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We improve the traditional integrated pest management (IPM) control strategies and formulate three specific management
strategies, which can be described by hybrid dynamical systems. These strategies can not only effectively control pests but also
reduce the abuse of pesticides and protect the natural enemies. The aim of this work is to study how the factors, such as natural
enemies optimum choice in the two kinds of different pests, timings of natural enemy releases, dosages and timings of insecticide
applications, and instantaneous killing rates of pesticides on both pests and natural enemies, can affect the success of IPM control
programmes. The results indicate that the pests outbreak period or frequency largely depends on the optimal selective feeding of
the natural enemy between one of the pests and the control tactics. Ultimately, we obtain the only pest 𝑥

2
needs to be controlled

below a certain threshold while not supervising pest 𝑥
1
.

1. Introduction

A pest is an insect which is detrimental to humans or
human concerns (as agriculture or livestock production).
In its broadest sense, a pest is a competitor of humanity.
Often insects are regarded as pests as they cause damage to
agriculture by feeding on crops or parasitizing livestock, such
as codlingmoth on apples or boll weevil on cotton. An animal
could also be a pest when it causes damage to a wild ecosys-
tem or carries germs within human habitats. Examples of
these include those organismswhich are vector-borne human
diseases, such as rats and fleas which carry the plague disease,
mosquitoes which are vector-borne malaria, and ticks which
carry Lyme disease. The most serious pests (in the order of
economic importance) are insects. Pesticides are chemicals
and other agents (e.g., beneficial microorganisms) that are
used to control or protect other organisms from insect
pests. To control these insect pests, farmers rely strongly on
intervention with chemical pesticides, which remain a sig-
nificant component of the cost of production and ecological
problems from pesticide resistance in key pests. In order
to address the issue, researchers are increasingly embracing
more components of the integrated pest management (IPM)
[1–6] systems approach that is always applied in ecology.

With the rise of interdisciplinary research, the mathematical
ecology has also emerged and developed rapidly. A variety
of mathematical methods can be used in ecological science.
There have been numerous publications [7–15] over the last
ten years using ecological mathematical model to research
IPM strategy (spraying pesticides and introducing additional
natural enemy into a pest-natural enemy system). When
we study the dynamic property between the pest and its
natural enemy (predator-prey), one of the most important
components of the predator-prey relationship is the so-
called functional responses. In [7–15], the Holling functional
responses and Beddington-DeAngelis functional response
are introduced. The Holling type extends the range of values
of 𝑥 and 𝑦 over which the feeding term is realistic. However,
in some situations, the increase of the feeding rate is not
proportional to the increase of the predator density, as a result
of mutual interference between predators, which decreases
the efficiency of predation [16]. In addition, it is shown that
most of the mathematical models on IPM include only one
pest and one natural enemy. In [1], Finch and Collier’s study
concerning IPM strategies in field vegetable crops focuses on
two key pests, the cabbage root fly (Delia radicum) and the
carrot fly (Psila rosae), the twomajor root feeding pests.Thus,
we consider a continuous three-level food web model with
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Beddington-DeAngelis functional response, which consists
of two competing pests (𝑥

1
and 𝑥

2
) and a natural enemy (𝑦),

and it can be represented as follows [17]:
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, and 𝑑 are positive (𝑖 = 1, 2). The prey 𝑥

𝑖
grows

with intrinsic growth rate 𝑎
𝑖
and carries capacity 𝐾

𝑖
in the

absence of the predator. The constant 𝑐
𝑖
is the interspecific

competition rate between the two prey species. The predator
𝑦 consumes the prey 𝑥

𝑖
with a functional response of

Beddington-DeAngelis type 𝐹
𝑖
(𝑥
1
, 𝑥
2
, 𝑦) and contributes to

its growth with rate 𝜔
𝑖
𝐹
𝑖
(𝑥
1
, 𝑥
2
, 𝑦). The constant 𝑑 is the

death rate of the predator, and the term, 𝑐𝑦, measures the
mutual interference between predators. The constants 𝛼

𝑖
(𝑖 =

1, 2) show the predation capacity of predators, and 𝑟 is the
saturating functional response parameters. The parameter 𝑏
is the predator’s relative preference on 𝑥

2
with respect to 𝑥

1
.

There are numbers of diagnostic tools to detect the
qualitative behavior of the system (1). We give a simple
investigation of the dynamics of the system (1) through con-
structing a bifurcation diagram using the software XPPAUT
[18]. To construct the bifurcation diagram,we use a numerical
integration with varying a key parameter and keeping other
parameters fixed; our choice of parameters is guided by
two assumptions: first, the system has to be biologically
feasible, and second, natural enemies have food preference
phenomenon [19]; that is, 𝛼

1
> 𝛼
2
or 𝛼
1

< 𝛼
2
in this

paper. The bifurcation diagram as a function of 𝛼
1
in the

range 0.3 < 𝛼
1

< 0.7 is drawn in Figure 1. As shown
in Figure 1, the thick black lines represent the stable limit
cycle, the black solid curves represent the stable equilibrium
state, and the black dashed curves represent the unstable
equilibrium state. When 𝛼

1
= 0.4601, system (1) undergoes

a Hopf bifurcation, where the stable focus becomes unstable
and a stable limit cycle emanates from it.When the parameter
𝛼
1
increases further, system (1) undergoes a Hopf bifurcation

again at 𝛼
1

= 0.5644, where an unstable focus becomes
stable and the other unstable focus is still unstable. When
𝛼
1
= 0.5698, a transcritical bifurcation appears, where the

stability of two focuses occurs in exchange. In Figure 2, we
fixed the parameter 𝛼

1
= 0.6000, and the other parameters

are the same as those in Figure 1. As we can see in Figure 2,
the pest 𝑥

1
tends to be extinct eventually due to the impact of

the food preference phenomenon of natural enemies before
recurrence of the next generation of pests, while the pest
𝑥
2
and natural enemies can coexist through stabilizing the

boundary equilibrium.
In order to manage pests through spraying pesticides

and introducing additional natural enemies (IPM strategy),

we apply the impulsive differential equations (IDE) [20–
22] to integrate system (1). In [13], the authors constructed
a predator-prey impulsive system to show the process of
releasing natural enemies periodically and spraying pesti-
cides twice at different fixed times in a period. The authors,
obviously, avoid the side effects of pesticides on natural
enemies existing in [7–9]. But only two pulses in a period
cannot effectively control pests. And most of the research
is single species of pests while few papers have discussed
multispecies of pests. However, most real pests communities
are more complex than the community previously analysed
by them. In the present paper, we make the following
improvements: (a) in the modeling, we introduce a one-
natural enemy and two-pest model, and the natural enemy
shows optimal foraging between pest 𝑥

1
and pest 𝑥

2
, which

is a well-known behavior of many predators [23]; (b) in the
control strategy, we can control two pests more selectively by
controlling pulse frequencies appropriately.

2. Model Formulation and Auxiliary Lemmas

Considering the previous factors, firstly, two models of dif-
ferent control strategies are discussed as follows.

Case 1. We suppose pesticides are sprayed several times in
a release period, and the kill rates of pesticides to pests (𝛿𝑖

𝑘
,

𝑖 = 1, 2) and natural enemies (𝛿3
𝑘
) are different in different

impulsive moments in a release period. That is, we consider
the following model:
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Figure 1: Bifurcation diagram of system (1) for 0.3 < 𝛼
1
< 0.7, where𝑋 = 𝑥

1
, 𝑌 = 𝑥

2
, 𝑍 = 𝑦, and 𝐴1 = 𝛼

1
and the initial value 𝑥
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Figure 2: Time series and phase portrait of system (1) with 𝛼
1
= 0.6000 and other parameters the same as Figure 1.
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𝑦 (𝑛𝑇
+
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(2)
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1
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2
, and natural enemy 𝑦 at time 𝑡 = 𝜏

𝑛𝑘
, respectively.

𝜃 represents natural enemy number of additional release at
𝑡 = 𝑛𝑇; 𝑇 is a release period; 𝜏

𝑛𝑘
is the 𝑘th spraying moment

in the 𝑛th release period. Other parameters are the same as
those in system (1).

Case 2. We suppose that the natural enemies are released
several times in a spraying period. The release number of
natural enemies (𝜃

𝑘
) and an effective kill rate to natural

enemies (𝜇
𝑘
) are different in different impulsive moments in

a spraying period. That is, we consider the following model:
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𝜇
𝑘
represents reduced proportion of natural enemies owing to

the delay effect of pesticides and eating the deleterious pests;
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represents natural enemy number of additional release at

𝑡 = 𝜆
𝑛𝑘
; 𝑇
1
is a spraying period; 𝜆

𝑛𝑘
is the 𝑘th releasing

moment in the spraying 𝑛th period. Other parameters are the
same as those in system (1).

Furthermore, some essential notations, definitions and
lemmas are given as follows.

Let 𝑅
+
= [0,∝) and 𝑅
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+
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+𝑥(𝑡) exist. The existence
and uniqueness of solutions of system (2) are guaranteed by
the smoothness of f (see [22]).

Lemma 1. Assume that x(𝑡) is a solution of system (2) with
x(0+) ≥ 0, then x(𝑡) ≥ 0 for 𝑡 ≥ 0.

Lemma 2 (see Lakshmikantham et al. [22]). Consider the
following impulsive differential inequalities:
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(5)

Remark 3. The previous definitions and lemmas may simi-
larly be applied in system (3).
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3. Dynamical Analysis of Case 1 and Its
Biological Implications

For Case 1, the basic properties of the following subsystem:

𝑑𝑦

𝑑𝑡

= −𝑑𝑦 (𝑡) , 𝑡 ̸= 𝑛𝑇, 𝑡 ̸= 𝜏
𝑛𝑘
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3
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, 𝑘 = 1, 2, . . . , 𝑞,

𝑦 (𝑡
+
) = 𝑦 (𝑡) + 𝜃, 𝑡 = 𝑛𝑇,

𝑦 (0
+
) = 𝑦
0

(6)

play a key role in analyzing the pest control.
It is shown in theAppendix that there exists a globally sta-

ble periodic solution 𝑦
𝑇
(𝑡) for the subsystem (6). Therefore,

the complete expression for the pest-eradication periodic
solution of system (6) over the (𝑛 − 1)th time interval (𝑛 −

1)𝑇 ≤ 𝑡 ≤ 𝑛𝑇 is given by (0, 0, 𝑦
𝑇
(𝑡)). Furthermore, if the

following threshold condition:

𝜆
𝑖
=

𝑞

∏

𝑘=1

(1 − 𝛿
𝑖

𝑘
) exp(𝑎

𝑖
𝑇 +

𝛼
𝑖
𝐵
1

𝑐𝑑

) < 1 (𝑖 = 1, 2) (7)

is satisfied, then the pest-eradication periodic solution
(0, 0, 𝑦

𝑇
(𝑡)) is globally asymptotically stable, where 𝑌

∗
=

𝜃/[1 − (1 − 𝛿
3

1
) ⋅ ⋅ ⋅ (1 − 𝛿

3

𝑞
)𝑒
−𝑑𝑇

] and

𝐵
1
= ln ((𝑟 + 𝑐𝑌

∗
𝑒
−𝑑𝑇/(𝑞+1)

) (𝑟 + 𝑐𝑌
∗
(1 − 𝛿

3

1
) 𝑒
−2𝑑𝑇/(𝑞+1)

)

⋅ ⋅ ⋅ (𝑟 + 𝑐𝑌
∗

𝑞

∏

𝑘=1

(1 − 𝛿
3

𝑘
) 𝑒
−𝑑𝑇

)

× ( (𝑟 + 𝑐𝑌
∗
) (𝑟 + 𝑐𝑌

∗
(1 − 𝛿

3

1
) 𝑒
−𝑑𝑇/(𝑞+1)

)

⋅ ⋅ ⋅ (𝑟+𝑐𝑌
∗

𝑞

∏

𝑘=1

(1 − 𝛿
3

𝑘
) 𝑒
−𝑑𝑞𝑇/(𝑞+1)

))

−1

) .

(8)

Denote 1−𝛿1
𝑘
= 𝛿
1
, 1−𝛿2
𝑘
= 𝛿
2
, and 1−𝛿3

𝑘
= 𝛿
3
, where 𝑘 =

1, 2, . . . , 𝑞. What we want to address in the following is how
control tactics including residual rates 𝛿

1
, 𝛿
2
, and 𝛿

3
release

constant 𝜃, timing of pesticide application 𝑞, and timing of
release period 𝑇 affect the threshold condition 𝜆

𝑖
. Firstly,

in the following section, we take Figure 2 as an example to
control pests by the control strategy of Case 1. It implies
that only the pest 𝑥

2
needs be eradicated. We firstly use the

traditional control method, spraying insecticides, in order to
know well the impact of insecticides on pests and natural
enemy species. In general, pesticides tend to be harmful to
most natural enemies [24], which may be associated with
the acute poisoning. It is significant to understand the acute
poisoning of insecticides to natural enemies for the research
of IPM strategy.

We only apply insecticides but we do not release natural
enemies as shown in Figure 3.The simulation results indicate
that pesticide applications (number of pesticide applications
𝑞 = 1 in a period shown in Figure 3(a)) do not lead to
the extinction of pest 𝑥

2
, and on the contrary, they can

result in the recurrence of pest 𝑥
1
, and with the increase

of the number 𝑞, the quantityof both pest 𝑥
1
and pest

𝑥
2
increases (see Figure 3(b)). Only when the dosages of

pesticides are increased enough can the pests become extinct,
but natural enemies also become extinct at the same time (see
Figure 3(c)). This shows that the extinction of pests needs
plenty of pesticides. Nevertheless, pesticide abuse can bring
about environmental contamination, which can also result in
human exposure through consumption of residues of pesti-
cides in food and, possibly, drinking water. While developed
countries have systems already in place to register pesticides
and control their trade and usage, this is not always the case
elsewhere, especially in China. Moreover, the pesticides have
a serious impact on the natural enemies (Figures 3(a)–3(c)),
and the repeated use of the same pesticides can result in
one or more population pest outburst (Figures 3(a)-3(b)).
The previous results show that pest control of multispecies
is much more complicated than single pests [7–9].

By the previous analysis, the additional release of natural
enemies is an indispensable part for pest control. Without
loss of generality, we assume that natural enemies have food
preference phenomenon with pest 𝑥

1
; that is, 𝛼

1
> 𝛼
2
, the

intrinsic growth rate 𝑎
1
≤ 𝑎
2
, and the residual ratio of pests

𝛿
1
≤ 𝛿
2
(here the reason is explained in the following section)

after spraying; thus, according to Theorem A.2, 𝜆
1

< 𝜆
2

and the condition of pest extinction only needs 𝜆
2

< 1.
In Figure 4, we fix the other parameters of 𝜆

2
and let the

residual ratio 𝛿
3
vary. The simulation results indicate that if

the pesticide poisons the natural enemies with a relatively
low residual ratio 𝛿

3
(e.g., 𝛿

3
= 0.9), the threshold value 𝜆

2

is a monotonically increasing function with respect to the
number of pesticide applications 𝑞 (Figure 4(a)).This further
explains that if the pesticide has a severe impact on the natural
enemies, repeated use of the same pesticides can result in
pest resurgence. If the residual ratio 𝛿

3
is slightly increased

from 0.9 to 0.92, Figure 4(b) shows that the threshold value
𝜆
2
is not monotonic with respect to the number of pesticide

applications 𝑞. So in this case we must carefully select the
number of pesticide applications (one to three events in this
case). If the pesticides do not kill the natural enemies so
much, Figures 4(c) and 4(d) clarify that the threshold value
𝜆
2
is a monotonically decreasing function with respect to

the number of pesticide applications 𝑞. In Figures 5(a)–5(d),
similarly, we fix the other parameters of 𝜆

2
and let the release

period 𝑇 vary. The simulation results indicate that the small
change of release period 𝑇 can lead to the change of the
number of pesticide applications 𝑞. All these simulations
show that the releasing period, the number of times of
spraying pesticides within this period, and the residual ratio
of natural enemies are crucial to eradicate pest 𝑥

1
and pest

𝑥
2
. Figure 6 shows the relationship between the controllable

parameters and the threshold condition 𝜆
2
. All simulation

results demonstrate that 𝜆
2
seems to be quite sensitive to

small changes in residual ratio 𝛿
1
and 𝛿

3
, release constant 𝜃,
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Figure 3: The impact of the number and dosage of application insecticides on pests and natural enemy with parameters of (a) 𝛿
1
= 0.9, 𝛿

2
=

0.85, 𝛿
3
= 0.85, 𝜃 = 0, 𝑇 = 6, and 𝑞 = 1, (b) 𝛿

1
= 0.95, 𝛿

2
= 0.85, 𝛿

3
= 0.85, 𝜃 = 0, 𝑇 = 6, and 𝑞 = 6, (c) 𝛿

1
= 0.58, 𝛿

2
= 0.62, 𝛿

3
=

0.85, 𝜃 = 0, 𝑇 = 6, and 𝑞 = 6, and other parameters the same as Figure 1.

and release period𝑇. By the simulation results, we obtain that
the optimum time and frequency of pesticide application; the
protection of natural enemies and pesticides choice are the
key factors to pest outburst or eradication. The results may
provide a theoretical basis for agricultural practitioners to
guide them to spray pesticides and release natural enemies
more efficiently.

4. Dynamical Analysis of Case 2 and
Its Biological Implications

In this section, similar to the study method of system (2), we
will give the dynamic property of system (3).

According to Floquet theory [16], if the following thresh-
old condition:

𝜆
𝑖
= 𝛿
𝑖
exp(𝑎

𝑖
𝑇
1
+

𝛼
𝑖
𝐵
2

𝑐𝑑

) < 1 (𝑖 = 1, 2) (9)

is satisfied, then the pest-eradication periodic solution
(0, 0, 𝑦

𝑇
1

(𝑡)) of system (3) is globally asymptotically stable,
where

𝐵
2
= ln((𝑟 + 𝑐𝑌

∗

1
𝑒
−𝑑𝑇
1
/(𝑝+1)

)

× (𝑟 + 𝑐 (𝑌
∗

1
𝜂
1
𝑒
−2𝑑𝑇
1
/(𝑝+1)

+ 𝜃
1
𝑒
−𝑑𝑇
1
/(𝑝+1)

))

⋅ ⋅ ⋅ (𝑟 + 𝑐(𝑌
∗

1

𝑝

∏

𝑘=1

𝜂
𝑘
𝑒
−𝑑𝑇
1
+ 𝜃
1

𝑝

∏

𝑘=2

𝜂
𝑘
𝑒
−𝑑𝑞𝑇/(𝑞+1)

+ ⋅ ⋅ ⋅ + 𝜃
𝑝
𝑒
−𝑑𝑇
1
/(𝑝+1)

))

× ( (𝑟 + 𝑐𝑌
∗

1
) (𝑟 + 𝑐 (𝑌

∗

1
𝜂
1
𝑒
−𝑑𝑇
1
/(𝑝+1)

+ 𝜃
1
))

⋅ ⋅ ⋅ (𝑟 + 𝑐(𝑌
∗

1

𝑝

∏

𝑘=1

𝜂
𝑘
𝑒
−𝑝𝑑𝑇

1
/(𝑝+1)

+ 𝜃
1

𝑝

∏

𝑘=2

𝜂
𝑘
𝑒
(−𝑑(𝑝−1)𝑇)/(𝑝+1)

+ ⋅ ⋅ ⋅ + 𝜃
𝑝
)))

−1

) ,

𝑌
∗

1
=

𝑆

1 − (1 − 𝜇
1
) (1 − 𝜇

2
) ⋅ ⋅ ⋅ (1 − 𝜇

𝑝
) 𝛿
3
𝑒
−𝑑𝑇
1

,

𝜂
𝑘
= 1 − 𝜇

𝑘
,

𝛿
1
= 1 − 𝛿

1

1
, 𝛿

2
= 1 − 𝛿

2

1
, 𝛿

3
= 1 − 𝛿

3

1
.

(10)

For Case 2, there are 𝑝 times releasing natural enemy
during spraying period 𝑇

1
. Denote 𝜂

𝑘
= 𝜇, 𝜃

𝑘
= 𝜃, where

𝑘 = 1, 2, . . . , 𝑝. Since the release of natural enemies in
this case is more frequent than spraying pesticides, the side
effects of pesticides on the natural enemy population are
largely reduced. Moreover, the threshold condition 𝜆

2
can be

strongly affected by the additional release of natural enemies.
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Figure 4: The effects of number of pesticide applications and the residual ratio of natural enemy on the threshold level 𝜆
2
. The parameter

values are as follows: 𝛿
1
= 0.85, 𝛿

2
= 0.85, 𝑇 = 10.7, 𝜃 = 6.3, 𝑑 = 0.25, 𝑟 = 1.2, 𝑐 = 0.3, 𝑎

1
= 0.75, 𝑎

2
= 0.8, and 𝛼

2
= 0.7.

In Figure 7, we fix all the other parameters and choose a
different releasing constant 𝜃 and different release times 𝑝.
The simulation results indicate that slight perturbation of the
release constant 𝜃 can rapidly reduce the threshold value 𝜆

2

(Figure 7), while increasing the number of natural enemy
releases as well. This shows that repeated releases of a small
number of natural enemies in key time of the season can
effectively control the pest outburst. In practice, an example
of Liriomyza sativae and Trialeurodes vaporariorum occurs in
heliogreenhouse.Theparasitic rate of parasitic waspswhich is
their natural enemy can amount to over fifty percent without
drugs. Thence, periodic releases of the parasitic wasps have
been used to control the Liriomyza sativae and Trialeurodes
vaporariorum in Anshan city in Liaoning Province, China,
where greenhouse agriculture is developing rapidly.

Remark 4. In this paper, we suppose that the natural enemies
can first select which are their favorite prey between pest 𝑥

1

and pest 𝑥
2
. It means that the favorite natural enemiesmay be

a profitable pest to them.Thence, as seen in [19], the profitable
pest is classified as palatable and the other as unpalatable.
In the following section, by numerical simulation, we will
explain under what condition the natural enemies can prey
on pest 𝑥

1
or pest 𝑥

2
.

5. Hybrid Impulsive Model with
Economic Threshold

As the previous simulation indicates, pesticidesmay seriously
influence the survival of natural enemies. They may impact
natural enemies indirectly by killing or contaminating their
hosts or prey. It is essential to avoid pesticide abuse when
biological control is feasible, as shown in systems (2) and
(3). Probably the best method for reducing the side effects
of pesticides on natural enemies is to apply pesticides only
when the sum of density of two pest populations reaches
the economic threshold (ET), since a small number of insect
pestsmay have compensation effect on crops [25].Thence, we
formulate the model as follows:

𝑑𝑥
1

𝑑𝑡

= 𝑎
1
𝑥
1
(1 −

𝑥
1

𝐾
1

−

𝑐
1
𝑥
2

𝐾
1

)

−

𝛼
1
𝑥
1
𝑦

𝑟 + 𝑥
1
+ 𝑏𝑥
2
+ 𝑐𝑦

,

𝑑𝑥
2

𝑑𝑡

= 𝑎
2
𝑥
2
(1 −

𝑥
2

𝐾
2

−

𝑐
2
𝑥
1

𝐾
2

)
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Figure 5: The effects of number of pesticide applications and release period 𝑇 on the threshold level 𝜆
2
with the parameter value 𝛿

3
= 0.93

and other parameters the same as Figure 4.

−

𝛼
2
𝑥
2
𝑦

𝑟 + 𝑥
1
+ 𝑏𝑥
2
+ 𝑐𝑦

,

𝑑𝑦

𝑑𝑡

=

𝜔
1
𝛼
1
𝑥
1
𝑦

𝑟 + 𝑥
1
+ 𝑏𝑥
2
+ 𝑐𝑦

+

𝜔
2
𝛼
2
𝑥
2
𝑦

𝑟 + 𝑥
1
+ 𝑏𝑥
2
+ 𝑐𝑦

− 𝑑𝑦,

𝑥
1
+ 𝑥
2
< ET, 𝑡 ̸= 𝑛𝑇,

𝑥
1
(𝜏
+

𝑛𝑘
) = 𝛿
1
𝑥
1
(𝜏
𝑛𝑘
) ,

𝑥
2
(𝜏
+

𝑛𝑘
) = 𝛿
2
𝑥
2
(𝜏
𝑛𝑘
) ,

𝑦 (𝜏
+

𝑛𝑘
) = 𝛿
3
𝑦 (𝜏
𝑛𝑘
) ,

𝑥
1
+ 𝑥
2
= ET,

𝑥
1
(𝑛𝑇
+
) = 0,

𝑥
2
(𝑛𝑇
+
) = 0,

𝑦 (𝑛𝑇
+
) = 𝑦 (𝑛𝑇) + 𝜃,

𝑡 = 𝑛𝑇,

(11)

where 𝛿
1
, 𝛿
2
, and 𝛿

3
are the same as in Section 5 and ET is

the economic threshold. 𝑇 is the releasing period of natural
enemies.

The previously mentioned facts show that the effect
among the intrinsic growth rate of pests, 𝑎

1
and 𝑎

2
, the

predation capacity of natural enemies (or functional response
parameter), 𝛼

1
and 𝛼

2
, residual ratio 𝛿

1
, 𝛿
2
, and 𝛿

3
, releasing

quantity 𝜃, and other factors (such as ET) may determine
dynamic behavior of pests and natural enemy species. How
do these key parameters affect the control strategies? In
particular, what we want to achieve is to study how the ET,
𝛼
1
or 𝛼
2
, and controllable parameters (such as 𝑇) affect the

control strategies.
For a fixed ET, by simulation, we obtain the result that

the successful control strategies are affected by the predation
capacity of natural enemy to different types of pests. To show
this, we vary the key parameter 𝛼

1
while the other parameters

are fixed as those in Figure 8. In Figure 8(a), for the predation
capacity of natural enemy 𝛼

1
= 0.74, the simulation result

indicates that the sum of density of the two pests population
never reaches the given ET, which implies that 𝛼

1
≥ 0.74

is free from spraying. If we set 𝛼
1

= 0.737, Figure 8(b)
indicates that the system is free from chemical control after
spraying pesticides. If we set 𝛼

1
= 0.736 or 𝛼

1
= 0.732
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Figure 6: The effects of times of spraying pesticides and parameter sets on the threshold level 𝜆
2
. The parameter values are as follows: 𝑎

1
=

0.8, 𝑑 = 0.25, 𝑟 = 1.2, 𝑐 = 0.3, and 𝛼
2
= 0.7. ((a), (b)) 𝛿

2
= 0.75, 𝛿

3
= 0.94, 𝜎 = 6.3, and 𝑇 = 10; ((c), (d)) 𝛿

2
= 0.7, 𝛿

3
= 0.91, 𝜎 = 6.3,

and 𝑇 = 10.
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Figure 7: The effects of times of releasing natural enemies and
releasing constant 𝜃 on the threshold level 𝜆

2
. The parameter values

are as follows: 𝛿
1
= 0.92, 𝛿

2
= 0.93, 𝛿

3
= 0.92, 𝜇 = 0.99, 𝑇

1
=

5, 𝑑 = 0.25, 𝑟 = 1.2, 𝑐 = 0.3, 𝑎
1
= 0.8, and 𝛼

2
= 0.7.

or 𝛼
1
= 0.73, Figures 8(c)–8(e) indicate that the system is

free from chemical control after three, four, or five pesticide
applications. If we further reduce the predation capacity of
natural enemy and set 𝛼

1
= 0.71, the pest outbreak frequency

is sharply increased, as shown in Figure 8(f). Asmentioned in
Remark 4, in Figure 8, we will expound the interdependent

relationship among the natural enemy, pest 𝑥
1
, and pest 𝑥

2
.

In the beginning, the density of pest 𝑥
2
is larger, and it is

regarded as palatable for the natural enemy,which implies
that 𝛼

2
≥ 𝛼
1
, as shown in Figure 8(f), the pests can break out.

However, with the release of natural enemies, an expanded
population of natural enemies causes the reduction of pest 2,
butwhen pest𝑥

2
falls below a certain critical value𝑥∗

2
[19], the

natural enemy begins to eat not only pest 𝑥
2
but also pest 𝑥

1
,

which largens 𝛼
1
and makes pests gradually no longer break

out as shown in Figures 8(e)–8(a). Meanwhile, it causes an
immediate recovery of pest 𝑥

2
, and when pest 𝑥

2
raises above

the certain critical value 𝑥∗
2
, the natural enemy begins to eat

palatable pest 𝑥
2
again, which forms a cycle (it is also called

switching between pest𝑥
1
and pest𝑥

2
by natural enemy [26]).

The previous analysis illustrates that if the natural enemy and
the two pests meet the above relationship, we only need to
control pest 𝑥

2
falling below the certain critical value without

supervising pest 𝑥
1
.

Finally, we will introduce the definition of pest outbreak
duration (period) and analyse the relationship between pest
outbreak period and the controllable parameters. We denote
the time points at which the solution reaches ET as 𝑡

𝑛
(𝑛 =

1, 2, . . .). If mod(𝑡
𝑛
, 𝑇) = 0, a chemical control is applied at

𝑡
𝑛
, and after that a biological control is also applied at the same

time. If mod(𝑡
𝑛
, 𝑇) ̸= 0, only a chemical control programme

is applied. Further, denote

𝑇
𝑛
= 𝑡
𝑛
− 𝑡
𝑛−1 (12)
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Figure 8:The effects of ET and 𝛼
1
of model (11) on the control strategies. The initial values are 𝑥

1
= 1.3; 𝑥

2
= 1.5; and 𝑦 = 5, and parameters

are fixed as follows: 𝛿
1
= 0.65, 𝛿

2
= 0.7, 𝛿

3
= 0.95, 𝜎 = 1, ET = 8, 𝑇 = 4, 𝑎

1
= 0.75, 𝑎

2
= 0.85, 𝛼

2
= 0.85, 𝑐

1
= 0.2, 𝐾

1
= 20, 𝑏 = 0.25, 𝑐 =

0.3, 𝐴
2
= 0.85, 𝐾

2
= 30, 𝑐

2
= 0.65, 𝑊

1
= 0.45, 𝑊

2
= 0.75, 𝑑 = 0.25, and 𝑟 = 1.2.

with 𝑡
0
= 0 as pests-outbreak duration (or period), where

𝑛 may be finite or infinite which depends on the solutions
of the models. The relationship among 𝑇, ET, 𝛿

1
, 𝛿
2
, 𝛿
3
,

or 𝜃 and mean outbreak period of pests can be calculated
from model (11) and formula (12) numerically (Figure 9).
Mean pest outbreaks period is an average over several pest
outbreak (here outbreaks indicate that the sum of densities
of the pest 𝑥

1
and pest 𝑥

2
reaches the given ET). Model

(11) predicts that the pests do not break out if the natural
enemies are released more transitorily (𝑇 ≤ 2, Figure 9(d))
and the mean outbreak period is decreasing as the release
period 𝑇 or residual ratios of the pests 𝛿

1
and 𝛿

2
increase

(Figures 9(a), 9(b), and 9(d)). Conversely, model (11) predicts
that with the increase of ET or residual ratios of the natural
enemy 𝛿

3
, themean outbreak period becomes longer (Figures

9(c) and 9(e)). In Figure 9(f), let the release period 𝑇 and
the other parameters fixed, and let the release constant 𝜃
vary. This indicates that when the release period 𝑇 is smaller
(here 𝑇 = 4), with the increase of release quantity, the pests
will not break out (here 𝜃 ≥ 1.5). And, more remarkably,
the mean outbreak period can suddenly jump from a small

value to a larger value at some critical points of 𝛿
3
, 𝑇, and

𝜃, which implies that the protection of natural enemies, the
selection of releasing time, and the quantity may be crucial in
prolonging the pest outbreak period. Moreover, the different
𝛿
2
or 𝛿
3
or different values of the release constant 𝜃 may

have the same mean outbreak period (Figures 9(b), 9(c) and
9(f)). For system (11), the relationship between pest outbreak
period and other parameters such as 𝑎

1
, 𝑎
2
, 𝛼
1
, and 𝛼

2
can be

researched similarly.

6. Discussion

The agricultural pests management plays a decisive role on
the survival of people all over the world especially that
the impacts of extreme climate change are severer for pest
control. For example, the armyworm which is the typical
pest threatening corn growth in fall has been widely seen in
North China Plain and Northeast China producing regions
in August 2012. The leaves of corn stalks in portions of
the above regions have been eaten up, cutting corn harvest
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Figure 9:The relationship between mean outbreak period and the parameters 𝛿
1
, 𝛿
2
, 𝛿
3
, 𝑇, ET, and 𝜃 of model (11). The other parameters are

the same as Figure 8.

prospect. The pests, common pests, became the most serious
threat to the production of corn this summer in the country’s
major grain-producing regions.This ismainly due to frequent
cyclonic activities since mid-July provided favorable condi-
tions to the migration of the armyworms, and then heavy
rainfall forced them to stay in the north and northeastern
parts of the country. The pest outbreak occurred at the same
time as severe droughts in the United States, where the driest
conditions in more than half a century have battered corn
and soybean crops, causing an upsurge in global grain prices
[27, 28].

Thence, it is particularly significant to explore an effective
control strategy. In this paper, based on the IPM strategies,
we give three different control strategies, which improve
traditional IPM control strategies. For system (2), in a
releasing natural enemies period, we spray pesticides several
times. By the theoretical derivation to system (2), the critical
value of pests eradication is figured out. When only using
the traditional control method, insecticides, by the numerical
simulation, we obtain that the pest 𝑥

1
and pest 𝑥

2
may

break out with the increase of spray times, which is different
from the control of a single pest. To better understand
how the controllable parameters (here 𝑇, 𝑞, 𝛿

1
, 𝛿
2
, and 𝛿

3
)

impact the pest control, by the numerical simulation, we give

the relationship between the critical value of pests eradication
and the controllable parameters. All these results express that
the selection of spray times and the protection of the natural
enemies are of vital importance for pests eradication. From
system (3), we know the real embodiment of the significance
of protecting natural enemies. By the analysis of systems (2)
and (3), in summary, when insecticides are used excessively,
the pests are killed and the natural enemies of the pests are
wiped out. In the absence of natural enemies, the surviving
population of insect pests multiply rapidly and reach epi-
demic proportions. Indiscriminate use of pesticides also leads
to the development of resistance in pests. This occurs as a
result of killing the susceptible genotypes and selecting the
more resistant genotypes at every pesticide application event.
After several years of using the same pesticide, there would
come a time when that particular pesticide will have no effect
on the pests because they have developed resistance to the
pesticide. Considering the factors, we formulate model (11),
which is to apply pesticides only when necessary. By model
(11), we also obtain some important conclusions.

Most real communities are more complex than the
community analysed here.Therefore, in the future, the factors
on the pests of more species and natural enemies, resistance
to the pesticide of pests and so on should be considered in the
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model to depict the dynamic behavior between populations
much more accurately.

Appendix

In any time interval ((𝑛 − 1)𝑇, 𝑛𝑇], we investigate the
dynamical behavior of model (6). In fact, integrating the first
equation of model (6) from (𝑛 − 1)𝑇 to 𝜏

𝑛
1

yields

𝑦 (𝑡) = 𝑦 ((𝑛 − 1) 𝑇
+
) 𝑒
−𝑑(𝑡−(𝑛−1)𝑇)

, 𝑡 ∈ ((𝑛 − 1) 𝑇, 𝜏
𝑛
1

] .

(A.1)

At time 𝜏
𝑛
1

, one pesticide application occurs and

𝑦 (𝜏
+

𝑛
1

) = (1 − 𝛿
3

1
) 𝑦 ((𝑛 − 1) 𝑇

+
) 𝑒
−𝑑𝑇/(𝑞+1)

. (A.2)

Again, integrating the first equation of model (6) from 𝜏
𝑛
1

to
𝜏
𝑛
2

yields

𝑦 (𝑡) = 𝑦 (𝜏
+

𝑛
1

) 𝑒
−𝑑(𝑡−𝜏

𝑛
1
)
, 𝑡 ∈ (𝜏

𝑛
1

, 𝜏
𝑛
2

] . (A.3)

At time 𝜏
𝑛
2

, a single pesticide application occurs and

𝑦 (𝜏
+

𝑛
2

) = (1 − 𝛿
3

2
) 𝑦 (𝜏

+

𝑛
1

) 𝑒
−𝑑𝑇/(𝑞+1)

= (1 − 𝛿
3

1
) (1 − 𝛿

3

2
) 𝑦 ((𝑛 − 1) 𝑇

+
) 𝑒
−2𝑑𝑇/(𝑞+1)

.

(A.4)

By induction, we can see that

𝑦 (𝑡) = (1 − 𝛿
3

1
) (1 − 𝛿

3

2
) ⋅ ⋅ ⋅ (1 − 𝛿

3

𝑞−1
) 𝑒
(−𝑑(𝑞−1)𝑇)/(𝑞+1)

× 𝑦 ((𝑛 − 1) 𝑇
+
) 𝑒
−𝑑(𝑡−𝜏

𝑛(𝑞−1)
)
, 𝑡 ∈ (𝜏

𝑛(𝑞−1)
, 𝜏
𝑛𝑞
] .

(A.5)

At time 𝜏
𝑛𝑞
, the last time pesticide is applied in the 𝑛th period

and

𝑦 (𝜏
+

𝑛𝑞
) = (1 − 𝛿

3

1
) ⋅ ⋅ ⋅ (1 − 𝛿

3

𝑞
) 𝑦 ((𝑛 − 1) 𝑇

+
) 𝑒
−𝑑𝑞𝑇/(𝑞+1)

.

(A.6)

Finally, integrating the first equation of model (6) from 𝜏
𝑛𝑞
to

𝑛𝑇 yields

𝑦 (𝑡) = 𝑦 (𝜏
+

𝑛𝑞
) 𝑒
−𝑑(𝑡−𝜏

𝑛𝑞
)
= (1 − 𝛿

3

1
) ⋅ ⋅ ⋅ (1 − 𝛿

3

𝑞
)

× 𝑦 ((𝑛 − 1) 𝑇
+
) 𝑒
−𝑑𝑞𝑇/(𝑞+1)

𝑒
−𝑑(𝑡−𝜏

𝑛𝑞
)
, 𝑡 ∈ (𝜏

𝑛𝑞
, 𝑛𝑇] .

(A.7)

At time 𝑛𝑇, release of natural enemies occurs once and

𝑦 (𝑛𝑇
+
) = (1 − 𝛿

3

1
) ⋅ ⋅ ⋅ (1 − 𝛿

3

𝑞
) 𝑦 ((𝑛 − 1) 𝑇

+
) 𝑒
−𝑑𝑇

+ 𝜃.

(A.8)

Denote 𝑌
𝑛
= 𝑦(𝑛𝑇

+
), then we have the following difference

equation:

𝑌
𝑛+1

= (1 − 𝛿
3

1
) ⋅ ⋅ ⋅ (1 − 𝛿

3

𝑞
) 𝑌
𝑛
𝑒
−𝑑𝑇

+ 𝜃, (A.9)

which has a unique steady state

𝑌
∗
=

𝜃

1 − (1 − 𝛿
3

1
) ⋅ ⋅ ⋅ (1 − 𝛿

3

𝑞
) 𝑒
−𝑑𝑇

. (A.10)

Let 𝐹 = (1 − 𝛿
3

1
) ⋅ ⋅ ⋅ (1 − 𝛿

3

𝑞
)𝑌𝑒
−𝑑𝑇

+ 𝜃, since |𝑑𝐹/𝑑𝑌| =

1 − (1 − 𝛿
3

1
) ⋅ ⋅ ⋅ (1 − 𝛿

3

𝑞
)𝑒
−𝑑𝑇

< 1. Therefore, 𝑌∗ is a globally
asymptotically stable equilibriumofmodel (A.8), then system
(6) has a globally stable 𝑇 periodic solution 𝑦

𝑇
(𝑡), which can

be calculated as follows:

𝑦
𝑇
(𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑌
∗
𝑒
−𝑑(𝑡−(𝑛−1)𝑇)

, 𝑡 ∈ ((𝑛 − 1) 𝑇, 𝜏
𝑛1
] ,

𝑌
∗
(1 − 𝛿

3

1
) 𝑒
−𝑑𝑇/(𝑞+1)

𝑒
−𝑑(𝑡−𝜏

𝑛1
)
,

𝑡 ∈ (𝜏
𝑛1
, 𝜏
𝑛2
] ,

...
𝑌
∗
(1 − 𝛿

3

𝑞−1
) ⋅ ⋅ ⋅ (1 − 𝛿

3

1
) 𝑒
(−𝑑(𝑞−1)𝑇)/(𝑞+1)

𝑒
−𝑑(𝑡−𝜏

𝑛𝑞−1
)
,

𝑡 ∈ (𝜏
𝑛𝑞−1

, 𝜏
𝑛𝑞
] ,

𝑌
∗
(1 − 𝛿

3

𝑞
) ⋅ ⋅ ⋅ (1 − 𝛿

3

1
) 𝑒
−𝑑𝑞𝑇/(𝑞+1)

𝑒
−𝑑(𝑡−𝜏

𝑛𝑞
)
,

𝑡 ∈ (𝜏
𝑛𝑞
, 𝑛𝑇] .

(A.11)

We have the following.

Lemma A.1. System (6) has a positive periodic solution 𝑦
𝑇
(𝑡)

and for every solution 𝑦(𝑡) of system (6) one has 𝑦(𝑡) → 𝑦
𝑇
(𝑡)

as 𝑡 →∝.

Furthermore, we can obtain the complete expression for
the prey-free periodic solution of system (2), (0, 0, 𝑦

𝑇
(𝑡)), for

𝑡 ∈ ((𝑛 − 1)𝑇, 𝑛𝑇]. Now, we give the conditions which assure
the globally asymptotical stability of the pest-eradication
(0, 0, 𝑦

𝑇
(𝑡)).

Theorem A.2. Let (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦(𝑡)) be any solution of (2);

then, (0, 0, 𝑦
𝑇
(𝑡)) is globally asymptotically stable provided

ln 1

∏
𝑞

𝑘=1
(1 − 𝛿

𝑖

𝑘
)

> 𝑎
𝑖
𝑇 +

𝛼
𝑖
𝐵
1

𝑐𝑑

, 𝑖 = 1, 2, (A.12)

where

𝐵
1
= ln((𝑟 + 𝑐𝑌

∗
𝑒
−𝑑𝑇/(𝑞+1)

) (𝑟 + 𝑐𝑌
∗
(1 − 𝛿

3

1
) 𝑒
−2𝑑𝑇/(𝑞+1)

)

⋅ ⋅ ⋅ (𝑟 + 𝑐𝑌
∗

𝑞

∏

𝑘=1

(1 − 𝛿
3

𝑘
) 𝑒
−𝑑𝑇

)

× ( (𝑟 + 𝑐𝑌
∗
) (𝑟 + 𝑐𝑌

∗
(1 − 𝛿

3

1
) 𝑒
−𝑑𝑇/(𝑞+1)

)

⋅ ⋅ ⋅ (𝑟 + 𝑐𝑌
∗

𝑞

∏

𝑘=1

(1 − 𝛿
3

𝑘
) 𝑒
−𝑑𝑞𝑇/(𝑞+1)

))

−1

) .

(A.13)



Abstract and Applied Analysis 13

Proof. The local stability of periodic solution (0, 0, 𝑦
𝑇
(𝑡))

may be determined by considering the behavior of small
amplitude perturbations of the solution. Defining 𝑥

1
(𝑡) =

𝑈(𝑡), 𝑥
2
(𝑡) = 𝑉(𝑡), and 𝑦(𝑡) = 𝑦

𝑇
(𝑡)+𝑊(𝑡), it may be written

(

𝑈 (𝑡)

𝑉 (𝑡)

𝑊 (𝑡)

) = 𝜙 (𝑡)(

𝑈 (0)

𝑉 (0)

𝑊 (0)

) , (A.14)

where 𝜙 satisfies

𝑑𝜙

𝑑𝑡

= (

𝑎
1
−

𝛼
1
𝑦
𝑇
(𝑡)

𝑟 + 𝑐𝑦
𝑇
(𝑡)

0 0

0 𝑎
2
−

𝛼
2
𝑦
𝑇
(𝑡)

𝑟 + 𝑐𝑦
𝑇
(𝑡)

0

0 0 −𝑑

)𝜙 (𝑡) ,

(A.15)

and 𝜙(0) = 𝐼, the identity matrix. Hence, the fundamental
solution matrix is

𝜙 (𝑡)

= (

𝑒
∫
𝑡

0
(𝑎
1
−(𝛼
1
𝑦
𝑇
(𝑠)/(𝑟+𝑐𝑦

𝑇
(𝑠))))𝑑𝑠

0 0

0 𝑒
∫
𝑡

0
(𝑎
2
−(𝛼
2
𝑦
𝑇
(𝑠)/(𝑟+𝑐𝑦

𝑇
(𝑠))))𝑑𝑠

0

0 0 𝑒
−𝑑𝑡

).

(A.16)

The impulsive conditions of system (2) become

(

𝑈(𝜏
+

𝑛𝑘
)

𝑉 (𝜏
+

𝑛𝑘
)

𝑊 (𝜏
+

𝑛𝑘
)

) = (

1 − 𝛿
1

𝑘
0 0

0 1 − 𝛿
2

𝑘
0

0 0 1 − 𝛿
3

𝑘

)(

𝑈(𝜏
𝑛𝑘
)

𝑉 (𝜏
𝑛𝑘
)

𝑊 (𝜏
𝑛𝑘
)

) ,

(A.17)

where 𝑘 = 1, 2, . . . , 𝑞, and

(

𝑈(𝑛𝑇
+
)

𝑉 (𝑛𝑇
+
)

𝑊 (𝑛𝑇
+
)

) = (

1 0 0

0 1 0

0 0 1

)(

𝑈 (𝑛𝑇)

𝑉 (𝑛𝑇)

𝑊 (𝑛𝑇)

) . (A.18)

The stability of the periodic solution (0, 0, 𝑦
𝑇
(𝑡)) is deter-

mined by the eigenvalues of the matrix

𝑀 =

𝑞

∏

𝑘=1

(

1 − 𝛿
1

𝑘
0 0

0 1 − 𝛿
2

𝑘
0

0 0 1 − 𝛿
3

𝑘

)(

1 0 0

0 1 0

0 0 1

)𝜙 (𝑇) ,

(A.19)

which are

𝜆
1
=

𝑞

∏

𝑘=1

(1 − 𝛿
1

𝑘
) 𝑒
∫
𝑇

0
(𝑎
1
−(𝛼
1
𝑦
𝑇
(𝑡)/(𝑟+𝑐𝑦

𝑇
(𝑡))))𝑑𝑡

,

𝜆
2
=

𝑞
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𝑘=1

(1 − 𝛿
2

𝑘
) 𝑒
∫
𝑇

0
(𝑎
2
−(𝛼
2
𝑦
𝑇
(𝑡)/(𝑟+𝑐𝑦

𝑇
(𝑡))))𝑑𝑡

,

𝜆
3
=

𝑞

∏

𝑘=1

(1 − 𝛿
3

𝑘
) 𝑒
−𝑑𝑇

< 1.

(A.20)

According to Floquet theory [16], (0, 0, 𝑦
𝑇
(𝑡)) is locally stable

if |𝜆
1
|, |𝜆
2
| < 1.

Next, integrating the 𝑦
𝑇
(𝑡)/(𝑟 + 𝑐𝑦

𝑇
(𝑡)) from 0 to 𝑇 yields

∫

𝑇

0

𝑦
𝑇
(𝑡)

𝑟 + 𝑐𝑦
𝑇
(𝑡)

𝑑𝑡

= ∫

𝜏
11

0

𝑌
∗
𝑒
−𝑑𝑡

𝑟 + 𝑐𝑌
∗
𝑒
−𝑑𝑡

𝑑𝑡

+ ∫

𝜏
12

𝜏
+

11

𝑌
∗
(1 − 𝛿

3

1
) 𝑒
−𝑑𝑇/(𝑞+1)

𝑒
−𝑑(𝑡−𝜏

+

11
)

𝑟 + 𝑐𝑌
∗
(1 − 𝛿

3

1
) 𝑒
−𝑑𝑇/(𝑞+1)

𝑒
−𝑑(𝑡−𝜏

+

11
)
𝑑𝑡 + ⋅ ⋅ ⋅

+ ∫

𝜏
1𝑞

𝜏
+

1𝑞−1

𝑌
∗
∏
𝑞−1

𝑘=1
(1 − 𝛿

3

𝑘
) 𝑒
(−𝑑(𝑞−1)𝑇)/(𝑞+1)

𝑒
−𝑑(𝑡−𝜏

+

1𝑞−1
)

𝑟 + 𝑐𝑌
∗
∏
𝑞−1

𝑘=1
(1 − 𝛿

3

𝑘
) 𝑒
(−𝑑(𝑞−1)𝑇)/(𝑞+1)

𝑒
−𝑑(𝑡−𝜏

+

1𝑞−1
)

× 𝑑𝑡 + ∫

𝑇

𝜏
1
𝑞

𝑌
∗
∏
𝑞

𝑘=1
(1 − 𝛿

3

𝑘
) 𝑒
−𝑑𝑞𝑇/(𝑞+1)

𝑒
−𝑑(𝑡−𝜏

+

1𝑞
)

𝑟 + 𝑐𝑌
∗
∏
𝑞

𝑘=1
(1 − 𝛿

3

𝑘
) 𝑒
−𝑑𝑞𝑇/(𝑞+1)

𝑒
−𝑑(𝑡−𝜏

+

1𝑞
)
𝑑𝑡

=

−1

𝑐𝑑

ln 𝑟 + 𝑐𝑌
∗
𝑒
−𝑑𝑇/(𝑞+1)

𝑟 + 𝑐𝑌
∗

+

−1

𝑐𝑑

ln
𝑟 + 𝑐𝑌

∗
(1 − 𝛿

3

1
) 𝑒
−2𝑑𝑇/(𝑞+1)

𝑟 + 𝑐𝑌
∗
(1 − 𝛿

3

1
) 𝑒
−𝑑𝑇/(𝑞+1)

+

−1

𝑐𝑑

ln
𝑟 + 𝑐𝑌

∗
∏
𝑞−1

𝑘=1
(1 − 𝛿

3

𝑘
) 𝑒
−𝑑𝑞𝑇/(𝑞+1)

𝑟 + 𝑐𝑌
∗
∏
𝑞−1

𝑘=1
(1 − 𝛿

3

𝑘
) 𝑒
(−𝑑(𝑞−1)𝑇)/(𝑞+1)

+

−1

𝑐𝑑

ln
𝑟 + 𝑐𝑌

∗
∏
𝑞

𝑘=1
(1 − 𝛿

3

𝑘
) 𝑒
−𝑑𝑇

𝑟 + 𝑐𝑌
∗
∏
𝑞

𝑘=1
(1 − 𝛿

3

𝑘
) 𝑒
−𝑑𝑞𝑇/(𝑞+1)

.

(A.21)

Thus, we can obtain

𝜆
1

=

𝑞

∏

𝑘=1

(1 − 𝛿
1

𝑘
)

× exp(𝑎
1
𝑇 +

𝛼
1

𝑐𝑑

× ln((𝑟 + 𝑐𝑌
∗
𝑒
−𝑑𝑇/(𝑞+1)

)

× (𝑟 + 𝑐𝑌
∗
(1 − 𝛿

3

1
) 𝑒
−2𝑑𝑇/(𝑞+1)

)

⋅ ⋅ ⋅ (𝑟 + 𝑐𝑌
∗

𝑞

∏

𝑘=1

(1 − 𝛿
3

𝑘
) 𝑒
−𝑑𝑇

)

× ((𝑟+𝑐𝑌
∗
)
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× (𝑟 + 𝑐𝑌
∗
(1 − 𝛿

3

1
) 𝑒
−𝑑𝑇/(𝑞+1)

)

⋅ ⋅ ⋅(𝑟+𝑐𝑌
∗

𝑞

∏

𝑘=1

(1−𝛿
3

𝑘
) 𝑒
−𝑑𝑞𝑇/(𝑞+1)

))

−1

)),

(A.22)

𝜆
2

=

𝑞

∏

𝑘=1

(1 − 𝛿
2

𝑘
)

× exp(𝑎
2
𝑇 +

𝛼
2

𝑐𝑑

× ln((𝑟 + 𝑐𝑌
∗
𝑒
−𝑑𝑇/(𝑞+1)

)

× (𝑟 + 𝑐𝑌
∗
(1 − 𝛿

3

1
) 𝑒
−2𝑑𝑇/(𝑞+1)

)

⋅ ⋅ ⋅ (𝑟 + 𝑐𝑌
∗

𝑞

∏

𝑘=1

(1 − 𝛿
3

𝑘
) 𝑒
−𝑑𝑇

)

× ((𝑟+𝑐𝑌
∗
)

× (𝑟 + 𝑐𝑌
∗
(1 − 𝛿

3

1
) 𝑒
−𝑑𝑇/(𝑞+1)

)

⋅ ⋅ ⋅(𝑟+𝑐𝑌
∗

𝑞

∏

𝑘=1

(1−𝛿
3

𝑘
) 𝑒
−𝑑𝑞𝑇/(𝑞+1)

))

−1

)).

(A.23)

Clearly, the condition (A.12) of Theorem A.2 may be
obtained, if we set |𝜆

1
|, |𝜆
2
| < 1. This completes the proof

of local stability of periodic solution (0, 0, 𝑦
𝑇
(𝑡)).

We now need to prove the global attractiveness. Choose
an 𝜀 > 0 such that

𝜉
𝑖
≜

𝑞

∏

𝑘=1

(1 − 𝛿
𝑖

𝑘
) 𝑒
∫
𝑇

0
(𝑎
𝑖
−(𝛼
𝑖
(𝑦
𝑇
(𝑡)−𝜀)/(𝑟+𝑐(𝑦

𝑇
(𝑡)−𝜀))))𝑑𝑡

< 1 (𝑖 = 1, 2) .

(A.24)

Note that 𝑑𝑦(𝑡)/𝑑𝑡 ≥ −𝑑𝑦(𝑡); from Lemma A.1 and compari-
son theorem of impulsive equation, we have

𝑦 (𝑡) > 𝑦
𝑇
(𝑡) − 𝜀 (A.25)

for all sufficiently large 𝑡. For simplification, we assume that
the inequality (A.25) holds for all 𝑡 ≥ 0. Consider the
following impulse differential inequalities:

𝑑𝑥
𝑖

𝑑𝑡

≤ (𝑎
𝑖
−

𝛼
𝑖
(𝑦
𝑇
(𝑡) − 𝜀)

𝑟 + 𝑐 (𝑦
𝑇
(𝑡) − 𝜀)

) 𝑥
𝑖
(𝑡) , 𝑡 ̸= 𝜏

𝑛𝑘
,

𝑥
𝑖
(𝜏
+

𝑛𝑘
) = (1 − 𝛿

𝑖

𝑘
) 𝑥
1
(𝜏
𝑛𝑘
) , 𝑡 = 𝜏

𝑛𝑘
,

(A.26)

where 𝑘 = 1, 2, . . . , 𝑞 and 𝑖 = 1, 2. By using Lemma 2, we have

𝑥
𝑖
(𝑡) ≤ 𝑥

𝑖
((𝑛 − 1) 𝑇)

× ∏

(𝑛−1)𝑇<𝜏
𝑛𝑘
<𝑡

(1 − 𝛿
𝑖

𝑘
) 𝑒
∫
𝑡

(𝑛−1)𝑇
𝑒
𝑎
𝑖
−(𝛼
𝑖
(𝑦
𝑇
(𝑠)−𝜀)/(𝑟+𝑐(𝑦

𝑇
(𝑠)−𝜀)))
𝑑𝑠
;

(A.27)

then,

𝑥
𝑖
(𝑛𝑇) ≤ 𝑥

𝑖
((𝑛 − 1) 𝑇)

× ∏

(𝑛−1)𝑇<𝜏
𝑛𝑘
<𝑛𝑇

(1 − 𝛿
𝑖

𝑘
) 𝑒
∫
𝑛𝑇

(𝑛−1)𝑇
𝑒
𝑎
𝑖
−(𝛼
𝑖
𝑦
𝑇
(𝑠)/(𝑟+𝑐𝑦

𝑇
(𝑠)))
𝑑𝑠

= 𝑥
𝑖
((𝑛 − 1) 𝑇) 𝜉

𝑖
.

(A.28)

Hence, 𝑥
𝑖
(𝑛𝑇) ≤ 𝑥

𝑖
(0
+
)𝜉
𝑛

𝑖
and 𝑥

𝑖
(𝑛𝑇) → 0 as 𝑛 → ∞.

Therefore, 𝑥
𝑖
(𝑡) → 0 as 𝑡 → ∞, since 0 < 𝑥

𝑖
(𝑡) <

𝑥
𝑖
((𝑛 − 1)𝑇)∏

𝑞

𝑘=1
(1 − 𝛿

𝑖

𝑘
)𝑒
𝑎
𝑖
𝑇 for (𝑛 − 1)𝑇 < 𝑡 < 𝑛𝑇.

Next, we prove that 𝑦(𝑡) → 𝑦
𝑇
(𝑡) as 𝑡 → ∞. For 𝜀 > 0

sufficiently small, there exists a 𝑇󸀠 such that 0 < 𝑥
1
(𝑡) < 𝜀

and 0 < 𝑥
2
(𝑡) < 𝜀, 𝑡 ≥ 𝑇

󸀠. Without any loss of generality, we
assume that 0 < 𝑥

1
(𝑡) < 𝜀 and 0 < 𝑥

2
(𝑡) < 𝜀 for all 𝑡 ≥ 0.

Then, from the system (2) we obtain

−𝑑𝑦 (𝑡) ≤

𝑑𝑦 (𝑡)

𝑑𝑡

≤ (−𝑑 + 𝛾𝜀) 𝑦 (𝑡) , 𝛾 =

𝜔
1
𝛼
1

𝑟

+

𝜔
2
𝛼
2

𝑟

.

(A.29)

From Lemmas 2 and A.1, we have 𝑢(𝑡) ≤ 𝑦(𝑡) ≤ V(𝑡) and
𝑢(𝑡) → 𝑦

𝑇
(𝑡), V(𝑡) → 𝑦

𝑇
(𝑡) as 𝑡 →∝, where 𝑢(𝑡) and V(𝑡)

are solutions of the equations

𝑑𝑢 (𝑡)

𝑑𝑡

= −𝑑𝑢 (𝑡) , 𝑡 ̸= 𝑛𝑇, 𝑡 ̸= 𝜏
𝑛𝑘
,

𝑢 (𝑡
+
) = (1 − 𝛿

3

𝑘
) 𝑢 (𝑡) , 𝑡 = 𝜏

𝑛𝑘
, 𝑘 = 1, 2, . . . , 𝑞,

𝑢 (𝑡
+
) = 𝑢 (𝑡) + 𝜃, 𝑡 = 𝑛𝑇,

𝑢 (0
+
) = 𝑦
0
,

𝑑V (𝑡)

𝑑𝑡

= (−𝑑 + 𝛾𝜀) V (𝑡) , 𝑡 ̸= 𝑛𝑇, 𝑡 ̸= 𝜏
𝑛𝑘
,

V (𝑡+) = (1 − 𝛿
3

𝑘
) V (𝑡) , 𝑡 = 𝜏

𝑛𝑘
, 𝑘 = 1, 2, . . . , 𝑞,

V (𝑡+) = V (𝑡) + 𝜃, 𝑡 = 𝑛𝑇,

V (0+) = 𝑦
0
,

(A.30)

respectively.
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We also have

V
𝑇
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑌
∗
𝑒
(−𝑑+𝛾𝜀)(𝑡−(𝑛−1)𝑇)

, 𝑡 ∈ ((𝑛 − 1) 𝑇, 𝜏
𝑛1
] ,

𝑌
∗
(1 − 𝛿

3

1
) 𝑒
(−𝑑+𝛾𝜀)𝑇/(𝑞+1)

𝑒
(−𝑑+𝛾𝜀)(𝑡−𝜏

𝑛1
)
,

𝑡 ∈ (𝜏
𝑛1
, 𝜏
𝑛2
] ,

...
𝑌
∗
(1 − 𝛿

3

𝑞−1
) ⋅ ⋅ ⋅ (1 − 𝛿

3

1
) 𝑒
((−𝑑+𝛾𝜀)(𝑞−1)𝑇)/(𝑞+1)

× 𝑒
(−𝑑+𝛾𝜀)(𝑡−𝜏

𝑛𝑞−1
)
, 𝑡 ∈ (𝜏

𝑛(𝑞−1)
, 𝜏
𝑛𝑞
] ,

𝑌
∗
(1 − 𝛿

3

𝑞
) ⋅ ⋅ ⋅ (1 − 𝛿

3

1
) 𝑒
((−𝑑+𝛾𝜀)𝑞𝑇)/(𝑞+1)

× 𝑒
(−𝑑+𝛾𝜀)(𝑡−𝜏

𝑛𝑞
)
, 𝑡 ∈ (𝜏

𝑛𝑞
, 𝑛𝑇] .

(A.31)

Then, for any 𝜀
1
there exists a 𝑇

1
such that

𝑢
𝑇
(𝑡) − 𝜀

1
< 𝑦 (𝑡) < V

𝑇
(𝑡) + 𝜀

1
, 𝑡 > 𝑇

1
. (A.32)

Let 𝜀 → 0, we have

𝑦
𝑇
(𝑡) − 𝜀 < 𝑦 (𝑡) < 𝑦

𝑇
(𝑡) + 𝜀 (A.33)

for 𝑡 large enough, which implies that 𝑦(𝑡) → 𝑦
𝑇
(𝑡) as 𝑡 →

∝. This completes the proof.
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