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By means of the function induced by a logical formula 𝐴, the concept of truth degree of the logical formula 𝐴 is introduced in the
3-valued pre-rough logic in this paper. Moreover, similarity degrees among formulas are proposed and a pseudometric is defined
on the set of formulas, and hence a possible framework suitable for developing approximate reasoning theory in 3-value logic
pre-rough logic is established.

1. Introduction

Rough set theory was proposed by Pawlak [1] in the 1980s
of the last century to serve as an approximate description
of sets which are unknown and incompletely specified. Its
applications [2–8] have been found in fields such as datamin-
ing, learning, and approximate reasoning. Theoretical work
[9–14] has included investigations of the logical, category-
theoretic, topological, and algebraic aspects of rough sets.

It is undoubtedly that set theory and logic systems
are strongly coupled in the development of modern logic.
Scholars have been trying to build rough logic corresponding
to rough set semantics since the birth of rough set theory.The
notion of rough logic was initially proposed by Pawlak [9],
and this work was followed by Orłowska and Vakarelov in a
sequence of papers [15, 16]. In [10], a formal logic system PRL
corresponding to pre-rough algebra was proposed. In [17],
Zhang and Zhu proposed a rough logic system RSL whose
schematic is rough sets and extensional regular double Stone
algebras.

The symbolic and formalism are characteristics in tradi-
tional mathematical logic, and the form reasoning of logic
was studied mainly through the strict argument. But numeri-
cal computation aims to solve various computing problems
by means of some mathematical methods and pays close
attention to problem solving as well as to error estimation.
Hence, mathematical logic and numerical computation are

two branches of mathematics miles apart, and it seems that
contact between them will not be built.

However, the contact of mathematical logic and numer-
ical calculation is proposed by Wang and Zhou and how
put numerical computation into mathematical logic is made
a detailed study in his article that Quantitative Logic [18].
The theory of truth degrees of propositions in 2-valued
propositional logic was proposed in [19]. In the following, the
theory of truth degrees of Lukasiewicz system and other fuzzy
logical systems is studied [20–23].

The basic idea of quantitative logic is to provide a graded
approach to propositional logic. For example, 𝑝 is an atomic
formula in 2-valued logic; that is, 𝑝 can choose two values,
true and false.That is, 𝑝 has two valuations true and false, the
valuation’s sum is 2, and the number of the valuations which
is true is 1, and then the ratio 1/2 can describe the degree in
which the atom formula 𝑝 is true in all valuations. We can
describe each formula 𝐴 like this. For example, 𝑝 ∧ 𝑞 is four
kinds of valuations, and the number of the valuations which
is true is 1, so the ratio 1/4 can describe the degree in which
the formula 𝑝 ∧ 𝑞 is true in all valuations. For many-valued
logic, we can like this use the ratio to describe the degree of
a proposition which is true in all valuations, and we call the
ratio the truth degree of a formula.

In the present paper, according to the methodmentioned
previously, we introduce a definition of truth degrees on
3-valued propositional pre-rough logic. We also study the
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theory of truth degree and approximate reasoning theory in
3-valued pre-rough logic deeply.

The paper is organized as follows. After this introduction,
in Section 2 we will introduce the basic content of pre-rough
algebra and pre-rough logic in [10]. In Section 3, the theory
of truth degree in 3-valued propositional pre-rough logic is
built. In Section 4, the similarity degree and pseudodistance
between two formulas are defined, and the continuity of
operators based on pseudometrics is proven. In Section 5, a
type of metric approximate reasoning theory in pre-rough
logic based on the proposed pseudometrics is established.The
final section offers the conclusion.

2. Pre-Rough Algebra and Pre-Rough Logic

Rough set theory begins with information systems (or infor-
mation tables) and as an abstraction that are proposed. In
general, approximation space is a pair (𝑈, 𝑅), where 𝑈 is a
nonempty set (the domain of discourse) and 𝑅 is an equi-
valence relation on 𝑈.

Let (𝑈, 𝑅) be an approximation space; if 𝐴 ⊆ 𝑈, the
lower approximation 𝑅𝐴 of 𝐴 is the union of equivalence
classes contained in 𝐴, while its upper approximation 𝑅𝐴 is
the union of equivalence classes intersecting 𝐴; that is,

𝑅𝐴 = ∪ {[𝑥] | [𝑥] ⊆ 𝐴} = {𝑥 | 𝑥 ∈ 𝑈, [𝑥] ⊆ 𝐴} ,

𝑅𝐴 = ∪ {[𝑥] | [𝑥] ∩ 𝑋 ̸= 𝜙} = {𝑥 | 𝑥 ∈ 𝑈, [𝑥] ∩ 𝐴 ̸= 𝜙} ,

(1)

where [𝑥] denotes the equivalence class.
Thenwe call𝑅𝐴(𝑅𝐴) rough lower (upper) approximation

of 𝐴. A rough set 𝐴 is termed definable in (𝑈, 𝑅) if and only
if 𝑅𝐴 = 𝑅𝐴.

Definition 1 (see [10]). A structure P = (𝑃, ≤, ⊓, ⊔, ¬, 𝐿, → ,

0, 1) is a pre-rough algebra if and only if

(1) 𝑃 = (𝑃, ≤, ⊓, ⊔, ¬, 𝐿, → , 0, 1) is a bounded distribu-
tive lattice with least element 0 and largest element 1,

(2) ¬¬𝑎 = 𝑎,
(3) ¬(𝑎 ⊔ 𝑏) = ¬𝑎 ⊓ ¬𝑏,
(4) 𝐿𝑎 ≤ 𝑎,
(5) 𝐿(𝑎 ⊓ 𝑏) = 𝐿𝑎 ⊓ 𝐿𝑏,
(6) 𝐿𝐿𝑎 = 𝐿𝑎,
(7) 𝐿1 = 1,
(8) 𝑀𝐿𝑎 = 𝐿𝑎,
(9) ¬𝐿𝑎 ⊔ 𝐿𝑎 = 1,
(10) 𝐿(𝑎 ⊔ 𝑏) = 𝐿𝑎 ⊔ 𝐿𝑏,
(11) 𝐿𝑎 ≤ 𝐿𝑏, 𝑀𝑎 ≤ 𝑀𝑏 imply 𝑎 ≤ 𝑏,
(12) 𝑎 → 𝑏 = (¬𝐿𝑎 ⊔ 𝐿𝑏) ⊓ (¬𝑀𝑎 ⊔𝑀𝑏).

Example 2. LetT = ({0, 1/2, 1}, ≤, ⊓, ⊔, ¬, 𝐿, → , 0, 1), where
≤ is the usual order on real numbers and ⊓ and ⊔ are
maximum and minimum, respectively. ¬0 = 1, ¬1/2 = 1/2,
¬1 = 0, 𝐿0 = 𝐿(1/2) = 0, and 𝐿1 = 1. Then it is a pre-rough
algebra and is the smallest nontrivial pre-rough algebra.

The language of pre-rough logic consists of atomic for-
mula 𝑆 = {𝑝, 𝑞, 𝑟, . . .}, logical symbols ¬, ⊓, and 𝐿, and paren-
theses.

The formula set of pre-rough logic is generated by the
following three rules in finite times:

(i) if 𝐴 is an atomic formula, then 𝐴 is a formula;
(ii) if 𝐴 and 𝐵 are formulas, then ¬𝐴, 𝐴 ⊓ 𝐵, and 𝐿𝐴 are

formulas.

The set of all formulas in pre-rough logic is denoted by
𝐹(𝑆). Further connectives are defined as follows, for any wffs
𝐴, 𝐵 of pre-rough logic:

𝐴 ⊔ 𝐵 = ¬𝐴 ⊓ ¬𝐵,

𝑀𝐴 = ¬𝐿¬𝐴,

𝐴 → 𝐵 = (¬𝐿𝐴 ⊔ 𝐿𝐵) ⊓ (¬𝑀𝐴 ⊔𝑀𝐵) .

(2)

Definition 3 (see [10]). The axioms of pre-rough logic consist
of the formulas of the following form:

(1) 𝐴 → 𝐴,
(2) ¬¬𝐴 → 𝐴,
(3) 𝐴 → ¬¬𝐴,
(4) 𝐴 ⊓ 𝐵 → 𝐴,
(5) 𝐴 ⊓ 𝐵 → 𝐵 ⊓ 𝐴,
(6) 𝐴 ⊓ (𝐵 ⊔ 𝐶) → (𝐴 ⊓ 𝐵) ⊔ (𝐴 ⊓ 𝐶),
(7) (𝐴 ⊓ 𝐵) ⊔ (𝐴 ⊓ 𝐶) → 𝐴 ⊓ (𝐵 ⊔ 𝐶),
(8) 𝐿𝐴 → 𝐴,
(9) 𝐿(𝐴 ⊓ 𝐵) → 𝐿𝐴 ⊓ 𝐿𝐵,
(10) 𝐿𝐴 ⊓ 𝐿𝐵 → 𝐿(𝐴 ⊓ 𝐵),
(11) 𝐿𝐴 → 𝐿𝐿𝐴,
(12) 𝑀𝐿𝐴 → 𝐿𝐴,
(13) 𝐿(𝐴 ⊔ 𝐵) → 𝐿𝐴 ⊔ 𝐿𝐵,
(14) 𝐿𝐴 ⊔ 𝐿𝐵 → 𝐿(𝐴 ⊔ 𝐵).

Rules of inference are as follows

(1) 𝑀𝑃 rule: {𝐴, 𝐴 → 𝐵} ⊢ 𝐵,
(2) 𝐻𝑆 rule: {𝐴 → 𝐵, 𝐵 → 𝐶} ⊢ 𝐴 → 𝐶,
(3) {𝐴} ⊢ 𝐵 → 𝐴,
(4) {𝐴 → 𝐵} ⊢ ¬𝐵 → ¬𝐴,
(5) {𝐴 → 𝐵,𝐴 → 𝐶} ⊢ 𝐴 → 𝐵 ⊓ 𝐶,
(6) {𝐴 → 𝐵, 𝐵 → 𝐴, 𝐶 → 𝐷, 𝐷 → 𝐶} ⊢ (𝐴 →

𝐶) → (𝐵 → 𝐷),
(7) {𝐴 → 𝐵} ⊢ 𝐿𝐴 → 𝐿𝐵,
(8) {𝐴} ⊢ 𝐿𝐴,
(9) {𝐿𝐴 → 𝐿𝐵, 𝑀𝐴 → 𝑀𝐵} ⊢ 𝐴 → 𝐵.
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Definition 4 (see [10]). A valuation V in pre-rough logic is a
map from the set of rough formulas 𝐹(𝑆) to any pre-rough
algebraP = (𝑃, ≤, ⊓, ⊔, ¬, 𝐿, → , 0, 1) satisfying, for all𝐴, 𝐵 ∈
𝐹(𝑆),

V (𝐴 ⊓ 𝐵) = V (𝐴) ⊓ V (𝐵) ,

V (𝐿𝐴) = 𝐿 (V (𝐴)) ,

V (¬𝐴) = ¬V (𝐴) .

(3)

That is, V is (¬, ⊓, 𝐿) type homomorphism.

Remark 5. With (⊔, → ,𝑀) being defined by (¬, ⊓, 𝐿), V is
also (⊔, → ,𝑀) type homomorphism. That is, V(𝐴 ⊔ 𝐵) =

V(𝐴) ⊔ V(𝐵), V(𝐴 → 𝐵) = V(𝐴) → V(𝐵), and V(𝑀𝐴) =
𝑀(V(𝐴)).

Remark 6. From [10], pre-rough logic is sound and complete
relative to the class of all pre-rough algebras. That is, for all
𝐴 ∈ 𝐹(𝑆), Γ ⊢ 𝐴 if and only if Γ ⊨ 𝐴, where Γ is a theory
in pre-rough logic, Γ ⊢ 𝐴 means that 𝐴 is a Γ-conclusion
(i.e.,𝐴 can be deduced from𝐴∪Γwithin finite steps by using
reasoning rules of pre-rough logic), and Γ ⊨ 𝐴 means that Γ
entails 𝐴 (i.e., 𝐴 is satisfied by Γ).

3. The Theory of Truth Degree

Definition 7. Let 𝑇 = {0, 1/2, 1} and define logical operations
on 𝑇 as follows: for all 𝑥, 𝑦 ∈ 𝑇, ¬0 = 1, ¬1/2 = 1/2, ¬1 =
0, 𝐿0 = 𝐿(1/2) = 0, 𝐿1 = 1, 𝑀0 = 0, 𝑀(1/2) =

𝑀1 = 1, 𝑥 ⊓ 𝑦 = min(𝑥, 𝑦), 𝑥 ⊔ 𝑦 = max(𝑥, 𝑦), and
𝑥 → 𝑦 = {

0, 𝑥>𝑦

1, 𝑥≤𝑦
, 𝑥, 𝑦 ∈ {0, 1/2, 1}. Then 𝑇 is an algebra

of type (¬, ⊓, ⊔, 𝐿,𝑀, → ), which is called 3-valued pre-rough
logic system, denoted byT.

A valuation of V : 𝐹(𝑆) → T is a homomorphism of type
(¬, ⊓, ⊔, 𝐿,𝑀, → ), and V(𝐴) is the valuation of𝐴with respect
to V. The set consisting of all valuations of 𝐹(𝑆) is denoted by
Ω
3
.

Suppose that logic formula 𝐴(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
) contains 𝑛

atomic formulas in 𝐹(𝑆), and then 𝐴 can induce a 3-value
function 𝑓

𝐴
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) : 𝐿
𝑛

3
→ 𝐿
3
, where 𝑓

𝐴
(𝑥
1
, 𝑥
2
, . . . ,

𝑥
𝑛
) is making 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
composed together by operators

¬, ⊓, and 𝐿, which is similar to the formula 𝐴(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
)

that makes 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
composed together by connective

¬, ⊓, and 𝐿. For example, a formula 𝐴 = 𝑝 ⊓ (𝑞 → (𝑟 ⊔ ¬𝑝))

can induce the function 𝑓
𝐴
(𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝑥
1
⊓ (𝑥
2
→ (𝑥

3
⊔

¬𝑥
1
)), where 𝑥

1
, 𝑥
2
, and 𝑥

3
can be any value in 𝐿

3
. In this

way, for each V ∈ Ω
3
, V(𝐴) = 𝑓

𝐴
(V(𝑝
1
), V(𝑝
2
), . . . , V(𝑝

𝑛
)), so

for each formula 𝐴, we can induce a function 𝑓
𝐴
according

to 𝐴, which is called the induced function of 𝐴. From the
definition of tautology, we can get that if 𝐴 is a tautology if
and only if its induced function 𝑓

𝐴
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 1 holds

for all (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝐿
𝑛

3
.

Definition 8. let 𝐴(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
) ∈ 𝐹(𝑆) contain 𝑛 atom-

ic formulas in 3-valued pre-rough logic system and let

𝑓
𝐴
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) be the induced function of 𝐴, and then

𝜏(𝐴) which is the truth degree of 𝐴 is defined as

𝜏 (𝐴) =
1

3𝑛
×

𝑓
−1

𝐴
(1)

, (4)

where |𝑓
−1

𝐴
(1)| is the number of valuations satisfying

𝑓
𝐴
(V(𝑝
1
), V(𝑝
2
), . . . , V(𝑝

𝑛
)) = 1.

Define 𝜏(𝑀𝐴)(𝜏(𝐿𝐴)) as the upper (lower) truth degree
of 𝐴, denoted by 𝜏(𝐴)(𝜏(𝐴)).

Remark 9. Thedefinition of truth degree in the paper is given
by considering the proportion of the valuation satisfying
V(𝐴) = 1 with respect to all valuations for formula 𝐴, but in
[24], the truth degree of formula𝐴 is not only has correlation
with the valuation satisfying V(𝐴) = 1, but also has correlation
with the valuation satisfying V(𝐴) = 1/2, so the truth degree’s
definition in [24] is obtained by considering the proportion of
all valuations of formula𝐴. We know that in fuzzy reasoning,
for convenience and utility, logical OR operator usually uses
max operator and logical AND operator usually uses min
operator, and like this, the definition in this paper is more
simple and more easy to compute; moreover, in the following
we can see that many properties hold on this definition.

Remark 10. (i) Let 𝐴 = 𝐴(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
) ∈ 𝐹(𝑆), and for all

V ∈ Ω
3
, we have V(𝑀𝐴) = 1 if and only if V(𝐴) = 1, with

solving 𝜏(𝐴)

𝜏 (𝐴) =
1

3𝑛


𝑓
−1

𝑀𝐴
(1)

=
1

3𝑛
(


𝑓
−1

𝐴
(
1

2
)


+

𝑓
−1

𝐴
(1)

) . (5)

(ii) In the same way we can get the following:

𝜏 (𝐴) =
1

3𝑛


𝑓
−1

𝐿𝐴
(1)

=
1

3𝑛


𝑓
−1

𝐴
(1)

. (6)

Remark 11. It is clear that 0 ≤ 𝜏(𝐴)(𝜏(𝐴), 𝜏(𝐴)) ≤ 1 holds for
every𝐴 ∈ 𝐹(𝑆). Moreover, logically equivalent formulas have
the same truth degree.

Proposition 12. Let (𝜏, 𝜏) 𝜏 be (upper, lower) truth degree.
Then

(i) 0 ≤ 𝜏(𝐴) = 𝜏(𝐴) ≤ 𝜏(𝐴) ≤ 1,
(ii) 𝜏(𝐴) = 𝜏(𝑀𝐴), 𝜏(𝐴) = 𝜏(𝐿𝐴),
(iii) 𝜏(𝐴) = 1 if and only if 𝐴 is a theorem in pre-rough

logic,
𝜏(𝐴) = 1 if and only if𝑀𝐴 is a theorem in pre-rough
logic,
𝜏(𝐴) = 1 if and only if 𝐿𝐴 is a theorem in pre-rough
logic,

(iv) 𝜏(¬𝐴) = 𝜏(¬𝐴) = 1 − 𝜏(𝐴),
(v) if ⊢ 𝑀𝐴 → 𝑀𝐵, then 𝜏(𝐴) ≤ 𝜏(𝐵),

if ⊢ 𝐿𝐴 → 𝐿𝐵, then 𝜏(𝐴) ≤ 𝜏(𝐵),
if ⊢ 𝐴 → 𝐵, then 𝜏(𝐴) ≤ 𝜏(𝐵), 𝜏(𝐴) ≤ 𝜏(𝐵), and
𝜏(𝐴) ≤ 𝜏(𝐵),
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(vi) 𝜏(𝐴 ⊔ 𝐵) = 𝜏(𝐴) + 𝜏(𝐵) − 𝜏(𝐴 ⊓ 𝐵),

𝜏(𝐴 ⊔ 𝐵) = 𝜏(𝐴) + 𝜏(𝐵) − 𝜏(𝐴 ⊓ 𝐵),

𝜏(𝐴 ⊔ 𝐵) = 𝜏(𝐴) + 𝜏(𝐵) − 𝜏(𝐴 ⊓ 𝐵).

Theorem 13 (truth degree of𝑀𝑃 rules). Let 𝐴, 𝐵, 𝐶 ∈ 𝐹(𝑆).

(i) If 𝜏(𝐴) ≥ 𝛼, 𝜏(𝐴 → 𝐵) ≥ 𝛽, then 𝜏(𝐵) ≥ 𝛼 + 𝛽 − 1.

(ii) If 𝜏(𝐴) ≥ 𝛼, 𝜏(𝐴 → 𝐵) ≥ 𝛽, then 𝜏(𝐵) ≥ 𝛼 + 𝛽 − 1.

(iii) If 𝜏(𝐴) ≥ 𝛼, 𝜏(𝐴 → 𝐵) ≥ 𝛽, then 𝜏(𝐵) ≥ 𝛼 + 𝛽 − 1.

Proof. (i) 𝜏(𝐴) = (1/3𝑛) × |𝑓−1
𝐴
(1)| ≥ 𝛼, and then |𝑓−1

𝐴
(1)| ≥

3
𝑛
⋅ 𝛼.
𝜏(𝐴 → 𝐵) = (1/3

𝑛
) × |𝑓

−1

𝐴→𝐵
(1)| ≥ 𝛽, and then

|𝑓
−1

𝐴→𝐵
(1)| ≥ 3

𝑛
⋅ 𝛽.

Let𝑋 = 𝐴, 𝑌 = 𝐴 → 𝐵.
Because |𝑓−1

𝑋⊓𝑌
(1)| = |𝑓

−1

𝑋
(1)| + |𝑓

−1

𝑌
(1)| − |𝑓

−1

𝑋⊔𝑌
(1)| ≥

3
𝑛
⋅ 𝛼 + 3

𝑛
⋅ 𝛽 − 3

𝑛.
So we should prove |𝑓−1

𝑋⊓𝑌
(1)| ≤ |𝑓

−1

𝐵
(1)|, with V(𝑋⊓𝑌) =

V(𝐴 ⊓ (𝐴 → 𝐵)) = V(𝐴 ⊓ (¬𝑀𝐴 ⊔ 𝑀𝐵) ⊓ (¬𝐿𝐴 ⊔ 𝐿𝐵)).
In order to make V(𝑋 ⊓ 𝑌) = 1 hold, then V(𝐴 ⊓ (¬𝑀𝐴 ⊔

𝑀𝐵) ⊓ (¬𝐿𝐴 ⊔ 𝐿𝐵)) = 1 should hold. That means, V(𝐴) = 1,
V(¬𝑀𝐴 ⊔𝑀𝐵) = 1, and V(¬𝐿𝐴 ⊔ 𝐿𝐵) = 1 should hold. So it
must be V(𝐴) = 1 and V(𝐵) = 1.

So, if V(𝐴 ⊓ 𝐵) = 1, then V(𝐴) = 1 and V(𝐵) = 1; from
the above analysis we have V(𝑋 ⊓ 𝑌) = 1; that is, |𝑓−1

𝑋⊓𝑌
(1)| =

|𝑓
−1

𝐴⊓𝐵
(1)|.

With ⊢ 𝐴 ⊓ 𝐵 → 𝐵 being in pre-rough logic, so we have
𝑓
−1

𝐴⊓𝐵
(1) ⊆ 𝑓

−1

𝐵
(1); hence |𝑓−1

𝑋⊓𝑌
(1)| ≤ |𝑓

−1

𝐵
(1)|, and we get

|𝑓
−1

𝐵
(1)| ≥ 3

𝑛
⋅ 𝛼+3

𝑛
⋅ 𝛽−3

𝑛, so 𝜏(𝐵) = |𝑓−1
𝐵
(1)|/3

𝑛
≥ 𝛼+𝛽−1

holds.
(ii) 𝜏(𝐴) = (1/3𝑛) × |𝑓−1

𝑀𝐴
(1)| ≥ 𝛼, and then |𝑓−1

𝑀𝐴
(1)| ≥

3
𝑛
⋅ 𝛼.
𝜏(𝐴 → 𝐵) = 𝜏(𝑀(𝐴 → 𝐵)) = (1/3

𝑛
) × |𝑓

−1

𝑀(𝐴→𝐵)
(1)| =

(1/3
𝑛
) × |𝑓

−1

𝐴→𝐵
(1)| ≥ 𝛽, and then |𝑓−1

𝐴→𝐵
(1)| ≥ 3

𝑛
⋅ 𝛽.

Let𝑋 = 𝑀𝐴, 𝑌 = 𝐴 → 𝐵.
Because |𝑓−1

𝑋⊓𝑌
(1)| = |𝑓

−1

𝑋
(1)| + |𝑓

−1

𝑌
(1)| − |𝑓

−1

𝑋⊔𝑌
(1)| ≥

3
𝑛
⋅ 𝛼 + 3

𝑛
⋅ 𝛽 − 3

𝑛.
So we shouldmove |𝑓−1

𝑋⊓𝑌
(1)| ≤ |𝑓

−1

𝑀𝐵
(1)|, with V(𝑋⊓𝑌) =

V(𝑀𝐴 ⊓ (𝐴 → 𝐵)) = V(𝑀𝐴) ⊓ V(𝐴 → 𝐵), in order to make
V(𝑋 ⊓ 𝑌) = 1 hold, then V(𝑀𝐴) = 1 and V(𝐴 → 𝐵) = 1

should hold. By definition to get V(𝑀𝐴) = 1 and V(𝐴) ≤ V(𝐵),
|𝑓
−1

𝑋⊓𝑌
(1)| = |(V(𝐴) = 1/2, V(𝐵) = 1/2), (V(𝐴) = 1/2, V(𝐵) =

1), (V(𝐴) = 1, V(𝐵) = 1)|, being, |𝑓−1
𝑀𝐴⊓𝑀𝐵

(1)| = |(V(𝑀𝐴) =
1, V(𝑀𝐵) = 1)| = |(V(𝐴) = 1/2, V(𝐵) = 1/2), (V(𝐴) =

1/2, V(𝐵) = 1), (V(𝐴) = 1, V(𝐵) = 1/2), (V(𝐴) = 1, V(𝐵) = 1)|.
So |𝑓

−1

𝑋⊓𝑌
(1)| ≤ |𝑓

−1

𝑀𝐴⊓𝑀𝐵
(1)|, and |𝑓

−1

𝑀𝐴⊓𝑀𝐵
(1)| ≤

|𝑓
−1

𝑀𝐵
(1)|.
Hence, |𝑓−1

𝑋⊓𝑌
(1)| ≤ |𝑓

−1

𝑀𝐵
(1)|.

We have |𝑓−1
𝑀𝐵
(1)| ≥ 3

𝑛
⋅ 𝛼 + 3

𝑛
⋅ 𝛽 − 3

𝑛.
So 𝜏(𝐵) ≥ 𝛼 + 𝛽 − 1.
(iii) From (6), we have 𝜏(𝐴) = 𝜏(𝐴), 𝜏(𝐴 → 𝐵) =

𝜏(𝐴 → 𝐵), and 𝜏(𝐵) = 𝜏(𝐵), and then 𝜏(𝐵) ≥ 𝛼 + 𝛽 − 1

holds obviously.

Corollary 14. Let 𝐴, 𝐵, 𝐶 ∈ 𝐹(𝑆).

(i) If 𝜏(𝐴) = 1, 𝜏(𝐴 → 𝐵) = 1, then 𝜏(𝐵) = 1.
(ii) If 𝜏(𝐴) = 1, 𝜏(𝐴 → 𝐵) = 1, then 𝜏(𝐵) = 1.
(iii) If 𝜏(𝐴) = 1, 𝜏(𝐴 → 𝐵) = 1, then 𝜏(𝐵) = 1.

Theorem 15 (truth degree of𝐻𝑆 rules). Let 𝐴, 𝐵, 𝐶 ∈ 𝐹(𝑆).

(i) If 𝜏(𝐴 → 𝐵) ≥ 𝛼, 𝜏(𝐵 → 𝐶) ≥ 𝛽, then 𝜏(𝐴 → 𝐶) ≥

𝛼 + 𝛽 − 1.
(ii) If 𝜏(𝐴 → 𝐵) ≥ 𝛼, 𝜏(𝐵 → 𝐶) ≥ 𝛽, then 𝜏(𝐴 → 𝐶) ≥

𝛼 + 𝛽 − 1.
(iii) If 𝜏(𝐴 → 𝐵) ≥ 𝛼, 𝜏(𝐵 → 𝐶) ≥ 𝛽, then 𝜏(𝐴 → 𝐶) ≥

𝛼 + 𝛽 − 1.

Proof. (i) 𝜏(𝐴 → 𝐵) = (1/3
𝑛
) × |𝑓

−1

𝐴→𝐵
(1)| ≥ 𝛼, so

|𝑓
−1

𝐴→𝐵
(1)| ≥ 3

𝑛
⋅ 𝛼.

𝜏(𝐵 → 𝐶) = (1/3
𝑛
) × |𝑓

−1

𝐵→𝐶
(1)| ≥ 𝛽, so |𝑓−1

𝐵→𝐶
(1)| ≥

3
𝑛
⋅ 𝛽.
𝜏(𝐴 → 𝐶) = (1/3

𝑛
) × |𝑓

−1

𝐴→𝐶
(1)|.

Let 𝐸 = 𝑓−1
𝐴→𝐵

(1) = {V ∈ Ω
3
| V((¬𝑀𝐴 ⊔𝑀𝐵) ⊓ (¬𝐿𝐴 ⊔

𝐿𝐵)) = 1},𝐹 = 𝑓−1
𝐵→𝐶

(1) = {V ∈ Ω
3
| V((¬𝑀𝐵⊔𝑀𝐶)⊓(¬𝐿𝐵⊔

𝐿𝐶)) = 1}, and 𝐺 = 𝑓−1
𝐴→𝐶

(1) = {V ∈ Ω
3
| V((¬𝑀𝐴 ⊔𝑀𝐶) ⊓

(¬𝐿𝐴 ⊔ 𝐿𝐶)) = 1}.
Let 𝐸
𝑖
⊆ 𝐸, 𝐹

𝑖
⊆ 𝐹, 𝐺

𝑖
⊆ 𝐺, (𝑖 = 1, 2), 𝐸

1
= {V ∈ Ω

3
|

V(¬𝑀𝐴 ⊔ 𝑀𝐵) = 1}; 𝐸
2
= {V ∈ Ω

3
| V(¬𝐿𝐴 ⊔ 𝐿𝐵) = 1};

𝐹
1
= {V ∈ Ω

3
| V(¬𝑀𝐵 ⊔𝑀𝐶) = 1}; 𝐹

2
= {V ∈ Ω

3
| V(¬𝐿𝐵 ⊔

𝐿𝐶) = 1}; 𝐺
1
= {V ∈ Ω

3
| V(¬𝑀𝐴 ⊔ 𝑀𝐶) = 1}; 𝐺

2
= {V ∈

Ω
3
| V(¬𝐿𝐴 ⊔ 𝐿𝐶) = 1}, and then 𝜏(𝐴 → 𝐵) = |𝐸|/3

𝑛,
𝜏(𝐵 → 𝐶) = |𝐹|/3

𝑛, 𝜏(𝐴 → 𝐶) = |𝐺|/3
𝑛. So we should

prove |𝐸| + |𝐹| ≤ 3𝑛 + |𝐺|, with |𝐸| + |𝐹| = |𝐸 ∪ 𝐹| + |𝐸 ∩ 𝐹|.
We first prove 𝐸 ∩ 𝐹 ⊆ 𝐺.
Let 𝑥 ∈ 𝐸∩𝐹, then 𝑥 ∈ 𝐸

𝑖
, 𝐹
𝑖
(𝑖 = 1, 2), from the structure

of 𝐸
𝑖
, 𝐹
𝑖
we prove 𝐸 ∩ 𝐹 ≤ 𝐺 in the following two cases.

Case 1. Let 𝑥 ∈ {V ∈ Ω
3
| V(𝐿𝐵) = 1}, and then we can get

𝑥 ∈ {V ∈ Ω
3
| V(𝑀𝐵) = 1}, with 𝑥 ∈ 𝐹

1
, so 𝑥 ∈ {V ∈ Ω

3
|

V(𝑀𝐶) = 1}, that is to say, 𝑥 ∈ 𝐺
1
; with 𝑥 ∈ 𝐹

2
, 𝑥 ∈ {V ∈ Ω

3
|

V(𝐿𝐶) = 1}, that is, 𝑥 ∈ 𝐺
2
. Hence 𝑥 ∈ 𝐺

1
∩ 𝐺
2
= 𝐺.

Case 2. Let 𝑥 ∉ {V ∈ Ω
3
| V(𝐿𝐵) = 1}, in this case we prove

𝐸 ∩ 𝐹 ≤ 𝐺 in the following two cases.

(1) If 𝑥 ∈ {V ∈ Ω
3
| V(𝑀𝐵) = 1}, with 𝑥 ∈ 𝐹

1
, so 𝑥 ∈

{V ∈ Ω
3
| V(𝑀𝐶) = 1}, that is, 𝑥 ∈ 𝐺

1
; with 𝑥 ∈ 𝐸

2
,

𝑥 ∈ {V ∈ Ω
3
| ¬V(𝐿𝐴) = 1}, that is, 𝑥 ∈ 𝐺

2
. Hence

𝑥 ∈ 𝐺
1
∩ 𝐺
2
= 𝐺.

(2) If 𝑥 ∉ {V ∈ Ω
3
| V(𝑀𝐵) = 1}, with 𝑥 ∈ 𝐸

1
, so 𝑥 ∈

{V ∈ Ω
3
| V(¬𝑀𝐴) = 1}, that is, 𝑥 ∈ 𝐺

1
; with 𝑥 ∈ 𝐸

2
,

𝑥 ∈ 𝐺
2
. Hence 𝑥 ∈ 𝐺

1
∩ 𝐺
2
= 𝐺.

So we have 𝐸 ∩ 𝐹 ⊆ 𝐺 ⇒ |𝐸 ∩ 𝐹| ≤ |𝐺|.
With |𝐸| + |𝐹| = |𝐸 ∪𝐹| + |𝐸 ∩𝐹| and |𝐸 ∪𝐹| ≤ 3𝑛, we can

get

|𝐸| + |𝐹| = |𝐸 ∪ 𝐹| + |𝐸 ∩ 𝐹| ≤ 3
𝑛
+ |𝐺| . (7)

That is, |𝑓−1
𝐴→𝐵

(1)| + |𝑓
−1

𝐵→𝐶
(1)| ≤ 3

𝑛
+ |𝑓
−1

𝐴→𝐶
(1)|.

So 𝜏(𝐴 → 𝐵) + 𝜏(𝐵 → 𝐶) ≤ 1 + 𝜏(𝐴 → 𝐶), and hence
𝜏(𝐴 → 𝐶) ≥ 𝛼 + 𝛽 − 1 holds.
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(ii) From the definition, with V(𝑀(𝐴 → 𝐵)) = V(𝐴 →

𝐵), V(𝑀(𝐵 → 𝐶)) = V(𝐵 → 𝐶), V(𝑀(𝐴 → 𝐶)) = V(𝐴 →

𝐶), so 𝜏(𝐴 → 𝐶) ≥ 𝛼 + 𝛽 − 1 holds obviously.
(iii) From the definition, with V(𝐿(𝐴 → 𝐵)) = V(𝐴 →

𝐵), V(𝐿(𝐵 → 𝐶)) = V(𝐵 → 𝐶), V(𝐿(𝐴 → 𝐶)) = V(𝐴 → 𝐶),
so 𝜏(𝐴 → 𝐶) ≥ 𝛼 + 𝛽 − 1 holds obviously.

Corollary 16. Let 𝐴, 𝐵, 𝐶 ∈ 𝐹(𝑆). If 𝜏(𝐴 → 𝐵) = 1, 𝜏(𝐵 →

𝐶) = 1, then 𝜏(𝐴 → 𝐶) = 1.

4. Similarity Degree and
a Pseudometric among Formulas

Definition 17. Suppose that 𝐴, 𝐵 ∈ 𝐹(𝑆). Let

𝜉 (𝐴, 𝐵) = 𝜏 ((𝐴 → 𝐵) ⊓ (𝐵 → 𝐴)) , (8)

𝜉 (𝐴, 𝐵) = 𝜏 ((𝑀𝐴 → 𝑀𝐵) ⊓ (𝑀𝐵 → 𝑀𝐴)) , (9)

𝜉 (𝐴, 𝐵) = 𝜏 ((𝐿𝐴 → 𝐿𝐵) ⊓ (𝐿𝐵 → 𝐿𝐴)) . (10)

Then one calls (𝜉(𝐴, 𝐵), 𝜉(𝐴, 𝐵))𝜉(𝐴, 𝐵) the (upper, lower)
similarity degree between 𝐴 and 𝐵.

Example 18. Let𝐴 = 𝑝,𝐵 = 𝑞, where𝑝, 𝑞 are different atomic
formulas, and calculate 𝜉(𝐴, 𝐵), 𝜉(𝐴, 𝐵), 𝜉(𝐴, 𝐵).

Solution 1. Consider

𝜉 (𝐴, 𝐵) = 𝜉 (𝑝, 𝑞) = 𝜏 ((𝑝 → 𝑞) ⊓ (𝑝 → 𝑞))

=
1

32
⋅

𝑓
−1

(𝑝→𝑞)⊓(𝑞→𝑝)
(1)

.

(11)

With 𝑓−1
(𝑝→𝑞)⊓(𝑞→𝑝)

(1) = {(0, 0), (1/2, 1/2), (1, 1)}, so 𝜉(𝐴,
𝐵) = 3/3

2
= 1/3. Consider

𝜉 (𝐴, 𝐵) = 𝜉 (𝑝, 𝑞) = 𝜏 ((𝑀𝑝 → 𝑀𝑞) ⊓ (𝑀𝑝 → 𝑀𝑞))

=
1

32
⋅

𝑓
−1

(𝑀𝑝→𝑀𝑞)⊓(𝑀𝑞→𝑀𝑝)
(1)

.

(12)

With 𝑓−1
(𝑀𝑝→𝑀𝑞)⊓(𝑀𝑞→𝑀𝑝)

(1) = {(0, 0), (1/2, 1/2), (1/2,

1), (1, 1/2), (1, 1)}, so 𝜉(𝐴, 𝐵) = 5/32 = 5/9.
Similarly, we can obtain 𝜉(𝐴, 𝐵) = 5/9.

Proposition 19. Suppose that 𝐴, 𝐵, 𝐶 ∈ 𝐹(𝑆), and then

(i) 𝜉(𝐴, 𝐵) = 𝜉(𝑀𝐴,𝑀𝐵), 𝜉(𝐴, 𝐵) = 𝜉(𝐿𝐴, 𝐿𝐵),
(ii) 𝜉(𝐴, 𝐵) = 1 if and only if ⊢ 𝐴 ↔ 𝐵,

𝜉(𝐴, 𝐵) = 1 if and only if ⊢ 𝑀𝐴 ↔ 𝑀𝐵,

𝜉(𝐴, 𝐵) = 1 if and only if ⊢ 𝐿𝐴 ↔ 𝐿𝐵,
(iii) 𝜉(𝐴, 𝐵) + 𝜉(𝐵, 𝐶) ≤ 𝜉(𝐴, 𝐶) + 1,

𝜉(𝐴, 𝐵) + 𝜉(𝐵, 𝐶) ≤ 𝜉(𝐴, 𝐶) + 1,

𝜉(𝐴, 𝐵) + 𝜉(𝐵, 𝐶) ≤ 𝜉(𝐴, 𝐶) + 1,

(iv) 𝜉(𝐴, 𝐵) = 0 if and only if ⊢ 𝑀𝐴 ↔ ¬𝑀𝐵,

𝜉(𝐴, 𝐵) = 0 if and only if ⊢ 𝐿𝐴 ↔ ¬𝐿𝐵,

(v) 𝜉(𝐴, 𝐵) = 𝜉(𝐵, 𝐴), 𝜉(𝐴, 𝐵) = 𝜉(𝐵, 𝐴), 𝜉(𝐴, 𝐵) = 𝜉(𝐵,
𝐴).

Proof. The proof of (i), (ii), and (v) is obvious; we only give
the proof of (iii) and (iv).

(iii) In general, assume that 𝐴, 𝐵, and 𝐶 have the same
atomic formulas 𝑝

1
, . . . , 𝑝

𝑛
.

Let 𝐸 = 𝑓
−1

(𝐴→𝐵)⊓(𝐵→𝐴)
(1), 𝐹 = 𝑓

−1

(𝐵→𝐶)⊓(𝐶→𝐵)
(1), and

𝐺 = 𝑓
−1

(𝐴→𝐶)⊓(𝐶→𝐴)
(1).

Then 𝜉(𝐴, 𝐵) + 𝜉(𝐵, 𝐶) = |𝐸|/3𝑛 + |𝐹|/3𝑛, 𝜉(𝐴, 𝐵) + 1 =
|𝐺|/3
𝑛
+ 1.

And with 𝐸∩𝐹 ⊆ 𝐺, we have |𝐸|+ |𝐹| = |𝐸∪𝐹|+ |𝐸∩𝐹| ≤
3
𝑛
+ |𝐺|; that is,


𝑓
−1

(𝐴→𝐵)⊓(𝐵→𝐴)
(1)

+

𝑓
−1

(𝐵→𝐶)⊓(𝐶→𝐵)
(1)


≤ 3
𝑛
+

𝑓
−1

(𝐴→𝐶)⊓(𝐶→𝐴)
(1)

.

(13)

Hence, 𝜉(𝐴, 𝐵) + 𝜉(𝐵, 𝐶) ≤ 𝜉(𝐴, 𝐶) + 1.
The proof of the other inequalities can be obtained in a

similar way.
(iv) From (9), we can get 𝜉(𝐴, 𝐵) = 0 ⇔ 𝜏((𝑀𝐴 →

𝑀𝐵) ⊓ (𝑀𝐵 → 𝑀𝐴)) = 0,

⇔ for all V ∈ Ω
3
, V((𝑀𝐴 → 𝑀𝐵)⊓(𝑀𝐵 → 𝑀𝐴)) =

0,
⇔ for all V ∈ Ω

3
, V((𝑀𝐴 → 𝑀𝐵)) = 0 or V((𝑀𝐵 →

𝑀𝐴)) = 0,
⇔ for all V ∈ Ω

3
, V(𝑀𝐴) = ¬V(𝑀𝐵),

⇔ for all V ∈ Ω
3
, V(𝑀𝐴) = V(¬𝑀𝐵),

⇔⊢ 𝑀𝐴 ↔ ¬𝑀𝐵.

In the same way, we can get 𝜉(𝐴, 𝐵) = 0 if and only if
⊢ 𝐿𝐴 ↔ ¬𝐿𝐵.

Definition 20. Suppose that𝐴, 𝐵 ∈ 𝐹(𝑆), and𝐴 and 𝐵 are said
to be similar if 𝜉(𝐴, 𝐵) = 1.

Definition 20 gives a similarity relation in 𝐹(𝑆), and we
can easily get the following corollary from Proposition 19.

Corollary 21. The similarity relation among formulas is an
equivalent relation.

Proposition 22. Suppose that 𝐴, 𝐵, 𝐴, 𝐵 ∈ 𝐹(𝑆) and 𝜉(𝐴,
𝐴

) ≥ 𝛼, 𝜉(𝐵, 𝐵


) ≥ 𝛽, and then

𝜉 (𝐴 → 𝐵,𝐴

→ 𝐵


) ≥ 𝛼 + 𝛽 − 1. (14)

Proof. Let 𝐶 = (𝐴

→ 𝐴) → ((𝐴 → 𝐵) → (𝐴


→ 𝐵)),

which is a tautology in 3-valued pre-rough logic and hence
𝜏(𝐶) = 1. Moreover, 𝜏(𝐴 → 𝐴) ≥ 𝜉(𝐴, 𝐴


) ≥ 𝛼, and hence

it follows from Theorem 13(i) that 𝜏((𝐴 → 𝐵) → (𝐴

→

𝐵)) ≥ 𝛼+1−1 = 𝛼. Similarly 𝜏((𝐴 → 𝐵) → (𝐴 → 𝐵)) ≥ 𝛼.
It follows that 𝜉(𝐴 → 𝐵,𝐴


→ 𝐵) ≥ 𝛼. On the other hand, it
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can be proved from 𝜉(𝐵, 𝐵

) ≥ 𝛽 that 𝜉(𝐴 → 𝐵,𝐴


→ 𝐵

) ≥

𝛽. From Proposition 19(iii) 𝜉(𝐴 → 𝐵,𝐴

→ 𝐵

) ≥ 𝛼 + 𝛽 − 1

holds.

Definition 23. Define three nonnegative functions 𝜌, 𝜌, 𝜌 :

𝐹(𝑆) × 𝐹(𝑆) → [0, 1] as follows: for all 𝐴, 𝐵 ∈ 𝐹(𝑆),

𝜌 (𝐴, 𝐵) = 1 − 𝜉 (𝐴, 𝐵) ,

𝜌 (𝐴, 𝐵) = 1 − 𝜉 (𝐴, 𝐵) ,

𝜌 (𝐴, 𝐵) = 1 − 𝜉 (𝐴, 𝐵) .

(15)

Then 𝜌, (𝜌, 𝜌) is called the pseudometrics on the set of rough
formulas in pre-rough logic.

Proposition 24 is obviously and which can state 𝜌, 𝜌, 𝜌 are
indeed the pseudometrics on the set of rough formulas in pre-
rough logic.

Proposition 24. Let 𝜌, 𝜌, and 𝜌 be the three nonnegative
functions defined in the above definition, and then for all𝐴, 𝐵 ∈
𝐹(𝑆)

(1) 𝜌 (𝐴, 𝐴) = 𝜌 (𝐴, 𝐴) = 𝜌 (𝐴, 𝐴) = 0.

(2) 𝜌 (𝐴, 𝐵) = 𝜌 (𝐵, 𝐴) ,

𝜌 (𝐴, 𝐵) = 𝜌 (𝐵, 𝐴) ,

𝜌 (𝐴, 𝐵) = 𝜌 (𝐵, 𝐴) .

(3) 𝜌 (𝐴, 𝐶) ≤ 𝜌 (𝐴, 𝐵) + 𝜌 (𝐵, 𝐶) ,

𝜌 (𝐴, 𝐶) ≤ 𝜌 (𝐴, 𝐵) + 𝜌 (𝐵, 𝐶) ,

𝜌 (𝐴, 𝐶) ≤ 𝜌 (𝐴, 𝐵) + 𝜌 (𝐵, 𝐶) .

(16)

Theorem 25. The operators ¬, 𝐿, and ⊓ are continuous on
(𝐹(𝑆), 𝜌).

Proof. Suppose that 𝐴, 𝐵 ∈ 𝐹(𝑆), 𝜀 > 0, and 𝜌(𝐴, 𝐵) < 𝜀, and
then𝜌(¬𝐴, ¬𝐵) = 1−𝜉(¬𝐴, ¬𝐵) = 1−𝜏((¬𝐴 → ¬𝐵)⊓(¬𝐵 →

¬𝐴)) = 1−𝜏((𝐵 → 𝐴)⊓(𝐴 → 𝐵)) = 1−𝜉(𝐴, 𝐵) = 𝜌(𝐴, 𝐵) <

𝜀. Hence ¬ : 𝐹(𝑆) → 𝐹(𝑆) is continuous.
Similarly, suppose that 𝐴, 𝐵 ∈ 𝐹(𝑆), 𝜀 > 0, and 𝜌(𝐴, 𝐵) <

𝜀, then 𝜌(𝐿𝐴, 𝐿𝐵) = 1 − 𝜉(𝐿𝐴, 𝐿𝐵) = 1 − 𝜏((𝐿𝐴 → 𝐿𝐵) ⊓

(𝐿𝐵 → 𝐿𝐴)) ≤ 1 − 𝜏((𝐴 → 𝐵) ⊓ (𝐵 → 𝐴)) = 1 − 𝜉(𝐴, 𝐵) =

𝜌(𝐴, 𝐵) ≤ 𝜀. Hence 𝐿 : 𝐹(𝑆) → 𝐹(𝑆) is continuous.
Suppose that 𝐴, 𝐵, 𝐴, 𝐵 ∈ 𝐹(𝑆) and 𝜌(𝐴, 𝐴) ≤ 𝜀/2,

𝜌(𝐵, 𝐵

) ≤ 𝜀/2, and then𝜌(𝐴⊓𝐵,𝐴⊓𝐵) = 1−𝜉(𝐴⊓𝐵, 𝐴⊓𝐵),

Being 𝜉(𝐴 ⊓ 𝐵, 𝐴 ⊓ 𝐵) + 𝜉(𝐵 ⊓ 𝐴, 𝐵 ⊓ 𝐴) = 𝜏(((𝐴 ⊓ 𝐵) →
(𝐴

⊓ 𝐵)) ⊓ ((𝐴


⊓ 𝐵) → (𝐴 ⊓ 𝐵))) + 𝜏(((𝐵 ⊓ 𝐴


) →

(𝐵

⊓𝐴

)) ⊓ ((𝐵


⊓𝐴

) → (𝐵⊓𝐴


))) ≥ 𝜏((𝐴 → 𝐴


) ⊓ (𝐴


→

𝐴))+𝜏((𝐵 → 𝐵

)⊓(𝐵

→ 𝐵))−1 ≥ 1−𝜀/2+1−𝜀/2−1 = 1−𝜀,

So 𝜉(𝐴⊓𝐵, 𝐴⊓𝐵) ≤ 1−(1−𝜀) = 𝜀. Hence 𝜌(𝐴⊓𝐵, 𝐴⊓𝐵) ≤ 𝜀
and ⊓ is continuous.

Remark 26. Since →, ⊔, 𝑀 are abbreviations of operators
¬, ⊓, 𝐿, so these operators are also continuous on (𝐹(𝑆), 𝜌).

5. Approximate Reasoning in
3-Valued Propositional Pre-Rough Logic

Definition 27. Let Γ ⊂ 𝐹(𝑆), for all 𝐴 ∈ 𝐹(𝑆), 𝜀 > 0, if
𝜌(𝐴,𝐷(Γ)) = inf{𝜌(𝐴, 𝐵) : 𝐵 ∈ 𝐷(Γ)} < 𝜀, 𝜌(𝐴,𝐷(Γ)) =

inf{𝜌(𝐴, 𝐵) : 𝐵 ∈ 𝐷(Γ)} < 𝜀, 𝜌(𝐴,𝐷(Γ)) = inf{𝜌(𝐴, 𝐵) : 𝐵 ∈
𝐷(Γ)} < 𝜀. Then we call 𝐴 an approximate rough (upper,
lower) consequence of Γ with I-type error less than 𝜀, respec-
tively. Denoted by 𝐴 ∈ 𝐷

1

𝜀
(Γ), 𝐴 ∈ 𝐷1

𝜀
(Γ), and 𝐴 ∈ 𝐷

1

𝜀
(Γ)

each other.

Definition 28. Let Γ ⊂ 𝐹(𝑆), for all 𝐴 ∈ 𝐹(𝑆), 𝜀 > 0, if 1 −
sup{𝜏(𝐵 → 𝐴) : 𝐵 ∈ 𝐷(Γ)} < 𝜀, 1 − sup{𝜏(𝑀𝐵 → 𝑀𝐴) :

𝐵 ∈ 𝐷(Γ)} < 𝜀, 1 − sup{𝜏(𝐿𝐵 → 𝐿𝐴) : 𝐵 ∈ 𝐷(Γ)} < 𝜀. Then
we call 𝐴 an approximate rough (upper, lower) consequence
of Γ with II-type error less than 𝜀, respectively. Denoted by
𝐴 ∈ 𝐷

2

𝜀
(Γ), 𝐴 ∈ 𝐷2

𝜀
(Γ), and 𝐴 ∈ 𝐷2

𝜀
(Γ) each other.

Definition 29. Let Γ ⊂ 𝐹(𝑆), for all 𝐴 ∈ 𝐹(𝑆), 𝜀 >

0, if inf{𝐻(𝐷(Γ), 𝐷(Σ)) | Σ ⊂ 𝐹(𝑆), Σ ⊢ 𝐴} <

𝜀, inf{𝐻(𝐷(Γ), 𝐷(Σ)) | Σ ⊂ 𝐹(𝑆), Σ ⊢ 𝐴} < 𝜀,
inf{𝐻(𝐷(Γ), 𝐷(Σ)) | Σ ⊂ 𝐹(𝑆), Σ ⊢ 𝐴} < 𝜀. Then we call 𝐴 an
approximate rough (upper, lower) consequence of Γ with III-
type error less than 𝜀, respectively. Denoted by 𝐴 ∈ 𝐷

3

𝜀
(Γ),

𝐴 ∈ 𝐷3
𝜀
(Γ), and 𝐴 ∈ 𝐷

3

𝜀
(Γ) each other, and 𝐻 is Hausdorff

distance.
Where (𝑋, 𝜌) is a metric space, 𝑈 and 𝑉 are nonempty

subsets on𝑋.

Let 𝜌(𝑥, 𝑉) = inf{𝜌(𝑥, 𝑦) : 𝑦 ∈ 𝑉}; 𝜌(𝑥, 𝑉) = inf{𝜌(𝑥,
𝑦) : 𝑦 ∈ 𝑉}; 𝜌(𝑥, 𝑉) = inf{𝜌(𝑥, 𝑦) : 𝑦 ∈ 𝑉}, 𝐻∗(𝑈, 𝑉) =
sup{𝜌(𝑥, 𝑉) : 𝑥 ∈ 𝑈};𝐻∗(𝑈, 𝑉) = sup{𝜌(𝑥, 𝑉) : 𝑥 ∈ 𝑈},

𝐻
∗
(𝑈, 𝑉) = sup{𝜌(𝑥, 𝑉) : 𝑥 ∈ 𝑈},

𝐻(𝑈,𝑉) = max(𝐻∗(𝑈, 𝑉),𝐻∗(𝑉, 𝑈)),
𝐻(𝑈,𝑉) = max(𝐻∗(𝑈, 𝑉),𝐻∗(𝑉, 𝑈)),
𝐻(𝑈,𝑉) = max(𝐻∗(𝑈, 𝑉),𝐻∗(𝑉, 𝑈)).

Theorem 30. Let Γ ⊂ 𝐹(𝑆), for all 𝐴 ∈ 𝐹(𝑆), 𝜀 > 0, and then

(i) 𝐴 ∈ 𝐷1
𝜀
(Γ) if and only if 𝐴 ∈ 𝐷2

𝜀
(Γ),

(ii) 𝐴 ∈ 𝐷1
𝜀
(Γ) if and only if 𝐴 ∈ 𝐷2

𝜀
(Γ),

(iii) 𝐴 ∈ 𝐷1
𝜀
(Γ) if and only if 𝐴 ∈ 𝐷2

𝜀
(Γ).

Proof. (i) Let 𝐴 ∈ 𝐷
1

𝜀
(Γ), and then we can get 𝜌(𝐴,𝐷(Γ)) =

inf{𝜌(𝐴, 𝐵) : 𝐵 ∈ 𝐷(Γ)} < 𝜀, for 𝜌(𝐴,𝐷(Γ)) = inf{𝜌(𝐴, 𝐵) :
𝐵 ∈ 𝐷(Γ)} ≤ inf{𝜌(𝐴, 𝐴⊔𝐵) : 𝐵 ∈ 𝐷(Γ)} = inf{1−𝜉(𝐴, 𝐴⊔𝐵) :
𝐵 ∈ 𝐷(Γ)} = inf{1 − 𝜏((𝐴 → 𝐴 ⊔ 𝐵) ⊓ (𝐴 ⊔ 𝐵 → 𝐴))} =

inf{1 − 𝜏(𝐵 → 𝐴)} = 1 − sup{𝜏(𝐵 → 𝐴)} < 𝜀, so 𝐴 ∈ 𝐷2
𝜀
(Γ).

Let 𝐴 ∈ 𝐷
2

𝜀
(Γ), and then we can get 1 − sup{𝜏(𝐵 → 𝐴) :

𝐵 ∈ 𝐷(Γ)} < 𝜀, namely sup{𝜏(𝐵 → 𝐴) : 𝐵 ∈ 𝐷(Γ)} > 1 − 𝜀.
For sup{𝜏(𝐵 → 𝐴) : 𝐵 ∈ 𝐷(Γ)} ≥ sup{𝜏((𝐵 → 𝐴) ⊓

(𝐴 → 𝐵)) : 𝐵 ∈ 𝐷(Γ)} = sup{𝜉(𝐵 → 𝐴) : 𝐵 ∈ 𝐷(Γ)} =

1 − inf{1 − 𝜉(𝐵 → 𝐴) : 𝐵 ∈ 𝐷(Γ)} = 1 − inf{𝜌(𝐴, 𝐵) : 𝐵 ∈
𝐷(Γ)} = 1 − 𝜌(𝐴,𝐷(Γ)) > 1 − 𝜀, hence 𝜌(𝐴,𝐷(Γ)) < 𝜀, so
𝐴 ∈ 𝐷

1

𝜀
(Γ).
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In conclusion, 𝐴 ∈ 𝐷
1

𝜀
(Γ) if and only if 𝐴 ∈ 𝐷

2

𝜀
(Γ) is

established.

The proof of (ii) and (iii) can be in a similar way as that of
(i).

Theorem 31. Let Γ ⊂ 𝐹(𝑆), for all 𝐴 ∈ 𝐹(𝑆), 𝜀 > 0, and then

(i) if 𝐴 ∈ 𝐷3
𝜀
(Γ), then 𝐴 ∈ 𝐷1

𝜀
(Γ);

(ii) if 𝐴 ∈ 𝐷3
𝜀
(Γ), then 𝐴 ∈ 𝐷1

𝜀
(Γ);

(iii) if 𝐴 ∈ 𝐷3
𝜀
(Γ), then 𝐴 ∈ 𝐷1

𝜀
(Γ).

Proof. (i) Let 𝐴 ∈ 𝐷3
𝜀
(Γ), and we can get inf{𝐻(𝐷(Γ), 𝐷(Σ)) |

Σ ⊂ 𝐹(𝑆), Σ ⊢ 𝐴} < 𝜀, so there exists Σ ⊂ 𝐹(𝑆) makes Σ ⊢ 𝐴
and 𝐻(𝐷(Γ), 𝐷(Σ)) < 𝜀 hold. At the same time 𝐴 ∈ 𝐷(Σ),
𝜌(𝐴,𝐷(Γ)) ≤ 𝐻(𝐷(Γ), 𝐷(Σ)) < 𝜀.

Hence we can get 𝐴 ∈ 𝐷1
𝜀
(Γ).

The proof of (ii) and (iii) can be in a similar way as that of
(i).

6. Conclusion

Through the basic method of quantitative logic, the theory
of truth degree in 3-valued pre-rough logic is studied in
this paper. Moreover, similarity degrees among formulas are
proposed and a pseudometric is defined therefrom on the
set of formulas, and hence a possible framework suitable for
developing approximate reasoning theory in 3-valued pre-
rough logic is established.

It is worthy to notice that the results obtained in the
present paper are based on the assumption that the proba-
bilities involved are evenly distributed, while it may happen
in real life that some propositions are considered more
important than others and hence should be endowed with
higher probabilities. Therefore, how to combine the method
of probability logic is an attractive research topic, and we can
find paper [21, 22] have give a possible way combine fuzzy
logic and probability logic.
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