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We identify graphs with the maximal Laplacian spectral radius among all unicyclic graphs with 7 vertices and diameter d.

1. Introduction

Following [1], let G = (V(G), E(G)) be a simple undirected
graph on nvertices and m edges (son = |V(G)|is its order and
m = |E(G)| is its size). For v € V(G), d5(v) or d(v) denotes
the degree of v and N(v) denotes the set of all neighbors of
vertex v. A pendant vertex is a vertex of degree 1 and a pendant
edge is an edge incident with a pendant vertex. Let PV(G) =
{v : dg(v) = 1}. For two vertices u and v (u # v), the distance
between u and v is the number of edges in the shortest path
joining u and v. The diameter of a graph is the maximum
distance between any two vertices of G. Let P = vyv,,..., v,
(s = 1) be a path of G with d(v;) = -+ = d(v,_;) = 2 (unless
s = 1).If d(vy), d(v,) = 3, then we call P an internal path of
G; ifd(vy) = 3 and d(v,) = 1, then we call P a pendant path
of G; if the subgraph induced by V(P) in G is P itself, that
is, G[V(P)] = P, then we call P an induced path. Obviously,
the shortest path between any two distinct vertices of G is an
induced path. We will use G — v, G — uv to denote the graph
obtained from G by deleting a vertex v € V(G), or an edge
uv € E(G), respectively (this notation is naturally extended if
more than one vertex, or edge, is deleted).

Denote by C, and P, the cycle and the path with nvertices,
respectively. We call G a unicyclic graph if m = n, where n is
the number of vertices and m is the number of edges. We will
use ‘gi to denote the sets of all unicyclic graphs with n vertices

and diameter d. Let <>ﬁ be a graph of order # obtained from
the cycle C, by attaching n—d -2 pendant edges and a path of
length d — k — 1 at one vertex of the cycle, and a path of length

k — 1 to another nonadjacent vertex of the cycle respectively,
where0 <k-1<d-k-1.

Let L(G) = D(G) — A(G) be the Laplacian matrix, where
D(G) is the diagonal matrix and A(G) is the adjacency matrix.
The matrix L(G) is real symmetric and positive semidefinite;
the eigenvalues of L(G) can be arranged as y,(G) > --- >
#,(G) = 0, where the largest eigenvalue y,(G) is called the
Laplacian spectral radius of G.

The investigation on the Laplacian spectral radius of
graphs is an important topic in the theory of graph spectra.
Recently, the problem concerning graphs with maximal
Laplacian spectral radius of a given class of graphs has
been studied extensively. Li et al. [2] determined those
graphs which maximized Laplacian spectral radius among
all bipartite graphs with (edge-) connectivity at most k and
characterized graphs of order n with k cut-edges, having
Laplacian spectral radius equal to n. X. L. Zhang and H. P.
Zhang [3] studied the largest Laplacian spectral radius of
the bipartite graphs with » vertices and k cut edges and the
bicyclic bipartite graphs, respectively. The Laplacian spectral
radius of unicyclic graphs has been studied by many authors
(see [4-6]). Liu et al. [7] determined the graphs with the
largest Laplacian spectral radii among all unicyclic graphs
and bicyclic graphs with » vertices and k pendant vertices.
Hua et al. [8] determined extremal graphs with maximal
Laplacian spectral radius among all unicyclic graphs with
given order and given pendant vertices number.

In 2007, Liu et al. [9] determined graphs with the maximal
spectral radius among all unicyclic graphs with n vertices



and diameter d. In 2012, He and Li [6] identified graphs
with the maximal signless Laplacian spectral radius among all
unicyclic graphs with # vertices of diameter d. Next, Guo [4]
considered the Laplacian spectral radius of unicyclic graphs
with fixed diameter and proposed Conjecture 1.

In this paper, we prove the conjecture as Theorem 1.

Theorem 1. Let G be a graph in ‘gﬁ, 3 <d < n-2. Consider
the following.

(i) If d is odd, 1, (G) < py (©L*)) and equality holds if
and only if G = Ohdm.

(ii) Ifdiseven andn—d - 2 = 0,1, iy (G) < M1(<>,le/2J)
and equality holds if and only if G = O,Ed/”.

(iii) Ifd iseven andn —d — 2 > 2, 4;(G) < yl(ohd/zkl)
and equality holds if and only if G = O,Ed/ZJ_l.

The rest of this paper is organized as follows. In Section 2,
we present some notations and lemmas which will be used
later on. In Section 3, we determine graphs with the largest
Laplacian spectral radius among all unicyclic graphs with »
vertices and diameter d.

2. Lemmas

In this section, we list some lemmas which will be used to
prove our main results.

Lemma 2 (see [10]). Suppose that u, v are two distinct vertices
of a connected graph G. Let G, be the graph obtained from G
by attaching t new paths vv;vjp, ..., vy (i = 1,2,...,t) at v.

Let X = (x1,%,,.. .,xn)T, where x; corresponds to the vertex
v; (1 < i < n), be a unit eigenvector of G, corresponding to
i (G,) > 4. Let

G, =G = vy = vy ==y
)

T UV UV, e U

If Ix,| = |x,|, then u,(G,) = u,(G,). Further, if |x,| > |x,|,
then u,(G,) > u,(G,).

Lemma 3 (see [10]). Let uv be a pendant edge of a connected
graph G with n > 2 vertices and let v be a pendant vertex.
Let G,G,,...,G, (k > 2) be k disjoint connected graphs
and let v; be a vertex of G; (i = 1,2,...,k). Let G’ be the

graph obtained by adding k new edges vv, vv,, ..., vv, among
G,G,,G,,...,Gy. Let
G =G —w, —w, ==y,
2)

UV, +uUvy 4+ uv.

() Ifn = 2, then u,(G*) = u, (G").

(ii) If n > 3, then u,(G*) = w,(G'), with equality if and
only if either 4, (G*) = p,(G) or there exists somei (1 <
i < k) such that u,(G*) = u,(G)).
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Let v be a vertex of a connected graph G with at least two
vertices. Let G ; (I = k > 1) be the graph obtained from G
by attaching two new paths P : v(= vy)v,v,,..., v, and Q :
V(= vo)uyU,, . .., u; of length k and [, respectively, at v, where
Uy, Uy, ..., up and vy, v,,..., v, are distinct new vertices. Let
G141 = Gi = Vi1 Vie + WV

Lemma 4 (see [11]). Let G be a connected graph on n >
2 vertices and v be a vertex of G. Let Gy; be the graph
defined as previously mentioned. If 1 > k > 1, then
1 (Gr_1141) < u(Gyy), with equality if and only if there exists
a unit eigenvector of Gy corresponding to u,(Gy;) taking the
value 0 on vertex v.

Lemma 5 (see [1]). Let G’ be a graph obtained by deleting an
edge from the graph G. Then u,(G) > p(G') > p;,(G), i =
1,...,n—1.

Let S, be a graph obtained from the cycle C, by attaching
i pendant edges at one vertex of the cycle Cj.

Lemma 6 (see [5]). Let G be a unicyclic graph on n vertices;
then u, (G) = u,(C,); when n# 4, the equality holds if and only
ifG = C,; when n = 4, the equality holds if and only if G = C,,
G=S).

Lemma 7. Let G be a connected graph with at least one edge,
let A(G) be its maximal degree, and let d; be the degree of vertex
Vi and m; = ZV)-EN(V,-) d]/dl; then

(1) u;(G) = A(G) + 1; the equality holds if and only if
AG) =n-1[12];

(i) 4y (G) < max{d; + m; | v; € V(G)}; the equality
holds if and only if G is regular or semiregular bipartite
graph [13].

Let L, (G) be the principal submatrix obtained from
L(G) by deleting the corresponding row and column of v;.
Generally, let L5(G) be the principal submatrix obtained from
L(G) by deleting the corresponding rows and columns of all
vertices of S. For any square matrix B, denote by ®(B) =
®(B,x) = det(xI — B) the characteristic polynomial of B.
In particular, if B = L(G), we write ®(L(G)) by ®(G) for
convenience. If G = u, then suppose that ®(L,,(G)) = 1.

Let G = G,u : vG, be the graph obtained by joining the
vertex u of the graph G, to the vertex of v of the graph G, by
an edge. We call G a connected sum of G, at u and G, at v.

Lemma 8. Let G, and G, be two graphs. If ®(G,) > O(G,)
for x = w(G,), then u,(Gy) < u(G,). (In general, let f(x)
and g(x) be polynomials with positive leading coefficients. If
fx) > g(x) for x = pu(g(x)), then p,(f(x)) < p(g(x)),
where p, (g(x)) and p,(f(x)) are the largest roots of g(x) = 0
and f(x) = 0, resp.)

Proof. If u(Gy) > m(G,), then ®(Gy)l,—y (q) 0,
O(Gy)l oy (G,) = 0, a contradiction. O
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Lemma 9 (see [14]). Let G = Gyu : vG, be a connected sum
of G, at u and G, at v; then

D(G) = (D(GI)CD(GZ)_(D(GI)CD(LV (Gz)) 3)
- (G, @ (L, (Gy)).

Lemma 10 (see [14]). Let G be a connected graph with n
vertices which consists of a subgraph H and n— |V (H)| distinct
pendant edges (not in H) attaching to a vertex v in H. Then

O (G) = (x - 1) Vg (p)
(4)
— (- IV HE) x(x - )"V o (L (H)).

Lemma 11 (see [15]). Let D,, (n > 1) be the matrix obtained
from L(P,,,) by deleting the rows and columns corresponding
to two pendant vertices of P,.,,; suppose that ®(D;) = 1,
d(D_,) = 0; then
(i) xd(D,,_;) = O(P,);
(ii) ®(D,,,) = (x - 2)®(D,) - ®(D,_,);
(iii) ®(D,,,,)P(D,)-P(D,,)d(D,,,) = ®(D,)D(D,,_;)-
q)(Dm—l)q)(Dn)r (T’l,m 2 1);
(iv) ®(C,) = ®(D,) - ®(D,_,) +2(-1)""".
From Lemmall(i), all eigenvalues of D, are 2 +

2 cos(imr/(n + 1)), where 1 < i < n. Other characterizations
of ®(D,,) can be shown below.

Lemma 12. Let D,, (n > 1) be the matrix as above. Consider
the following.
(i) If n > 1, then ®(D,,) > ©(D,,_,) when x > 4.
(ii) Ifn > 1, then ®(D,,) > 20(D,,_,) when x > 5.
(iii) ©(D,,)®(D,) - ©(D,,_1)®(D,,,) = ©(D,_,,), where
0<m<n

Proof. From Lemma 11(ii), it is easy to prove (i) and (ii) by
introduction on .
By Lemma 11(iii), we have

q)(Dm)q)(Dn) - q)(I)mfl)q)(l)nﬂ)

=®(D,_,)®(D, ;) - ®(D,,_,)®(D,)

= ®(Dy3) ®(Dy) = ©(Dyy5) @ (Dyry) ©)
== ®(Dy) (D) = @ (D_y) @ (D)
=®(D,_,)

as desired. O

Lemma 13. Suppose that u, v are two adjacent vertices of the
cycle C,, where q is even. Let Hy; (I = k = 1) be the
graph o%tained from C, by attaching two new paths P : v(=
Vo) ViVas .. o> Vi and Q 1 u(= uy) u iy, ..., u; of length k and
L at v and u, respectively, where u;, u,, ..., u; and v, v,, ..., vy
are distinct new vertices. Let Hy_y ;.1 = Hypj — vi_ v + upvy.
Then py (Hy_ 141) < ph (Hyp).

Proof. Using Lemma 9, we have

@ (Hy_1101) = @ (Hyy)
=x [0 (L, , (1) = © (Ly, (Her)]
= x{[ =D @ (L, (i) =@ (Lo s, (Hi))]
~|x-vo(L,,,  (H.y)
@ Ly vy, (Hin))]}

= x by (x) - ag (0],

(6)
where
ag (x) = [@(C,) -20(D,,) + ©(D,,)] © (D)
a [q; (Dq—l) - (Dq—Z)] @ (Dp)> -
b (x) = [© (D) = ®(Dy,)| @ (Digr)
~®(D,,) @ (D).
From Lemmas 11(ii) and 11(iv), (6) becomes
® (Hy_y141) = @ (Hyy)
(8)

=x® (D) [(x-2)@ (D, ,) - 20 (D, 5) +2],

which is greater than 0 when x > 4 by Lemma 12(i). And
py(Hy,;) > 4 follows from Lemma 7(i). Thus u,(Hy_;,,) <
i (Hy ;) holds by Lemma 8. O

For G € %ﬁ,wehaven >3and1<d<n-21d=1,
then G = C;.Ifd = 2,thenG = C,, G = C; or G = S . By
Lemma 7, y; (S5 ) has the largest Laplacian spectral radius.

Therefore, in the following, we assume that 3 < d <n-2.

Let H, be the unicyclic graph of order d + 2 shown
in Figurel. Let Hy(p,,...» Pg> Pas2) be a graph of order n
obtained from H, by attaching p; pendant vertices to each
v; € V(Hy) \ {v;, v}, respectively, where p;,, = 0 when
k =1ork = d. Denote that

d
7/5: {HO(pZ""’pd’PdJrZ):Zpi+pd+2:n_d_2}’

i=2

—d
%, =1{Hy(0,...,0,p;,0,...,0) =Hy (p;) : p;=n—d —2}.
©))

Lemma 14. Let G € . Then there is a graph G* € 7: such
that 4, (G*) = y, (G).

=d .\ A
Proof. Let G ¢ %’Z \ Z, and let X = (X1> X5 os %)
be a unit eigenvector of y,(G), where x; corresponds to the
vertex v; (1 < i < n). Lett = |{p; : p;#0}|. Thent > 2.
Let p;, p;#0, i < j. Assume, without loss of generality, that
[x;] = Iij. Let N(vj) N PV(G) = {ul,uz,...,upj}. Let

*
G, :G—vjul—---—vjupj+viu1+---+viupj. (10)



Vdi2 Vo
® .- e @ o ... . @
Vi V-1 Vi Ykl Viks2 Vd+1 Y1 Vi-1 Vi Vil V2 Vs Vd+l
H, Uo
(a) (b)
FIGURE 1

—d
By Lemma 2, we have y4,(G*) > p,(G). Note that G, € &,

fort = 2and G, € %ﬁ\%i fort > 2.If t > 2, then we
will use Gy to repeat the above step until the cardinality of p;,

being nonzero, is only one. So we have G;,G;,...,G,_; and
1 (G3) < Uy (G3) <--- < uy(G/)). Note that G, | € %Z, and
hence the lemma holds. O

—d
Lemma 15. For any G € %, u;(G) < p;(Hy(pr,1)), where
0 < k—1 < d—k; the equality holds if and only if G = Hy(py,1)-

Proof. Suppose thatn—d—-2 =t.Ift = 0, the result is obvious.
Ift > 1, by Lemma 7, we have

4 (G) < max {max {d; +m; | v, € V(G)} | G € 7, ,

i¢{d+2,k,k+1}}

(11)
cra2e 2 o A(Hy (p)) + 1
< th (Ho (Pran))-
Casel. k—-1<d-k.
Wheni=d +2,1let N(v;) VPV(G) = {uy, u,,...,u,}. Let
Hy (p;) = vitty == = vithy + Viiy + -+ + Vil
. il 2 [,
Hy (pi) = VicaVie + Vi vio
i < il
(12)

Then, in all cases, G* =
i (Hy(pass)) < i (Hy(py).

Next, we show that ®(Hy(py)) > O(Hy(pryp)) for x >
py (Hy(Pry1))- Because Hy — v, = Py |JP; kyn> We can
get O®(H,) in which the rows and columns correspond to
vertices as the ordering vy,..., Vi_1> Vaias Ve 1> Visar - - -» Va1~
Furthermore, let E; = [e; ;] be a square matrix of order k-1,
wheree,_;;_; = lande;; = 0wheneveri#k—1and j#k-1;
let Fy = [f; ;] be a square matrix of order d — k + 2, where
frx =land f;; = 0 whenever i # k and j# k. Then

L(Pey) + Eyy 0
L, (Hy) = 0 L(P,,.,) +Fy +Fy | (13)

Hy(p;). Thus by Lemma 2,
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Hence,

(L, (H,))

= O (L(Pey) + Eyy) @ (L (Pygyz) + Fyy + Fyy).

(14)

In order to simplify the notation, we denote ®(L(P,_,) + E;;)

and O(L(Py_,,) + Fiy + Fy) by fi1(x) and fi 415,(%),
respectively. Similarly,

(Ly,, (o))
= O (L(Pyg) + Eyy) @ (L (Peyy) + Fyy + Fyy) (15
= fakn (%) fran2 (%)
In general, by Lemma 11(ii), we have
fur () =@(D,)+®(D, ),

fr2(®) =@x-1)(x-3)®(D, ,)-2x-3)®(D, ).
(16)

Hence, by Lemma 12(ii),
@ (L,  (Hy))-®(L, (Hy))
= fak1 (%) frar2 () = frorn (%) fagian (%)
=(x-1(x-3)
X [@(Dyy) @ (Dyg1) = @ (Dg2) @ (Dyy)]
+(2x=3)[®(Dy_;) D (Dyp_y) = P (Dy_y) ©(Dyy)]

=x(x-2)D(Dyy)-
17)

From (17) and Lemma 10,
@ (Hy (pr)) = @ (Ho (pis1)) )
=t(x-2)(x - 1)'x*D(Dyy) > 0
holds for x > py (Hy(pgs1))-
Thus p, (Hy(pr)) < py(Hy(preyq)) follows from Lemma 8.

Case2.k—-1=d-k.

First note that Hy(py) = Hy(Prs1)-

Next, since Hy - v,4,, = Py, we can derive ®(L, (H,))
in which the rows and columns correspond to vertices as the
ordering vy, ..., Vi_1> Vi Vig1» - - - » Vgqp- 1hen

(L., (H))
= [©(Dy-) + @ (Dy,)]
x [(x* = 5x+5) @ (Dy,) - 2x - 5) @ (D )| (19)
®(D;,) + @ (Dy5)]

-
X [(x =2) ® (D) - 2@ (Dy_,)] -
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Combining Lemma 10 with (15) and (19), we get
® (Hy (Pas2)) = © (Ho (Prs1))

=t(x - 1)7'x® (D_,) [(x = 2) ® (Dy_,) - 20 (Dy,)] »
(20)

which is greater than 0 when x >y, (Hy(pi,)) by
Lemma 12(i). Thus, by Lemma8, u,(Hy(pgi2)) <
th (Hy(prs1)) holds. Hence, the proof is completed. O

Let A]; be a graph of order n obtained from a triangle by
attaching n—d — 2 pendant edges and a path of length d — k at
one vertex of the triangle, and a path of length k—1 to another
vertex of the triangle, respectively, where 0 <k -1 < d - k.

Lemma 16. 1, (A%") < p (A% ), where 2 < k < [d/2].

Proof. Suppose that n — d — 2 = t; by Lemma 7(i), yl(A’;) >
t+4.Let H* = Hy — v;; by Lemma 9,

® (8g) - (8,)
=x[® (L, (H))-o(L,,, (H"))]
=x[x-Do(L,,, (H))-0(L,,, ., (H))
~x-1o(L,,,, (H)+o (L, ., (H))]

— e = x[gd’k(x) _fd,k(x)]’
(21)

where

far () = (x° = 8x% + 18x - 8) D (Dy_y,)

- (X2 - 5x+ 5) 0} (Dd—zk) s
(22)

Jak (x) = (xz —5x+ 5) @ (Dy_pps2)

-(x-2)® (Dd72k+1) :
By Lemmas 10 and 11(ii) and (15) and (21),

o (25") - o (4))
= (x -1 [0 (a%,) - o (a%,,)]

— e =17 0 (L, (8%3)) - @ (L, (85.2))]
= (x-1)'x (x—4) © (Dy_yp,,) - tx(x — 1!

X [fd7k+1,1 (x) fk,z (x) - fd—k,l (%) fk+1,2 (x)]
2 -1
=x"(x-1)

X[(x=1)(x=t=4) DO (Dy_ss1) +t (x =2) © (Dy_yp)]

>0
(23)
for x > Ml(AI;).
So yl(Al;_l) < ,ul(A’;) follows from Lemma 8. O

In view of Lemma 16, the next corollary is obvious.

Corollary 17. M1(A]:,) < !"1(A[j/2]), where 1 < k < [d/2]; the
equality holds if and only if A = Al4/21,

Let U, be the unicyclic graph of order d + 2 shown
in Figurel. Let U, (p,, ..., P4 Pa+s) be a graph of order n
obtained from U, by attaching p; pendant vertices to each
v; € V(Uy) \ {v;, 4,1} respectively. Denote

d
Uy = {Uo (Do Pas Pas2) ) Pi + Pasa =n—d—2},
i=2
—d
U, =1{Uy(0,...,0,,0,...,0) =Uy (p;) : py =n—d - 2}.
(24)

Lemma 18. Let G € %°. Then there is a graph G* € %j such
that 4, (G*) = u, (G).

Proof. The proof is similar to that of Lemma 14. O

Lemma 19. For any G € %:, 1 (G) < w (Uy(prya)), where
0 < k-1 <d- k- 1; the equality holds if and only if G =
Uo(Prsa)-

Proof. Suppose thatn—d —2 =t.Ift = 0, the result is trivial.
Ift > 1, by Lemma 7, we have

p (G) < max{max{di+mi |v; e V(G)} | GGWZZ,

i¢ {d+2,k,k+1,k+2}}
(25)

2+3+t

=t+2+ <t+4=AU(prsz)) +1

<ty Uy (Prsa)) -

Casel.i=k.
Ifk-1=d-k-1Uype) = Up(Prsz)-
Ifk-1<d-k-1, wecan obtain (I)(ka+2 (Uy)) in which
the rows and columns correspond to vertices as the ordering

Vo Virl> Ve - - > V> Virss - - -» Vgq1 - Then by Lemma 11(ii),

(L., b))
=(x-2)[(x* - 4x+2) D (D)) - 2(x - 1) D (Dy,)]

X [® (Dyjoy) + @ (Dygr)] -
(26)

Similarly,
@ (ka (UO))
=(x-2)[(x* - 4x+2) D (Dy 1) —2(x - 1) ® (Dy 4 ,)]

X [@ (Dgy) + @ (Dyr)] -
(27)



Combining the two equations above with Lemmas 10 and
12(iii), we get

@ (Uy (pr)) = @ (Up (Prsa))
=tx(x- 1) [0 (L, (U))- (L, (U))] (28
= tx’(x - 2)2(x = 1) ' D (Dy_p ;) > 0

for x > p, (Uy(prra))-
From Lemma 8, p; (Uy(py)) < ¢ (Uy(pr.2)) holds.

Case2.i=k+1,d+2.
From Lemma 7, when t > 2, we have

t1 (Uo (Prer))

< max {di +m; | V; € V(UO (pk+1))}

3+3+¢ (29)
=t+2+

St+4=AU(prsn)) +1

<ty Uy (Prsa)) -

For t = 1, we can obtain CD(LVM(UO)) in which the
rows and columns correspond to vertices as the ordering
Visewos Vit Vio Varos Viras - - > Vaer - 1Then

o (L, (Uy)) = [©(Dyy) + @ (Dyy)] f (%)
- [(D (Dk—z) +®@ (Dk—3)] g(x)
(30)
=[(x-2)g(x) - h(x)] ®(D_;)

- [29(x) + h(x)] ©(Dy_,),
where
f)=(x"-7x" +14x - 7) © (Dy 4 )
—(2x* - 9x+7) ®(Dy 4 )
g(x)=(x=1)(x=3) D (Dys_y) - 2x=3) D (Dy_r_s),
h(x)=(x-3)g(x) - f(x)

=(x=2)®(Dy ;) - 20 (Dyy,)-
(31)

By (26) and (30),
o (L, (U,)) - (L, U))
= x{(x = 1) @ (Dy_4,) [(x = 3) @ (Dy_;) = 20 (Dy_,)]

~ ®(Dyj_1) ©(Dyy)} -
(32)
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From Lemmas 11(ii) and 12(i), when x > 5,
(x=1) @ (Dyk_) = P (Dyy1)
= ®(Dyy) + @ (Dyy-3) > 0,
(x=3) @ (Dy_y) = 30 (Dy,)

(¥ = 5x+3) ©(Dy ) - (x - 3) D(Dy5) > 0 if k> 2,
Clx-3>0 ifk=1
(33)

hold (since (x* —5x+3)—(x—3) = x> —6x+6 > 0 for x > 5).
By Lemma 9 and (32), when x > 5,

@ (U (ps1)) = @ (Up (Prsz))

(34)
=x[0(L,,, W) - (L, )] >o0.
From Lemma 8, p; (Uy(prs1)) < t1 (Up(prs2)) holds.
Hence, we complete the proof. O

Let <>’; be a graph of order #n obtained from the cycle C,
by attaching n — d — 2 pendant edges and a path of length
d—k—1 at one vertex of the cycle and a path of length k-1 to
another nonadjacent vertex of the cycle, respectively, where

0<k-1<d-k-1
Lemma 20. Let <>I:1 be a graph defined as above; then

() ifk—1 < d—k—1, then p, (05™) <y, (0F), where
2<k<|d/2];

(ii) ifk—1=d -k —1(i.e, k = |d/2]), then

(a) whenn—-d—-2=0,o0r1, “1(012—1) < .“1(01:1)"
(b) whenn —d -2 > 2, (05 < py (o5 ™).

Proof. Suppose thatn—d—2 = t;by Lemma 7(i), 4, (<>ﬁ) > t+4
holds. LetU* = U, — v;; by Lemma 9,

®(05) - (%)

=X [CD (va (U*)) -0 (LVd+1 (U*))]

(35)
=x [(D (Lvd+1,v2,v3 (U*)) -0 (LVz;VdH,Vd (U*))]
== x sy () =t (0],
where
Sa (0) = (x=2) [(x = 1) (x = 4) © (Dy_ps;)
—(x=2)®(Dy_y)]»
(36)

tag (%) = (x=2) [(x = 3) (x* = 5x +2) @ (D)

—(x-1)(x=4) @ (Dyp 1) ]
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By Lemmas 10 and 11(ii) and (26) and (35),
(0,) - (0})
=(x-1) [@ (o)) -0 (oh,,)]
-txx = )7 [0 (L, (04,2)) - @ (L, (94:2))]

=x*(x-1D)"" (x-2)u(x),
(37)

where u(x) = (x*- (t+5)x+4)D(Dy_p) +t(x=2)D(Dy_pp_;)-
When k — 1 < d - k — 1, by Lemma 11(ii), we get

ux)=(x-2) (x> - (t+5x+t+4)®(Dyp ;)
38)
(-t +5)x+4) D (Dyyy)-

Denote by e(t) the largest root of x* = (£ +5)x + 4 = 0. Then
X —(t+5)x+4<0, ifxe (t+4,e(t)],

X —(t+5)x+t+4 (39)

>xP—(t+5)x+4>0, ifx>e(t).

Hence, by Lemma 12(i), (37) is greater than 0 when x >

1,(0F). S0 p, (0F71) <y (0F) follows from Lemma 8.
Whenk-1=d -k -1, (37) becomes

(0;)-(o})

’ (40)
=x*(x-1)"(x-2) [(x2 —(t+5)x+ 4)] .

Ift = 1,let ©2 and ¢} be two graphs with d = 4. Through
Maple 15, the largest root of x*—6x+4 = 0ise(l) = 5.2363 (up
to four decimal places), which is less than ptl(<>§) = 5.3145
and p (<>;) = 5.3008. From Lemma 5, y, (<>§) < [41(<>f,) and
(41(<>;) < pll(Oﬁ*l) hold when n > 7. So, (40) is greater than
0 for x > yl(o’,j). By Lemma 8, g, (<>lfl_1) < [,11(0’:,) holds.

Ift > 2, by Lemmas 11(ii) and 12(iii),

tx) - [(«* - (t+5) x+4)]
x[(x-2)@*(D,,) - (t+9)®(D,)® (D, ,)]
=2t (x - 1) ®*(D,,) - [(£ +3t +4) x - 4]
X ®(D,,)®(D,,_,) +2(t+2) (x—1)®*(D,,_,)
= [2tx® - (P + 9t +4) x + (4t + 9| @ (D,,) @ (D,,,.,)
-2t(x-1)®(D,,)®(D,,,)
+2(t+2) (x - 1) @* (D, )
=2t - (P + 9t +4) x + (4t + 9| @ (D,,) @ (D,,,.,)

+4(x-1)*(D,,_,)+2t(x-1),
(41)

7
Va3 Vd+2 Vd+3  Vd+2
o .- e @ ®. .- @ ® --- 0
Vi Vi-1 Vk Vk+l YA+l vy Vier Vi Vil Vie2 Vdel
Wo D;+3
() (b)
FIGURE 2
where
t(x) = [x3 —(1‘+7)x2 + (4t + 14)x—(2t+8)]
x @ (D,,) - [(t +4) x* - (6t +16) x + (4t + 12)]
x @ (D,,) ®(D,,_;) +2(t+2) (x- 1)@ (D,, ;)
(42)

(one may refer to (52) in Lemma 24).

By Lemma 12(ii), (x-2)®*(D,,)— (t+4)®(D,,)®(D,,_,) >
0 when x > t + 4. And by derivative, 2tx% — (12 + 9t + 4)x +
(4t +4) >0whenx >t + 4.

Thus, (41) is greater than 0 for x > e(t) > t + 4. From

Lemma 8, yl(oﬁ) < e(t) holds. Put x = yl(oﬁ) into (40),
whose right side is less than 0. So yl(o’;) < yl(oﬁ_l). We
complete the proof. O

Form Lemma 20, the below corollary holds.
Corollary 21. When 1 <k <|d/2],

(i) ifd is odd, then p, (O%) < p, (O12)); the equality holds
if and only if of = ol4/2;
(ii) if d is even, then

(a) whenn—-d-2=0,1, ul(oﬁ) < ,ul(OLd/zJ ); the
equality holds if and only zf<>l; = <>Ld/2J;

(b) whenn—d -2 2 2, uy (0F) < py (G427, the
equality holds if and only if<>’; = <>Ld/2J_1.

Let W, be the unicyclic graph of order d + 3 shown in
Figure 2. Let Wy (p5, . - . Pg> Pasa> Pass) be a graph of order n
obtained from W, by attaching p; pendant vertices to each
v; € V(Hy) \ {vy, vz}, respectively. When k = 2, p;,, and
Pas3 = 0. Denote that

%Z = {Wo (P2 > Pa> Pavas Pass) :

d
Zpi+Pd+2+pd+3:n_d_3}’ (43)

i=2

%j = {WO(O)‘-~)0)pi)0,-..,0)

=Wy (p;): py=n—d-3}.



Lemma 22. Let G € 7%, Then there is a graph G* € %j such
that 4, (G*) = y,(G).

Proof. The proof is similar to that of Lemma 14. O

Lemma 23. ForanyG € %:, i (G) < uy(Wy(pp)), where 1 <
k—1 < d—k+1; the equality holds if and only if G = Wy(pj.1)-

Proof. Suppose thatn—d—3 =t.Ift = 0, the result is obvious.
Ift > 1, by Lemma 7, we have
t (G)

<max{max{d,-+mi |v; e V(G)} | GE%Z, i:ﬁk}

244+t (44)
—t424 T <t+5=AW,(pp)) +1
<y (Wo (pr)) -
Hence, the lemma holds. O

3. Main Results and Their Proofs

In this section, we first show that yl(VnLd/ZJ“) < ‘ul(A[’f/z]) <

iy (oL2)),

Lemma 24. p, (AI9%1) <y (oL972]),

Proof. Suppose that n —d — 2 = t; by Lemma7,t + 4 <
HI(AT/Z]), yl(ohdm) < t + 5 holds. We distinguish the
following two cases.

Casel.d=2m+1(m=1).
Let A7*! and " be two graphs on the left of Figure 3. If

t = 0, denote A”*! and ¢ by G, and G,, respectively. Let

H =G = V3= Vg and Hy =Gy = V3 =+ = Vg
By Lemma 9,
®(G,) = [®(P,)- (L, (P,)]®(H
-o(p,)® (L, , (H)),
(45)
®(Gy) = [@(P,) - @(L,,, (P,)] @ (H,)
- o (P,)®(L,,, (H)),
where

@ (Hy) = x(x=3) [(x=3) @ (D,;) = 2@ (D,

. (H))

=(x-1)(x-3)®(D,,) - (2x-3)®(D,,_,),

(L,
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@ (H,)
=x(x-2)

X [(x=2)(x-4)®(D,,_;) -2

(L, (H))

=(x-2)[(x*-4x+2) D (D, ) -2(x-1)@(D,,,)].
(46)

(x=3)@ (D)1

Note that ®(P,,) = x®(D,,_;)and (L, (P,,)) = ©(D,,_;)+
®(D,,_,).
Combining the equations above with Lemma 10, we get

(A7)
=x-D)x-1D0(G)-txd (L, (G))]
=x(x- 1) {x-1)(x-3)(x-3-1)®*(D,,) .
— [t +4) x> — (6t + 16) x + (6t + 12)]
®(D,,) ®(D,, )
+[@t+3)x-3(t+ 1] (D, )},
@ (o)
=(x-1)Tx-DO(G,) -txd (L, (G,))]
=x(x-2)(x-1)""
< {x—1) [« = (£ +8) x* + (4t + 18) x — (2t + 10)]
®*(D,, ,)
—[3x7 - (Gt +19) X’ +8(t+4) x —4(t +4)]

1) o (Dm—Z
(D, ,)}.

x ®(D,,_ )+2(x-1)(x-3-1)
(48)

Hence, by Lemmas 11(ii) and 12(i), when g, (¢7"*') < x < t+5,

® (Am+1) ( m)
= x(x - 1)'[d (x) ®*(D,,,) +e(x) ®(D,,_,) ®(D,, ,)
~r (x) @ (D,,,_,)]

> x(x - 1) [d (x) + e (x) - 7 (x)] ©* (D,,_,) = 0,
(49)
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where
dix)=—(x-1)(x—-t-5)>0,
e(x) = (x2—2x+2)(x—t—4) > 0,
(50)
r(x)=(x-1)(x-t-3) >0,
dx)+e(x)—r(x)=(x-2)*(x—t—4)>0.
So py (A1) <y (07*1) holds by Lemma 8.

Case2.d=2m+2(mz=1).

Let A”! and ¢! be two graphs on the right of Figure 3.
Ift = 0, denote A”*" and &' by G} and G}, respectively. By
similar computations as Case 1, we have

o (ar)
= (-7 - Do (G)) -0 (L, (G)))]
=x(x- 1" {x-1)*(x-3) (x-4-1)®*(D,,)
— (x = 1) [3x® = (3t + 16) x + (6t + 18)]
x®(D,)d(D,_,)
+[2x? —2(t+4)x+3(t+2)] 0 (D)},
(51)
o (o)
= (- =D (G)) -0 (L, (G)))]
=x(x-2)(x-1""
< {[x* =t +7)x* + (4t + 14) x - (2t + 8)| @*(D,,)
— [t +4)x® — (6t +16) x + (4t + 12)]
x®(D,,)®(D,,_;)

+2(t+2) (x = 1) @* (D, ,)} .
(52)

Hence, by Lemmas 11(ii), 12(i) and 12(iii), when x > ¢ + 4,

®(a7") - (o)
=x(x-1)
x{=[t+1)x* - Bt +5) x+ (t +4)] 9*(D,,)
+ [t +1)x° = (5t +5) x> + (7t + 10) x — (2t + 6)]
x ®(D,,)®(D,,_,)

—[@t+2)x* - (@t +4) x + (t+2)] @ (D, )}

Vom+3 Vom+a

Vin+2 Vin+2

o - Y o - R )
Vi Y Ym+3 Vams2z V1V Vim+3 Vam+3
m+1 m+1
Aﬂ An

(a) (b)
Vom+3

Y
m+3 Vame2 Vi

FIGURE 3

=x(x-1)
x{[p (%) @ (D,,-1) = q (%) ©(Dy )] @ (Do) — w (1)}
> x(x - 1)'®(D,,,)

x[(p () ~w(x)) @ (Dy1) = 4 () @ (D,5)] > 0,

(53)

where

px)=2x" —(t+9)x" +(+9)x—-2>0,

g(x)=2(x-1)*>0,
w(x)=(t+1)x> = (Bt +5) x+(t+4) >0, (54)
px)-w(x)-q(x)

=2 —(2t+12)x* + (4t + 18) x — (t + 8) > 0.

So py (A1) < py (07*1) follows from Lemma 8. O

Let V: be a graph of order # obtained from a triangle by
attaching n — d — 3 pendant edges, a path of length k — 1 and
a path of length d — k + 1 at one vertex of the triangle, where
1<k-1<d-k+1.

Lemma 25. p, (V.4/2141) < gy (AT9721),

Proof. Suppose that n — d — 3 = t; by Lemma 7(i),
yl(V}ld/ZJ“),yl(Arf/z]) > t + 5 holds. We distinguish the
following two cases.

Casel.d=2m+1 (m=1).
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Let V"' be a graph on the left of Figure 3. If t = 0, denote
V"' by G;. Let Hy = Gy — v, — -+ — v,,,. By Lemma 9,

®(G;) = [ (B,) - @ (L, (P,))] © (H;)
~o(p,) @ (L,  (Hy)),
where
® (Hy) = x (x - 3)
X[(x-1)(x-4)®(D,,) - (x-3)®(D,,,)],
®(L, (H;))=(x-1)(x-3)

x[(x=1)@(D,,) =@ (D, )] -
(56)

By Lemma 10, we get

(V)
=(x-1)"[(x-1)®(G,) - tx@ (L, (G,))]
=x(x-3)(x-1)

x {(x=1)(x-t-4)®*(D,,) - [(t +4) x — (2t +6)]

x ®(D,,) ® (D, )+ (t +2)®* (D, )}
(57)

By (47), we have

@ (A7) = x(x - 1)
x{(x-1)(x-3)(x-t-4)*(D,,)
— [t +5)x% = (6t +22) x + (6t + 18)] (58)
x®(D,,)®(D,, ;)
+[2t+5)x-3(t+2)]0* (D, )}

Hence,

1) (V::Hl) ) (Arzﬂ)
=x*(x-1)'®(D,,,) (59)
x[(x~t=4)@(D,,) - (t +3) ©(D,,_,)].
When m = 1, (59) = x*(x — 1) (x -t — 5) > 0 holds for
x>t +5.80 py (V™) < py (A1) follows from Lemma 8.

When m > 2, p, (V™) < py (A™*1) also holds (the proof
will be given in Case 2 of the lemma).

Case2.d=2m+2(m>1).

Journal of Applied Mathematics

Let V""** be a graph on the right of Figure 3. By similar
computations as in Case 1, we have

@ (V") = x(x-3) (x - 1)
X {(x— 1)’ (x -t -5)®*(D,,)
-2(x-1)(x-t-4)®(D,,)®(D,,,)

+(x —t - 3) D (Dm_l)}.
(60)

By (51), we get

@ (A7)

=x(x- 1) {x -1 (x-3) (x -t -5 ®*(D,,)
— (x = 1) [3x7 - (3t + 19) x + (6t + 24)]
x ® (Dm) ) (Dm—l)

+[2x% = 2(t+5) x + (3t +9)| @* (D, )}
(61)

Hence,

@ (V) - (A7)

=x*(x-1)'®(D,,,) (62)

X [(x_t_4)q)(Dm+1) _(t+3)®(Dm)] .

Let t;(x) = (x —t — 4)D(Dy,) — (t + 3)O(D,_;) and the
largest root of t;.(x) = 0 is denoted by y, (¢, (x)), where k > 0.

We first show that g, (. (x)) is strictly increasing.

We use the induction on k. Clearly, y, (t,(x)) = t + 4 <
p(t,(x)) = t + 5 holds. Generally, assume that g, (t,_;(x)) <
t (te(x)), then by Lemmas 11(ii) and 12(iii),

teer (%) = (x =2) 1 (%) =t (%), (63)

tr (X) = tpy (%) ty (%)
(64)
=—[t+2)x’ -t +2) (t+5)x - 1] = v (x).

Put x = p, (t;(x)) into (63), whose right side is less than 0. So
i (e (x)) <y (g1 (%))

Furthermore, y, (¢, (x)) has the upper bound.

Denote that the largest root of v(x) = 01is y; (v(x)). If there
exists some m such that p, (t,,(x)) > y, (v(x)), we substitute k
with m and put x = y,(t,,(x)) into (64). So, the right side of
it is less than and equal to 0 and the left side is greater than 0,
a contradiction.

I gm+2
LetGy =V, " =y =+ =V, | = V5 =+ + = Vap,y3 and
I _ am+l
Gy = A =V = Vi T Vs T T Vo
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By (60) and (62),
CD(GQ)=x(x—l)t(x_3)(x2_3x+l)r(x)’
0(c)- ()
=x’(x=1)' [x* = (t+8)x” + (3t +16) x — (t +6)]

=x*(x = 1) (r(x) +1),
(65)

where r(x) = x° — (t + 8)x* + (3t + 16)x — (t + 7).

By Lemma 7(i), ‘ul(G;) is the largest root of r(x) = 0. If
ptl(G;) > yl(Gi),then [CD(G;)—QD(G'I)]I y < 0and r(x)+
1|x=,41(G;) > 0, a contradiction. So y (G;) < Uy (G;).

By derivative, when x > t + 5,

X=p (GQ

xv(x)—(t+2)r(x)

=3(t+2)x" — (37 +22t +33)x + (t+2) (t+7) > 0.
(66)

From Lemma 8, y,(v(x)) < //tl(G;) holds. Furthermore,
1 (Gh) < py (V) and 4y (G)) < py (A7) hold by Lemma 5.
Hence, (62) is greater than 0 for x > ‘ul(A'::”). From

Lemma 8, we get ¢, (V") <y, (A"") as desired. O

Let DZ .3 be the unicyclic graph of order d + 3 shown in
Figure 2.

d d
Lemma 26. Ml(D;éﬂ) <t (A[d+/32;])'

Proof. Note that by Lemma 7(i), yl(A[dm) > 5.

da+3
Casel.d =2m+ 1(m > 1).
By Lemma 9, we have

® (Dpnrs) = [© (B) - @ (L, ()]
X(D(H4)_(D(Pm)q)(l‘v (H4))

=x[(x-2) (x-4)®*(D,,) -4 (x—2) (x - 3)

x @ (Dm) @ (Dm—l) + (3x - 8) q)Z (Dm—l)] >
(67)

1
where H, =00, , — v,

By (47), we get
1) (Am+1 )

2m+4

_"'_Vm'

=x[(x-1)(x-3) (x—4) ®*(D,,) - (5x° - 22x +18)

x @ (Dm) O] (Dm—l) + (5x - 6) (D2 (Dm—l)] .
(68)
Hence, by Lemmas 11(ii), 12(ii), and 12(iii), when x > 5,
@ (DT,;L;) -0 (Ar;;th)

=x[(x-49)®*(D,)+ (¥’ -2x-6)®(D,) ®(D,,,)
-2(x+1)®*(D,, )]

1

=x® (D, ,)[2(x* -4x+1)®(D,,) - 3x - 2) @ (D, ,)]
+x(x—4)

> x®% (D, ;) (4% = 19x +6) + x (x = 4) > 0.
(69)

m+1

L) < (A7) follows from Lemma 8.

Sou, (O
Case2.d=2m+2(m=>1).

By a similar proof as of Case 1, y; (@yii1.) < py (A% .)
holds.

Next we give the proof of Theorem 1, which is the most
important result.

Proof of Theorem 1. Let G € %Z and X = (x5,%,,...,%,)"
be a unit eigenvector of y,(G), where x; corresponds to the
vertex v; (1 <i < n).

Choose G € %‘i such that the Laplacian spectral radius of
G is as large as possible. Then, by Lemma 6, we can assume
that G#C,. Let P;,; = v,v,,..., V4, be the induced path of
length d and let C, be the only cycle in G. Since G#C,,, we
have min{d(v,),d(v,,,)} = 1, say d(v,) = 1. We first show
some claims.

Claim 1. V(C,) YV (Py,) #0.

Proof of Claim 1. Otherwise, since G is connected, there exists
an only path P = v;v vy, ..., ,_;v; connecting C, and P,
where v; € V(C,), v, € V(P )and v, ..., v € V(G)\
(V(C UV (Pyo)):

For each j, let Tj be a rooted tree (with r; as its root)
attached at v; (k < j < I - 1), where the order of T} is
n;. We assume that all trees , but T}, are kept fixed, while T;
(along with its root) can be changed. Suppose that T; #S,, .
Let v be a vertex belonging to T; chosen so that d(v) > 2
and that d(v, ;) (the distance between v and r;) is the largest.
By Lemma 4 (applied in the reverse direction), the Laplacian
spectral radius is increased when any hanging path at v is
replaced by a hanging star (namely, edges of a hanging path
now become the hanging edges at v). If the same is repeated
for other hanging paths at v, we get one star attached at v
(its central vertex is identified with v) whose size is equal to
the sum of the lengths of the aforementioned paths. Let w be
a vertex in T, adjacent to v, and belonging to the (unique)
path between r; and v. By Lemma 3, the Laplacian spectral
radius is increased when all hanging edges at v become the
hanging edges at w. Note also that d(w,r;) = d(v,1;) — 1. By
repeating the same procedure (for any other vertex as v), we
arrive at G,, where the rooted tree T; becomes a star Sy,> SO
that 4, (G,) = u, (G).

By the same way to other rooted trees, we arrive at G,,
where every rooted tree T; = Sn, (k< j<l-1),and 4 (G,) =

14, (G,). From G,, applying Lemma 2, we arrive at G,, where

only a rooted tree S, ...,  is attached at some vertex v,, €

Voo o» vl_li. S0 1,(G;) = 1y (G,).
From Gj;, by Lemma 3, the Laplacian spectral radius
increased when all vertices adjacent to v; become adjacent
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vertices to v,_,. By repeating the same procedure (for any
other vertex of P — v, as v;), we arrive at G,, where
V(C)NV(Pyyy) #0,and 4, (Gy) > i, (Gy).

Hence, we have y, ((~}4) > u,(G), a contradiction.

By Claim 1, V(C,)[1V(Py,)#0. Denote that
Cq = ViVksv oo ViaViVaiaVasz - VsV (s 2 d + 2),
where {vi, iy Vvl = V(Cq)ﬂV(PdH) and
Vass Vaszs -5 Vb = V(C) \ V(Pyyy)-

Claim 2.d(v) = 1 forv € V(G) \ (V(Cq) UV(P))-

Proof of Claim 2. Consider other rooted trees attached at
V(C,) and V(P,,,), respectively. By a similar proof as Claim

1 (the procedure until G;), we can get H; and y,(H,) =
¢#1(G), where only a rooted tree is attached at v; (v; €
{v(c,) UV(Ps )\ {v1, v, a contradiction.

Claim3.l1=k+1lands=d + 2.

Proof of Claim 3. Denote that A = {v |
(V(ICHUV(Pas)} = (g

Case 1.1 = k. By Lemma 7,

v € V(G) \
,Vband [Al=n—-s=t>0.

t (H,) < max Jimax {dv,- +m, | v; € V(Hi)} | i;&k}

2+4+t
<

=t+2+ —— <t+5=A(H)+1

<w (Hy) <max{d, +m, | v, e V(H)}  (70)

242+2+2+t
t+4

=A(V)+1 <y (V)

=t+4+ <t+6<n-d+2

fors>d+4 (|Cq| > 4).

Whens=d+3 (ICqI = 3), H; = Wy(p;). By Lemma 23,
w (H,) < yl(VrIf) for any i # k, where H, = V:f.

Hence, by Lemma 4, V,Ed/ 211 has the larger Laplacian

spectral radius. Furthermore, from Lemmas 24 and 25,
p (OL) >y (VL1 holds.

Case2.1=k+ 1.

Subcase 2.1.t > 1. By Lemma 7,

t (E)
< max{max{dvi +m, |v; € V(Hi)},iik,k+ 1}

2+34+t
=t+2+

<t+4=A(H)+1(A(Hepy)+1)

<y (ﬁk) (/41 (ﬁk+1)) < max {dv,- +m, | v; € V(ﬁk)}

Journal of Applied Mathematics

2+3+t¢t
<t+3+

<t+5<n-d+2=A(A})+1

k
< ."ll (An)
(71)
fors>d+3 (ICqI > 4).
When s = d +2 (IC,| = 3), H, = Hy(p;), By Lemma 15,
w (H,) < /,tl(A’;) for anyi#k + 1, where Hy,, = A’;.

Subcase 2.2. t = 0. By Lemma 7,
th (ﬁ,) < max {max {dv,. +m, | v; € V(ﬁi)}iqk 1,d+ 1}

24342
=3+%<6<n—d+2:A(Alj‘)+l

<t (AI;)
(72)

fors>d+4 (|Cq| >5).

Whens = d+3 (ICqI = 4), by Lemma 13, yl(D§+3) <

yl(DL‘i/;]). Furthermore, from Lemma 26, ‘ul(A[ﬂg])

[d/2]
t (Dd+3 )-

When s = d +2(IC,| = 3), H; = Hy(p,) = A%,
Hence, in view of Subcases 2.1 and 2.2, by Corollary 17 and
Lemma 24, y, (Obd/zj) > yl(Ar:m) holds.

>

Case 3.1 > k + 2. By Lemma 7,
H (ﬁz)
< max {max {dv,- +m, | v; € V(ﬁi)}iqﬁ 1,d+ 1}

24+2+2+t

st+53n—d+2:A(<>’;)+1
t+3

=t+3+

<t (Oﬁ)

(73)
fors>d+3 (Iqu >5).

When's =d +2 (ICy| = 4), H, = Uy(p;), by Lemma 19,
w (H) < yl(oﬁ) for any i # k + 2, where Hy,, = <>I:l.

Hence, in view of Cases 1, 2, and 3 and Corollary 21, if d
is odd, <>Ld/ 2 has the largest Laplacian spectral radius; if d is
evenandn -d -2 = 0,1, <>,le/ 2| has the largest Laplacian
spectral radius; If d is evenand n—d -2 > 2, Ohd/ 271 has the

largest Laplacian spectral radius, a contradiction.
By Claims 1, 2, and 3, Theorem 1 follows immediately. [
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