1)

(R
𝑁

)

(55)

as 𝑗 → +∞.
Since (47) holds true, for any 𝜑 ∈ 𝐸

0 ←󳨀 ⟨𝐼
󸀠

𝜆
(𝑢

𝑗
) , 𝜑⟩

= ∫
R2𝑁

(𝑢
𝑗
(𝑥) − 𝑢

𝑗
(𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥) 𝑢

𝑗
(𝑥) 𝜑 (𝑥) 𝑑𝑥 − 𝜇∫

R𝑁
𝑢
𝑗
(𝑥) 𝜑 (𝑥) 𝑑𝑥

− ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)−2

𝑢
𝑗
(𝑥) 𝜑 (𝑥) 𝑑𝑥.

(56)

Passing to the limit in this expression as 𝑗 → +∞ and
taking into account (51), (53), and (55), we get

∫
R2𝑁

(𝑢
∞
(𝑥) − 𝑢

∞
(𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥) 𝑢

∞
(𝑥) 𝜑 (𝑥) 𝑑𝑥 − 𝜇∫

R𝑁
𝑢
∞
(𝑥) 𝜑 (𝑥) 𝑑𝑥

− ∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)−2

𝑢
∞
(𝑥) 𝜑 (𝑥) 𝑑𝑥 = 0

(57)

for any 𝜑 ∈ 𝐸; that is, 𝑢
∞

is a solution of problem (7).
Step 3. The following equality holds true:

𝐼
𝜆
(𝑢

∞
) =

𝑠

𝑁
∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥 ≥ 0. (58)

Proof. By Step 2, taking 𝜑 = 𝑢
∞
∈ 𝐸 as a test function in (7),

we have

∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥) − 𝑢
∞
(𝑦)

󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦+𝜆∫
R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

= 𝜇 ∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 + ∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥.

(59)

So we get

𝐼
𝜆
(𝑢

∞
) =

𝑠

𝑁
∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥 ≥ 0. (60)

Hence, Step 3 is proved.
Now, we conclude the proof of Proposition 8.

We write V
𝑗
:= 𝑢

𝑗
− 𝑢

∞
, and then V

𝑗
→ 0 weakly in 𝐸.

Moreover, since (54) holds true, by the Brézis-Lieb Lemma,
we get

∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥) − 𝑢

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦 + 𝜆∫
R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= ∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ ∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥) − 𝑢
∞
(𝑦)

󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 + ∘ (1) ,

∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 = ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ ∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 + ∘ (1) ,

∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥 = ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

+ ∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥 + ∘ (1) ,

as 𝑗 󳨀→ +∞.

(61)

Then,

𝑐 ←󳨀 𝐼
𝜆
(𝑢

𝑗
) =

1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥) − 𝑢

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+
1

2
𝜆∫

R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

−
1

2
𝜇∫

R𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

−
1

2∗ (𝑠)
∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

=
1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+
1

2
𝜆∫

R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+
1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥) − 𝑢
∞
(𝑦)

󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+
1

2
∫
R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

−
1

2
𝜇∫

R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥
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−
1

2
𝜇∫

R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

−
1

2∗ (𝑠)
∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

−
1

2∗ (𝑠)
∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥 + ∘ (1)

= 𝐼
𝜆
(𝑢

∞
) +

1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+
1

2
∫
R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

−
1

2
𝜇∫

R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

−
1

2∗ (𝑠)
∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥 + ∘ (1) ,

(62)

⟨𝐼
󸀠

𝜆
(𝑢

𝑗
) , 𝑢

𝑗
⟩ = ∫

R2𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥) − 𝑢

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

− 𝜇∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 − ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

= ∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ ∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥) − 𝑢
∞
(𝑦)

󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

− 𝜇∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 − 𝜇∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

− ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

− ∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥 + ∘ (1)

= ⟨𝐼
󸀠

𝜆
(𝑢

∞
) , 𝑢

∞
⟩

+ ∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

− 𝜇∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

− ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥 + ∘ (1) .

(63)

By ⟨𝐼󸀠
𝜆
(𝑢

∞
), 𝑢

∞
⟩ = 0 and ⟨𝐼󸀠

𝜆
(V

𝑗
), V

𝑗
⟩ → 0, we get

∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆∫
R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 − 𝜇∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 󳨀→ 𝑏,

∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥 󳨀→ 𝑏.

(64)

As in the proof of Lemma 4 one shows that

∫
𝐹

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 󳨀→ 0 (65)

as 𝑗 → ∞, where 𝐹 = {𝑥 ∈ R𝑁 : 𝐴(𝑥) ≤ 𝑀
0
}. Let 𝐹𝑐 =

R𝑁 \ 𝐹. Then, by (34),

𝑆
𝑠

󵄩󵄩󵄩󵄩󵄩
V
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
∗
(𝑠)(R𝑁)

≤ ∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

≤ ∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ ∫
𝐹
𝑐

(𝜆𝐴 (𝑥) − 𝜇)
󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ ⟨(𝐴
𝜆
− 𝜇) V

𝑗
, V

𝑗
⟩ + 𝜇∫

𝐹

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= ⟨(𝐴
𝜆
− 𝜇) V

𝑗
, V

𝑗
⟩ + ∘ (1) .

(66)

Passing to the limit yields 𝑏 ≥ 𝑆
𝑠
𝑏2/2
∗

(𝑠). Either 𝑏 = 0 or 𝑏 ≥
𝑆𝑁/2𝑠

𝑠
. If 𝑏 = 0, the proof is complete. Assuming 𝑏 ≥ 𝑆𝑁/2𝑠

𝑠
, we

obtain from Step 3, (45), and (62) that

𝑠

𝑁
𝑆
𝑁/2𝑠

𝑠
≤ (

1

2
−

1

2∗ (𝑠)
) 𝑏 = 𝑐 <

𝑠

𝑁
𝑆
𝑁/2𝑠

𝑠
, (67)

which is a contradiction. Thus 𝑏 = 0, and

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗
− 𝑢

∞

󵄩󵄩󵄩󵄩󵄩𝜆
󳨀→ 0 (68)

as 𝑗 → +∞. This ends the proof of Proposition 8.

Wehave finished the proof ofTheorem 1 by Proposition 8.
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4. The proof of Theorem 2

Proof of Theorem 2. Let (𝑢
𝑛
) be a sequence of solutions of (4)

such that 0 < 𝜇 < 𝜇
1
(Ω), 𝜆

𝑛
→ ∞, and𝑁𝐼

𝜆
𝑛

(𝑢
𝑛
) = ⟨(𝐴

𝜆
𝑛

−

𝜇)𝑢
𝑛
, 𝑢

𝑛
⟩ → 𝑁𝑐 < 𝑠𝑆𝑁/2𝑠

𝑠
. Then, by Lemma 4, there is a 𝑢 ∈

𝐻𝑠

0
(Ω) such that, up to a subsequence, 𝑢

𝑛
→ 𝑢 in 𝐸. By 𝑢

𝑛

that is a solution of (4), we have

∫
R2𝑁

(𝑢
𝑛
(𝑥) − 𝑢

𝑛
(𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

+ 𝜆
𝑛
∫
R𝑁
𝐴 (𝑥) 𝑢

𝑛
(𝑥) 𝜑 (𝑥) 𝑑𝑥 − 𝜇∫

R𝑁
𝑢
𝑛
(𝑥) 𝜑 (𝑥) 𝑑𝑥

= ∫
R𝑁

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)−2

𝑢
𝑛
(𝑥) 𝜑 (𝑥) 𝑑𝑥

(69)

for any 𝜑 ∈ 𝐸. If 𝜑 ∈ 𝐻𝑠

0
(Ω), then 𝜆

𝑛
∫
R𝑁
𝐴(𝑥)𝑢

𝑛
(𝑥)𝜑(𝑥)𝑑𝑥 =

0 for all 𝑛, so letting 𝑛 → ∞ we obtain

∫
R2𝑁

(𝑢 (𝑥) − 𝑢 (𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

− 𝜇∫
R𝑁
𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥 = ∫

R𝑁
|𝑢 (𝑥)|

2
∗

(𝑠)−2

𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

(70)

for any 𝜑 ∈ 𝐻𝑠

0
(Ω). So, 𝑢 is a solution of (13). We write V

𝑛
:=

𝑢
𝑛
− 𝑢. Then, V

𝑛
→ 0 in 𝐿2(R𝑁).

Since 𝐴(𝑥) = 0 for 𝑥 ∈ Ω, we get

⟨(𝐴
𝜆
𝑛

− 𝜇) 𝑢
𝑛
, 𝑢

𝑛
⟩ = ⟨(𝐴

0
− 𝜇) 𝑢, 𝑢⟩ + ⟨(𝐴

𝜆
𝑛

− 𝜇) V
𝑛
, V

𝑛
⟩ .

(71)

By V
𝑛
→ 0 in 𝐸 and the Brézis-Lieb Lemma, we have

∫
R𝑁

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥

= ∫
R𝑁
|𝑢 (𝑥)|

2
∗

(𝑠)

𝑑𝑥 + ∫
R𝑁

󵄨󵄨󵄨󵄨V𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥 + ∘ (1) .

(72)

So, we can get

⟨(𝐴
𝜆
𝑛

− 𝜇) V
𝑛
, V

𝑛
⟩ − ∫

R𝑁

󵄨󵄨󵄨󵄨V𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥 = ∘ (1) . (73)

We claim that ∫
R𝑁
|V
𝑛
(𝑥)|2

∗

(𝑠)𝑑𝑥 → 0. Assume
∫
R𝑁
|V
𝑛
(𝑥)|2

∗

(𝑠)𝑑𝑥 → 𝑏 > 0. Then,

𝑆
𝑠
(∫

R𝑁

󵄨󵄨󵄨󵄨V𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥)
2/2
∗

(𝑠)

≤ ∫
R2𝑁

󵄨󵄨󵄨󵄨V𝑛 (𝑥) − V
𝑛
(𝑦)

󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑁+2𝑠

𝑑𝑥 𝑑𝑦

≤ ⟨(𝐴
𝜆
𝑛

− 𝜇) V
𝑛
, V

𝑛
⟩

= ∫
R𝑁

󵄨󵄨󵄨󵄨V𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥 + ∘ (1) ,

(74)

thanks to (73). It follows that

𝑆
𝑠
≤ (∫

R𝑁

󵄨󵄨󵄨󵄨V𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥)
(2
∗

(𝑠)−2)/2
∗

(𝑠)

+ ∘ (1)

≤ (∫
R𝑁

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥)
(2
∗

(𝑠)−2)/2
∗

(𝑠)

+ ∘ (1) ,

𝑆
𝑁/2𝑠

𝑠
≤ lim

𝑛→∞

∫
R𝑁

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2
∗

(𝑠)

𝑑𝑥

= lim
𝑛→∞

⟨(𝐴
𝜆
𝑛

− 𝜇) 𝑢
𝑛
, 𝑢

𝑛
⟩ = 𝑁𝑐 < 𝑠𝑆

𝑁/2𝑠

𝑠
.

(75)

This is a contradiction. Thus ∫
R𝑁
|V
𝑛
(𝑥)|2

∗

(𝑠)𝑑𝑥 → 0 and
⟨(𝐴

𝜆
𝑛

− 𝜇)V
𝑛
, V

𝑛
⟩ → 0, by (73). Hence, by (71)

lim
𝑛→∞

⟨(𝐴
𝜆
𝑛

− 𝜇) 𝑢
𝑛
, 𝑢

𝑛
⟩ = ⟨(𝐴

0
− 𝜇) 𝑢, 𝑢⟩ . (76)

Since 𝑢
𝑛
= V

𝑛
in R𝑁

\ Ω and 𝐴(𝑥) = 0 for 𝑥 ∈ Ω,

∫
R𝑁
𝐴 (𝑥)

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 ≤ ∫
R𝑁
𝜆
𝑛
𝐴 (𝑥)

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

= ∫
R𝑁
𝜆
𝑛
𝐴 (𝑥)

󵄨󵄨󵄨󵄨V𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

≤ ⟨(𝐴
𝜆
𝑛

− 𝜇) V
𝑛
, V

𝑛
⟩ .

(77)

Therefore, ∫
R𝑁
𝐴(𝑥)|𝑢

𝑛
(𝑥)|2𝑑𝑥 → 0 and (76) implies that

𝑢
𝑛
→ 𝑢 in 𝐸.
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the fractional Laplacian,” to appear in Transactions of the
American Mathematical Society.

[5] E. Di Nezza, G. Palatucci, and E. Valdinoci, “Hitchhiker’s guide
to the fractional Sobolev spaces,” Bulletin des Sciences Mathé-
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