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We identify graphs with the maximal Laplacian spectral radius among all unicyclic graphs with 𝑛 vertices and diameter 𝑑.

1. Introduction

Following [1], let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a simple undirected
graph on 𝑛 vertices and𝑚 edges (so 𝑛 = |𝑉(𝐺)| is its order and
𝑚 = |𝐸(𝐺)| is its size). For V ∈ 𝑉(𝐺), 𝑑

𝐺
(V) or 𝑑(V) denotes

the degree of V and 𝑁(V) denotes the set of all neighbors of
vertex V. A pendant vertex is a vertex of degree 1 and a pendant
edge is an edge incident with a pendant vertex. Let 𝑃𝑉(𝐺) =
{V : 𝑑
𝐺
(V) = 1}. For two vertices 𝑢 and V (𝑢 ̸= V), the distance

between 𝑢 and V is the number of edges in the shortest path
joining 𝑢 and V. The diameter of a graph is the maximum
distance between any two vertices of 𝐺. Let 𝑃 = V0V1, . . . , V𝑠
(𝑠 ≥ 1) be a path of 𝐺 with 𝑑(V1) = ⋅ ⋅ ⋅ = 𝑑(V𝑠−1) = 2 (unless
𝑠 = 1). If 𝑑(V0), 𝑑(V𝑠) ≥ 3, then we call 𝑃 an internal path of
𝐺; if 𝑑(V0) ≥ 3 and 𝑑(V𝑠) = 1, then we call 𝑃 a pendant path
of 𝐺; if the subgraph induced by 𝑉(𝑃) in 𝐺 is 𝑃 itself, that
is, 𝐺[𝑉(𝑃)] = 𝑃, then we call 𝑃 an induced path. Obviously,
the shortest path between any two distinct vertices of 𝐺 is an
induced path. We will use 𝐺 − V, 𝐺 − 𝑢V to denote the graph
obtained from 𝐺 by deleting a vertex V ∈ 𝑉(𝐺), or an edge
𝑢V ∈ 𝐸(𝐺), respectively (this notation is naturally extended if
more than one vertex, or edge, is deleted).

Denote by𝐶
𝑛
and𝑃
𝑛
the cycle and the pathwith 𝑛 vertices,

respectively. We call 𝐺 a unicyclic graph if 𝑚 = 𝑛, where 𝑛 is
the number of vertices and𝑚 is the number of edges. We will
useC𝑑

𝑛
to denote the sets of all unicyclic graphswith 𝑛 vertices

and diameter 𝑑. Let ⬦𝑘
𝑛
be a graph of order 𝑛 obtained from

the cycle𝐶4 by attaching 𝑛−𝑑−2 pendant edges and a path of
length 𝑑−𝑘−1 at one vertex of the cycle, and a path of length

𝑘 − 1 to another nonadjacent vertex of the cycle respectively,
where 0 ≤ 𝑘 − 1 ≤ 𝑑 − 𝑘 − 1.

Let 𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺) be the Laplacian matrix, where
𝐷(𝐺) is the diagonalmatrix and𝐴(𝐺) is the adjacencymatrix.
The matrix 𝐿(𝐺) is real symmetric and positive semidefinite;
the eigenvalues of 𝐿(𝐺) can be arranged as 𝜇

1
(𝐺) ≥ ⋅ ⋅ ⋅ ≥

𝜇
𝑛
(𝐺) = 0, where the largest eigenvalue 𝜇

1
(𝐺) is called the

Laplacian spectral radius of 𝐺.
The investigation on the Laplacian spectral radius of

graphs is an important topic in the theory of graph spectra.
Recently, the problem concerning graphs with maximal
Laplacian spectral radius of a given class of graphs has
been studied extensively. Li et al. [2] determined those
graphs which maximized Laplacian spectral radius among
all bipartite graphs with (edge-) connectivity at most 𝑘 and
characterized graphs of order 𝑛 with 𝑘 cut-edges, having
Laplacian spectral radius equal to 𝑛. X. L. Zhang and H. P.
Zhang [3] studied the largest Laplacian spectral radius of
the bipartite graphs with 𝑛 vertices and 𝑘 cut edges and the
bicyclic bipartite graphs, respectively. The Laplacian spectral
radius of unicyclic graphs has been studied by many authors
(see [4–6]). Liu et al. [7] determined the graphs with the
largest Laplacian spectral radii among all unicyclic graphs
and bicyclic graphs with 𝑛 vertices and 𝑘 pendant vertices.
Hua et al. [8] determined extremal graphs with maximal
Laplacian spectral radius among all unicyclic graphs with
given order and given pendant vertices number.

In 2007, Liu et al. [9] determined graphswith themaximal
spectral radius among all unicyclic graphs with 𝑛 vertices
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and diameter 𝑑. In 2012, He and Li [6] identified graphs
with themaximal signless Laplacian spectral radius among all
unicyclic graphs with 𝑛 vertices of diameter 𝑑. Next, Guo [4]
considered the Laplacian spectral radius of unicyclic graphs
with fixed diameter and proposed Conjecture 1.

In this paper, we prove the conjecture as Theorem 1.

Theorem 1. Let 𝐺 be a graph in C𝑑
𝑛
, 3 ≤ 𝑑 ≤ 𝑛 − 2. Consider

the following.

(i) If 𝑑 is odd, 𝜇
1
(𝐺) ≤ 𝜇

1
(⬦
⌊𝑑/2⌋

𝑛
) and equality holds if

and only if 𝐺 ≅ ⬦
⌊𝑑/2⌋

𝑛
.

(ii) If 𝑑 is even and 𝑛 − 𝑑 − 2 = 0, 1, 𝜇
1
(𝐺) ≤ 𝜇

1
(⬦
⌊𝑑/2⌋

𝑛
)

and equality holds if and only if 𝐺 ≅ ⬦
⌊𝑑/2⌋

𝑛
.

(iii) If 𝑑 is even and 𝑛 − 𝑑 − 2 ≥ 2, 𝜇
1(𝐺) ≤ 𝜇1(⬦

⌊𝑑/2⌋−1

𝑛
)

and equality holds if and only if 𝐺 ≅ ⬦
⌊𝑑/2⌋−1

𝑛
.

The rest of this paper is organized as follows. In Section 2,
we present some notations and lemmas which will be used
later on. In Section 3, we determine graphs with the largest
Laplacian spectral radius among all unicyclic graphs with 𝑛
vertices and diameter 𝑑.

2. Lemmas

In this section, we list some lemmas which will be used to
prove our main results.

Lemma 2 (see [10]). Suppose that 𝑢, V are two distinct vertices
of a connected graph 𝐺. Let 𝐺

𝑡
be the graph obtained from 𝐺

by attaching 𝑡 new paths VV
𝑖1
V
𝑖2
, . . . , V

𝑖𝑞𝑖
(𝑖 = 1, 2, . . . , 𝑡) at V.

Let 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
𝑇, where 𝑥𝑖 corresponds to the vertex

V𝑖 (1 ≤ 𝑖 ≤ 𝑛), be a unit eigenvector of 𝐺𝑡 corresponding to
𝜇1(𝐺𝑡) ≥ 4. Let

𝐺
𝑢
= 𝐺
𝑡
− VV
11
− VV
21
− ⋅ ⋅ ⋅ − VV

𝑡1

+ 𝑢V
11
+ 𝑢V
21
+ ⋅ ⋅ ⋅ + 𝑢V

𝑡1
.

(1)

If |𝑥
𝑢
| ≥ |𝑥V|, then 𝜇1(𝐺𝑢) ≥ 𝜇

1
(𝐺
𝑡
). Further, if |𝑥

𝑢
| > |𝑥V|,

then 𝜇
1
(𝐺
𝑢
) > 𝜇
1
(𝐺
𝑡
).

Lemma 3 (see [10]). Let 𝑢V be a pendant edge of a connected
graph 𝐺 with 𝑛 ≥ 2 vertices and let V be a pendant vertex.
Let 𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑘
(𝑘 ≥ 2) be 𝑘 disjoint connected graphs

and let V
𝑖
be a vertex of 𝐺

𝑖
(𝑖 = 1, 2, . . . , 𝑘). Let 𝐺 be the

graph obtained by adding 𝑘 new edges VV
1
, VV
2
, . . . , VV

𝑘
among

𝐺,𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑘
. Let

𝐺
∗
= 𝐺

− VV
1
− VV
2
− ⋅ ⋅ ⋅ − VV

𝑘

+ 𝑢V1 + 𝑢V2 + ⋅ ⋅ ⋅ + 𝑢V𝑘.
(2)

(i) If 𝑛 = 2, then 𝜇
1
(𝐺
∗
) = 𝜇
1
(𝐺

).

(ii) If 𝑛 ≥ 3, then 𝜇
1
(𝐺
∗
) ≥ 𝜇

1
(𝐺

), with equality if and

only if either𝜇
1
(𝐺
∗
) = 𝜇
1
(𝐺) or there exists some 𝑖 (1 ≤

𝑖 ≤ 𝑘) such that 𝜇
1
(𝐺
∗
) = 𝜇
1
(𝐺
𝑖
).

Let V be a vertex of a connected graph 𝐺 with at least two
vertices. Let 𝐺

𝑘,𝑙
(𝑙 ≥ 𝑘 ≥ 1) be the graph obtained from 𝐺

by attaching two new paths 𝑃 : V(= V
0
)V
1
V
2
, . . . , V

𝑘
and 𝑄 :

V(= V
0
)𝑢
1
𝑢
2
, . . . , 𝑢

𝑙
of length 𝑘 and 𝑙, respectively, at V, where

𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑙
and V

1
, V
2
, . . . , V

𝑘
are distinct new vertices. Let

𝐺
𝑘−1,𝑙+1

= 𝐺
𝑘,𝑙
− V
𝑘−1

V
𝑘
+ 𝑢
𝑙
V
𝑘
.

Lemma 4 (see [11]). Let 𝐺 be a connected graph on 𝑛 ≥

2 vertices and V be a vertex of 𝐺. Let 𝐺𝑘,𝑙 be the graph
defined as previously mentioned. If 𝑙 ≥ 𝑘 ≥ 1, then
𝜇1(𝐺𝑘−1,𝑙+1) ≤ 𝜇1(𝐺𝑘,𝑙), with equality if and only if there exists
a unit eigenvector of 𝐺𝑘,𝑙 corresponding to 𝜇1(𝐺𝑘,𝑙) taking the
value 0 on vertex V.

Lemma 5 (see [1]). Let 𝐺 be a graph obtained by deleting an
edge from the graph 𝐺. Then 𝜇𝑖(𝐺) ≥ 𝜇𝑖(𝐺


) ≥ 𝜇𝑖+1(𝐺), 𝑖 =

1, . . . , 𝑛 − 1.

Let 𝑆𝑖
3
be a graph obtained from the cycle 𝐶3 by attaching

𝑖 pendant edges at one vertex of the cycle 𝐶3.

Lemma 6 (see [5]). Let 𝐺 be a unicyclic graph on 𝑛 vertices;
then 𝜇

1
(𝐺) ≥ 𝜇

1
(𝐶
𝑛
); when 𝑛 ̸= 4, the equality holds if and only

if𝐺 ≅ 𝐶
𝑛
; when 𝑛 = 4, the equality holds if and only if𝐺 ≅ 𝐶

4
,

𝐺 ≅ 𝑆
1

3
.

Lemma 7. Let 𝐺 be a connected graph with at least one edge,
letΔ(𝐺) be its maximal degree, and let 𝑑𝑖 be the degree of vertex
V𝑖 and𝑚𝑖 = ∑V𝑗∈𝑁(V𝑖)

𝑑𝑗/𝑑𝑖; then

(i) 𝜇
1(𝐺) ≥ Δ(𝐺) + 1; the equality holds if and only if

Δ(𝐺) = 𝑛 − 1 [12];

(ii) 𝜇
1
(𝐺) ≤ max{𝑑

𝑖
+ 𝑚
𝑖
| V
𝑖
∈ 𝑉(𝐺)}; the equality

holds if and only if𝐺 is regular or semiregular bipartite
graph [13].

Let 𝐿V𝑖(𝐺) be the principal submatrix obtained from
𝐿(𝐺) by deleting the corresponding row and column of V

𝑖
.

Generally, let𝐿
𝑆
(𝐺) be the principal submatrix obtained from

𝐿(𝐺) by deleting the corresponding rows and columns of all
vertices of 𝑆. For any square matrix 𝐵, denote by Φ(𝐵) =

Φ(𝐵, 𝑥) = det(𝑥𝐼 − 𝐵) the characteristic polynomial of 𝐵.
In particular, if 𝐵 = 𝐿(𝐺), we write Φ(𝐿(𝐺)) by Φ(𝐺) for
convenience. If 𝐺 = 𝑢, then suppose thatΦ(𝐿𝑢(𝐺)) = 1.

Let 𝐺 = 𝐺1𝑢 : V𝐺2 be the graph obtained by joining the
vertex 𝑢 of the graph 𝐺1 to the vertex of V of the graph 𝐺2 by
an edge. We call 𝐺 a connected sum of 𝐺1 at 𝑢 and 𝐺2 at V.

Lemma 8. Let 𝐺1 and 𝐺2 be two graphs. If Φ(𝐺1) > Φ(𝐺2)

for 𝑥 ≥ 𝜇1(𝐺2), then 𝜇1(𝐺1) < 𝜇1(𝐺2). (In general, let 𝑓(𝑥)
and 𝑔(𝑥) be polynomials with positive leading coefficients. If
𝑓(𝑥) > 𝑔(𝑥) for 𝑥 ≥ 𝜇

1
(𝑔(𝑥)), then 𝜇

1
(𝑓(𝑥)) < 𝜇

1
(𝑔(𝑥)),

where 𝜇
1
(𝑔(𝑥)) and 𝜇

1
(𝑓(𝑥)) are the largest roots of 𝑔(𝑥) = 0

and 𝑓(𝑥) = 0, resp.)

Proof. If 𝜇
1
(𝐺
1
) ≥ 𝜇

1
(𝐺
2
), then Φ(𝐺

1
)|
𝑥=𝜇1(𝐺1)

= 0,
Φ(𝐺
2
)|
𝑥=𝜇1(𝐺1)

≥ 0, a contradiction.
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Lemma 9 (see [14]). Let 𝐺 = 𝐺
1
𝑢 : V𝐺

2
be a connected sum

of 𝐺
1
at 𝑢 and 𝐺

2
at V; then

Φ (𝐺) = Φ (𝐺1
)Φ (𝐺

2
) − Φ (𝐺

1
)Φ (𝐿V (𝐺2))

− Φ (𝐺2)Φ (𝐿𝑢 (𝐺1)) .

(3)

Lemma 10 (see [14]). Let 𝐺 be a connected graph with 𝑛

vertices which consists of a subgraph𝐻 and 𝑛− |𝑉(𝐻)| distinct
pendant edges (not in𝐻) attaching to a vertex V in𝐻. Then

Φ (𝐺) = (𝑥 − 1)
𝑛−|𝑉(𝐻)|

Φ (𝐻)

− (𝑛 − |𝑉 (𝐻)|) 𝑥(𝑥 − 1)
𝑛−|𝑉(𝐻)|−1

Φ(𝐿V (𝐻)) .

(4)

Lemma 11 (see [15]). Let 𝐷
𝑛 (𝑛 ≥ 1) be the matrix obtained

from 𝐿(𝑃
𝑛+2
) by deleting the rows and columns corresponding

to two pendant vertices of 𝑃
𝑛+2

; suppose that Φ(𝐷
0
) = 1,

Φ(𝐷
−𝑛
) = 0; then

(i) xΦ(𝐷𝑛−1) = Φ(𝑃𝑛);
(ii) Φ(𝐷

𝑛+1
) = (𝑥 − 2)Φ(𝐷

𝑛
) − Φ(𝐷

𝑛−1
);

(iii) Φ(𝐷
𝑚+1

)Φ(𝐷
𝑛
)−Φ(𝐷

𝑚
)Φ(𝐷
𝑛+1
) = Φ(𝐷

𝑚
)Φ(𝐷
𝑛−1
)−

Φ(𝐷𝑚−1)Φ(𝐷𝑛), (𝑛,𝑚 ≥ 1);
(iv) Φ(𝐶𝑛) = Φ(𝐷𝑛) − Φ(𝐷𝑛−2) + 2(−1)

𝑛+1.

From Lemma 11(i), all eigenvalues of 𝐷
𝑛

are 2 +

2 cos(𝑖𝜋/(𝑛 + 1)), where 1 ≤ 𝑖 ≤ 𝑛. Other characterizations
ofΦ(𝐷𝑛) can be shown below.

Lemma 12. Let 𝐷
𝑛 (𝑛 ≥ 1) be the matrix as above. Consider

the following.

(i) If 𝑛 ≥ 1, then Φ(𝐷
𝑛
) > Φ(𝐷

𝑛−1
) when 𝑥 ≥ 4.

(ii) If 𝑛 ≥ 1, then Φ(𝐷
𝑛
) > 2Φ(𝐷

𝑛−1
) when 𝑥 ≥ 5.

(iii) Φ(𝐷
𝑚
)Φ(𝐷
𝑛
) − Φ(𝐷

𝑚−1
)Φ(𝐷
𝑛+1
) = Φ(𝐷

𝑛−𝑚
), where

0 ≤ 𝑚 ≤ 𝑛.

Proof. From Lemma 11(ii), it is easy to prove (i) and (ii) by
introduction on 𝑛.

By Lemma 11(iii), we have

Φ(𝐷𝑚)Φ (𝐷𝑛) − Φ (𝐷𝑚−1)Φ (𝐷𝑛+1)

= Φ (𝐷
𝑚−1

)Φ (𝐷
𝑛−1
) − Φ (𝐷

𝑚−2
)Φ (𝐷

𝑛
)

= Φ (𝐷
𝑚−2

)Φ (𝐷
𝑛−2
) − Φ (𝐷

𝑚−3
)Φ (𝐷

𝑛−1
)

= ⋅ ⋅ ⋅ = Φ (𝐷
0
)Φ (𝐷

𝑛−𝑚
) − Φ (𝐷

−1
)Φ (𝐷

𝑛−𝑚+1
)

= Φ (𝐷
𝑛−𝑚

)

(5)

as desired.

Lemma 13. Suppose that 𝑢, V are two adjacent vertices of the
cycle 𝐶𝑞, where 𝑞 is even. Let 𝐻𝑘,𝑙 (𝑙 ≥ 𝑘 ≥ 1) be the
graph obtained from 𝐶

𝑞
by attaching two new paths 𝑃 : V(=

V
0
) V
1
V
2
, . . . , V

𝑘
and 𝑄 : 𝑢(= 𝑢

0
) 𝑢
1
𝑢
2
, . . . , 𝑢

𝑙
of length 𝑘 and

𝑙 at V and 𝑢, respectively, where 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑙
and V
1
, V
2
, . . . , V

𝑘

are distinct new vertices. Let 𝐻
𝑘−1,𝑙+1

= 𝐻
𝑘,𝑙
− V
𝑘−1

V
𝑘
+ 𝑢
𝑙
V
𝑘
.

Then 𝜇
1
(𝐻
𝑘−1,𝑙+1

) < 𝜇
1
(𝐻
𝑘,𝑙
).

Proof. Using Lemma 9, we have

Φ(𝐻
𝑘−1,𝑙+1

) − Φ (𝐻
𝑘,𝑙
)

= 𝑥 [Φ (𝐿V𝑘−1 (𝐻𝑘−1,𝑙)) − Φ (𝐿𝑢𝑙 (𝐻𝑘−1,𝑙))]

= 𝑥 {[(𝑥 − 1)Φ (𝐿V𝑘−1 ,𝑢𝑙 (𝐻𝑘−1,𝑙)) − Φ (𝐿V𝑘−1 ,𝑢𝑙,𝑢𝑙−1 (𝐻𝑘−1,𝑙))]

− [(𝑥 − 1)Φ (𝐿𝑢𝑙 ,V𝑘−1, (𝐻𝑘−1,𝑙))

−Φ (𝐿
𝑢𝑙 ,V𝑘−1,V𝑘−2 (𝐻𝑘−1,𝑙))]}

= ⋅ ⋅ ⋅ = 𝑥 [𝑏
𝑘,𝑙 (
𝑥) − 𝑎𝑘,𝑙 (

𝑥)] ,

(6)

where
𝑎
𝑘,𝑙 (
𝑥) = [Φ (𝐶𝑞

) − 2Φ (𝐷
𝑞−1
) + Φ (𝐷

𝑞−2
)]Φ (𝐷

𝑙−𝑘
)

− [Φ (𝐷
𝑞−1
) − Φ (𝐷

𝑞−2
)]Φ (𝐷

𝑙−𝑘−1
) ,

𝑏
𝑘,𝑙 (
𝑥) = [Φ (𝐷𝑞−1

) − Φ (𝐷
𝑞−2
)]Φ (𝐷

𝑙−𝑘+1
)

− Φ (𝐷𝑞−2)Φ (𝐷𝑙−𝑘) .

(7)

From Lemmas 11(ii) and 11(iv), (6) becomes

Φ(𝐻
𝑘−1,𝑙+1

) − Φ (𝐻
𝑘,𝑙
)

= 𝑥Φ (𝐷
𝑙−𝑘
) [(𝑥 − 2)Φ (𝐷𝑞−2

) − 2Φ (𝐷
𝑞−3
) + 2] ,

(8)

which is greater than 0 when 𝑥 ≥ 4 by Lemma 12(i). And
𝜇1(𝐻𝑘,𝑙) > 4 follows from Lemma 7(i). Thus 𝜇1(𝐻𝑘−1,𝑙+1) <
𝜇
1
(𝐻
𝑘,𝑙
) holds by Lemma 8.

For 𝐺 ∈ C𝑑
𝑛
, we have 𝑛 ≥ 3 and 1 ≤ 𝑑 ≤ 𝑛 − 2. If 𝑑 = 1,

then 𝐺 ≅ 𝐶
3
. If 𝑑 = 2, then 𝐺 ≅ 𝐶

4
, 𝐺 ≅ 𝐶

5
or 𝐺 ≅ 𝑆

𝑛−3

3
. By

Lemma 7, 𝜇
1
(𝑆
𝑛−3

3
) has the largest Laplacian spectral radius.

Therefore, in the following, we assume that 3 ≤ 𝑑 ≤ 𝑛−2.
Let 𝐻

0
be the unicyclic graph of order 𝑑 + 2 shown

in Figure 1. Let 𝐻
0
(𝑝
2
, . . . , 𝑝

𝑑
, 𝑝
𝑑+2
) be a graph of order 𝑛

obtained from 𝐻
0
by attaching 𝑝

𝑖
pendant vertices to each

V
𝑖
∈ 𝑉(𝐻

0
) \ {V
1
, V
𝑑+1
}, respectively, where 𝑝

𝑑+2
= 0 when

𝑘 = 1 or 𝑘 = 𝑑. Denote that

̃H
𝑑

𝑛
= {𝐻

0
(𝑝
2
, . . . , 𝑝

𝑑
, 𝑝
𝑑+2
) :

𝑑

∑

𝑖=2

𝑝
𝑖
+ 𝑝
𝑑+2

= 𝑛 − 𝑑 − 2} ,

H
𝑑

𝑛
= {𝐻
0
(0, . . . , 0, 𝑝

𝑖
, 0, . . . , 0) = 𝐻

0
(𝑝
𝑖
) : 𝑝
𝑖
= 𝑛 − 𝑑 − 2} .

(9)

Lemma 14. Let 𝐺 ∈
̃H𝑑
𝑛
. Then there is a graph 𝐺∗ ∈H

𝑑

𝑛
such

that 𝜇1(𝐺∗) ≥ 𝜇1(𝐺).

Proof. Let 𝐺 ∈
̃H𝑑
𝑛
\ H
𝑑

𝑛
and let 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)

𝑇

be a unit eigenvector of 𝜇
1
(𝐺), where 𝑥

𝑖
corresponds to the

vertex V𝑖 (1 ≤ 𝑖 ≤ 𝑛). Let 𝑡 = |{𝑝𝑖 : 𝑝𝑖 ̸= 0}|. Then 𝑡 ≥ 2.
Let 𝑝𝑖, 𝑝𝑗 ̸= 0, 𝑖 < 𝑗. Assume, without loss of generality, that
|𝑥
𝑖| ≥ |𝑥𝑗|. Let𝑁(V𝑗)⋂𝑃𝑉(𝐺) = {𝑢1, 𝑢2, . . . , 𝑢𝑝𝑗}. Let

𝐺
∗

1
= 𝐺 − V

𝑗
𝑢
1
− ⋅ ⋅ ⋅ − V

𝑗
𝑢
𝑝𝑗
+ V
𝑖
𝑢
1
+ ⋅ ⋅ ⋅ + V

𝑖
𝑢
𝑝𝑗
. (10)
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Figure 1

By Lemma 2, we have 𝜇
1
(𝐺
∗
) ≥ 𝜇

1
(𝐺). Note that 𝐺

1
∈ H
𝑑

𝑛

for 𝑡 = 2 and 𝐺
1
∈
̃H𝑑
𝑛
\ H
𝑑

𝑛
for 𝑡 > 2. If 𝑡 > 2, then we

will use𝐺∗
1
to repeat the above step until the cardinality of 𝑝

𝑖
,

being nonzero, is only one. So we have 𝐺∗
2
, 𝐺
∗

3
, . . . , 𝐺

∗

𝑡−1
and

𝜇
1
(𝐺
∗

2
) ≤ 𝜇
1
(𝐺
∗

3
) ≤ ⋅ ⋅ ⋅ ≤ 𝜇

1
(𝐺
∗

𝑡−1
). Note that 𝐺∗

𝑡−1
∈ H
𝑑

𝑛
, and

hence the lemma holds.

Lemma 15. For any 𝐺 ∈ H
𝑑

𝑛
, 𝜇
1
(𝐺) ≤ 𝜇

1
(𝐻
0
(𝑝
𝑘+1
)), where

0 ≤ 𝑘−1 ≤ 𝑑−𝑘; the equality holds if and only if𝐺 ≅ 𝐻
0
(𝑝
𝑘+1
).

Proof. Suppose that 𝑛−𝑑−2 = 𝑡. If 𝑡 = 0, the result is obvious.
If 𝑡 ≥ 1, by Lemma 7, we have

𝜇
1 (
𝐺) < max {max {𝑑

𝑖
+ 𝑚
𝑖
| V
𝑖
∈ 𝑉 (𝐺)} | 𝐺 ∈H

𝑑

𝑛
,

𝑖 ∉ {𝑑 + 2, 𝑘, 𝑘 + 1} }

= 𝑡 + 2 +

2 + 3 + 𝑡

𝑡 + 2

≤ 𝑡 + 4 = Δ (𝐻0 (𝑝𝑘+1)) + 1

< 𝜇
1
(𝐻
0
(𝑝
𝑘+1
)) .

(11)

Case 1. 𝑘 − 1 < 𝑑 − 𝑘.
When 𝑖 = 𝑑 + 2, let𝑁(V

𝑖
)⋂𝑃𝑉(𝐺) = {𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑡
}. Let

𝐺
∗
=

{
{
{
{

{
{
{
{

{

𝐻
0
(𝑝
𝑖
) − V
𝑖
𝑢
1
− ⋅ ⋅ ⋅ − V

𝑖
𝑢
𝑡
+ V
𝑘
𝑢
1
+ ⋅ ⋅ ⋅ + V

𝑘
𝑢
𝑡
,





𝑥
𝑘





≥




𝑥
𝑖





,

𝐻
0
(𝑝
𝑖
) − V
𝑘−1

V
𝑘
+ V
𝑘−1

V
𝑖
,





𝑥
𝑘





<




𝑥
𝑖





.

(12)

Then, in all cases, 𝐺∗ ≅ 𝐻0(𝑝𝑘). Thus by Lemma 2,
𝜇1(𝐻0(𝑝𝑑+2)) ≤ 𝜇1(𝐻0(𝑝𝑘)).

Next, we show that Φ(𝐻0(𝑝𝑘)) > Φ(𝐻0(𝑝𝑘+1)) for 𝑥 ≥

𝜇
1
(𝐻
0
(𝑝
𝑘+1
)). Because 𝐻

0
− V
𝑘
≅ 𝑃
𝑘−1

⋃𝑃
𝑑−𝑘+2

, we can
get Φ(𝐻

0
) in which the rows and columns correspond to

vertices as the ordering V
1
, . . . , V

𝑘−1
, V
𝑑+2
, V
𝑘+1
, V
𝑘+2
, . . . , V

𝑑+1
.

Furthermore, let 𝐸
11
= [𝑒
𝑖,𝑗
] be a square matrix of order 𝑘−1,

where 𝑒
𝑘−1,𝑘−1

= 1 and 𝑒
𝑖,𝑗
= 0whenever 𝑖 ̸= 𝑘−1 and 𝑗 ̸= 𝑘−1;

let 𝐹
𝑘𝑘
= [𝑓
𝑖,𝑗
] be a square matrix of order 𝑑 − 𝑘 + 2, where

𝑓
𝑘,𝑘
= 1 and 𝑓

𝑖,𝑗
= 0 whenever 𝑖 ̸= 𝑘 and 𝑗 ̸= 𝑘. Then

𝐿V𝑘 (𝐻0) = (

𝐿 (𝑃
𝑘−1
) + 𝐸
11

0
0 𝐿 (𝑃

𝑑−𝑘+2
) + 𝐹
11
+ 𝐹
22

) . (13)

Hence,

Φ(𝐿V𝑘 (𝐻0))

= Φ (𝐿 (𝑃
𝑘−1
) + 𝐸
11
)Φ (𝐿 (𝑃

𝑑−𝑘+2
) + 𝐹
11
+ 𝐹
22
) .

(14)

In order to simplify the notation, we denoteΦ(𝐿(𝑃
𝑘−1
) +𝐸
11
)

and Φ(𝐿(𝑃
𝑑−𝑘+2

) + 𝐹
11
+ 𝐹
22
) by 𝑓

𝑘−1,1
(𝑥) and 𝑓

𝑑−𝑘+2,2
(𝑥),

respectively. Similarly,

Φ(𝐿V𝑘+1 (𝐻0))

= Φ (𝐿 (𝑃
𝑑−𝑘
) + 𝐸
11
)Φ (𝐿 (𝑃

𝑘+1
) + 𝐹
11
+ 𝐹
22
)

= 𝑓
𝑑−𝑘,1 (

𝑥) 𝑓𝑘+1,2 (
𝑥) .

(15)

In general, by Lemma 11(ii), we have

𝑓𝑛1,1
(𝑥) = Φ (𝐷𝑛1

) + Φ (𝐷𝑛1−1
) ,

𝑓
𝑛2,2

(𝑥) = (𝑥 − 1) (𝑥 − 3)Φ (𝐷𝑛2−2
) − (2𝑥 − 3)Φ (𝐷𝑛2−3

) .

(16)

Hence, by Lemma 12(iii),

Φ(𝐿V𝑘+1 (𝐻0)) − Φ (𝐿V𝑘 (𝐻0))

= 𝑓
𝑑−𝑘,1 (

𝑥) 𝑓𝑘+1,2 (
𝑥) − 𝑓𝑘−1,1 (

𝑥) 𝑓𝑑−𝑘+2,2 (
𝑥)

= (𝑥 − 1) (𝑥 − 3)

× [Φ (𝐷
𝑘−1
)Φ (𝐷

𝑑−𝑘−1
) − Φ (𝐷

𝑘−2
)Φ (𝐷

𝑑−𝑘
)]

+ (2𝑥 − 3) [Φ (𝐷𝑘−1
)Φ (𝐷

𝑑−𝑘−1
) − Φ (𝐷

𝑘−2
)Φ (𝐷

𝑑−𝑘
)]

= 𝑥 (𝑥 − 2)Φ (𝐷𝑑−2𝑘
) .

(17)

From (17) and Lemma 10,

Φ(𝐻
0
(𝑝
𝑘
)) − Φ (𝐻

0
(𝑝
𝑘+1
))

= 𝑡 (𝑥 − 2) (𝑥 − 1)
𝑡−1
𝑥
2
Φ(𝐷
𝑑−2𝑘

) > 0

(18)

holds for 𝑥 ≥ 𝜇
1(𝐻0(𝑝𝑘+1)).

Thus 𝜇1(𝐻0(𝑝𝑘)) < 𝜇1(𝐻0(𝑝𝑘+1)) follows from Lemma 8.

Case 2. 𝑘 − 1 = 𝑑 − 𝑘.
First note that𝐻

0
(𝑝
𝑘
) ≅ 𝐻

0
(𝑝
𝑘+1
).

Next, since𝐻
0
− V
𝑑+2

= 𝑃
𝑑+1

, we can deriveΦ(𝐿V𝑑+2(𝐻0))

in which the rows and columns correspond to vertices as the
ordering V

1
, . . . , V

𝑘−1
, V
𝑘
, V
𝑘+1
, . . . , V

𝑑+1
. Then

Φ(𝐿V𝑑+2 (𝐻0))

= [Φ (𝐷
𝑘−1
) + Φ (𝐷

𝑘−2
)]

× [(𝑥
2
− 5𝑥 + 5)Φ (𝐷

𝑘−1
) − (2𝑥 − 5)Φ (𝐷𝑘−1

)]

− [Φ (𝐷
𝑘−2
) + Φ (𝐷

𝑘−3
)]

× [(𝑥 − 2)Φ (𝐷𝑘−1
) − 2Φ (𝐷

𝑘−2
)] .

(19)
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Combining Lemma 10 with (15) and (19), we get

Φ(𝐻
0 (𝑝𝑑+2)) − Φ (𝐻0 (𝑝𝑘+1))

= 𝑡(𝑥 − 1)
𝑡−1
𝑥Φ (𝐷

𝑘−2
) [(𝑥 − 2)Φ (𝐷𝑘−1

) − 2Φ (𝐷
𝑘−2
)] ,

(20)
which is greater than 0 when 𝑥 ≥ 𝜇

1
(𝐻
0
(𝑝
𝑘+1
)) by

Lemma 12(i). Thus, by Lemma 8, 𝜇
1
(𝐻
0
(𝑝
𝑑+2
)) <

𝜇
1
(𝐻
0
(𝑝
𝑘+1
)) holds. Hence, the proof is completed.

Let Δ𝑘
𝑛
be a graph of order 𝑛 obtained from a triangle by

attaching 𝑛−𝑑−2 pendant edges and a path of length 𝑑−𝑘 at
one vertex of the triangle, and a path of length 𝑘−1 to another
vertex of the triangle, respectively, where 0 ≤ 𝑘 − 1 ≤ 𝑑 − 𝑘.

Lemma 16. 𝜇1(Δ𝑘−1𝑛 ) < 𝜇1(Δ
𝑘

𝑛
), where 2 ≤ 𝑘 ≤ ⌈𝑑/2⌉.

Proof. Suppose that 𝑛 − 𝑑 − 2 = 𝑡; by Lemma 7(i), 𝜇
1
(Δ
𝑘

𝑛
) >

𝑡 + 4. Let𝐻∗ = 𝐻
0
− V
1
; by Lemma 9,

Φ(Δ
𝑘−1

𝑑+2
) − Φ (Δ

𝑘

𝑑+2
)

= 𝑥 [Φ (𝐿V2 (𝐻
∗
)) − Φ (𝐿V𝑑+1 (𝐻

∗
))]

= 𝑥 [(𝑥 − 1)Φ (𝐿V2 ,V𝑑+1 (𝐻
∗
)) − Φ (𝐿V2 ,V𝑑+1,V𝑑 (𝐻

∗
))

− (𝑥 − 1)Φ (𝐿V𝑑+1 ,V2 (𝐻
∗
)) + Φ (𝐿V𝑑+1,V2 ,V3 (𝐻

∗
))]

= ⋅ ⋅ ⋅ = 𝑥 [𝑔
𝑑,𝑘 (

𝑥) − 𝑓𝑑,𝑘 (
𝑥)] ,

(21)
where

𝑓
𝑑,𝑘 (

𝑥) = (𝑥
3
− 8𝑥
2
+ 18𝑥 − 8)Φ (𝐷

𝑑−2𝑘+1
)

− (𝑥
2
− 5𝑥 + 5)Φ (𝐷

𝑑−2𝑘
) ,

𝑔𝑑,𝑘 (
𝑥) = (𝑥

2
− 5𝑥 + 5)Φ (𝐷𝑑−2𝑘+2)

− (𝑥 − 2)Φ (𝐷𝑑−2𝑘+1) .

(22)

By Lemmas 10 and 11(ii) and (15) and (21),

Φ(Δ
𝑘−1

𝑛
) − Φ (Δ

𝑘

𝑛
)

= (𝑥 − 1)
𝑡
[Φ (Δ

𝑘−1

𝑑+2
) − Φ (Δ

𝑘

𝑑+2
)]

− 𝑡𝑥(𝑥 − 1)
𝑡−1
[Φ (𝐿V𝑘 (Δ

𝑘−1

𝑑+2
)) − Φ (𝐿V𝑘+1 (Δ

𝑘

𝑑+2
))]

= (𝑥 − 1)
𝑡
𝑥
2
(𝑥 − 4)Φ (𝐷𝑑−2𝑘+1) − 𝑡𝑥(𝑥 − 1)

𝑡−1

× [𝑓
𝑑−𝑘+1,1 (

𝑥) 𝑓𝑘,2 (
𝑥) − 𝑓𝑑−𝑘,1 (

𝑥) 𝑓𝑘+1,2 (
𝑥)]

= 𝑥
2
(𝑥 − 1)

𝑡−1

× [(𝑥 − 1) (𝑥 − 𝑡 − 4)Φ (𝐷𝑑−2𝑘+1
) + 𝑡 (𝑥 − 2)Φ (𝐷𝑑−2𝑘

)]

> 0

(23)

for 𝑥 ≥ 𝜇
1
(Δ
𝑘

𝑛
).

So 𝜇1(Δ
𝑘−1

𝑛
) < 𝜇1(Δ

𝑘

𝑛
) follows from Lemma 8.

In view of Lemma 16, the next corollary is obvious.

Corollary 17. 𝜇
1
(Δ
𝑘

𝑛
) ≤ 𝜇
1
(Δ
⌈𝑑/2⌉

𝑛
), where 1 ≤ 𝑘 ≤ ⌈𝑑/2⌉; the

equality holds if and only if Δ𝑘
𝑛
≅ Δ
⌈𝑑/2⌉

𝑛
.

Let 𝑈
0
be the unicyclic graph of order 𝑑 + 2 shown

in Figure 1. Let 𝑈
0
(𝑝
2
, . . . , 𝑝

𝑑
, 𝑝
𝑑+2
) be a graph of order 𝑛

obtained from 𝑈
0
by attaching 𝑝

𝑖
pendant vertices to each

V
𝑖
∈ 𝑉(𝑈

0
) \ {V
1
, V
𝑑+1
}, respectively. Denote

̃U
𝑑

𝑛
= {𝑈
0
(𝑝
2
, . . . , 𝑝

𝑑
, 𝑝
𝑑+2
) :

𝑑

∑

𝑖=2

𝑝
𝑖
+ 𝑝
𝑑+2

= 𝑛 − 𝑑 − 2} ,

U
𝑑

𝑛
= {𝑈
0
(0, . . . , 0, 𝑝

𝑖
, 0, . . . , 0) = 𝑈

0
(𝑝
𝑖
) : 𝑝
𝑖
= 𝑛 − 𝑑 − 2} .

(24)

Lemma 18. Let 𝐺 ∈
̃U𝑑
𝑛
. Then there is a graph 𝐺∗ ∈ U

𝑑

𝑛
such

that 𝜇
1
(𝐺
∗
) ≥ 𝜇
1
(𝐺).

Proof. The proof is similar to that of Lemma 14.

Lemma 19. For any 𝐺 ∈ U
𝑑

𝑛
, 𝜇
1
(𝐺) ≤ 𝜇

1
(𝑈
0
(𝑝
𝑘+2
)), where

0 ≤ 𝑘 − 1 ≤ 𝑑 − 𝑘 − 1; the equality holds if and only if 𝐺 ≅

𝑈
0
(𝑝
𝑘+2
).

Proof. Suppose that 𝑛 − 𝑑 − 2 = 𝑡. If 𝑡 = 0, the result is trivial.
If 𝑡 ≥ 1, by Lemma 7, we have

𝜇
1 (
𝐺) < max {max {𝑑

𝑖
+ 𝑚
𝑖
| V
𝑖
∈ 𝑉 (𝐺)} | 𝐺 ∈ U

𝑑

𝑛
,

𝑖 ∉ {𝑑 + 2, 𝑘, 𝑘 + 1, 𝑘 + 2} }

= 𝑡 + 2 +

2 + 3 + 𝑡

𝑡 + 2

≤ 𝑡 + 4 = Δ (𝑈
0
(𝑝
𝑘+2
)) + 1

< 𝜇
1 (𝑈0 (𝑝𝑘+2)) .

(25)

Case 1. 𝑖 = 𝑘.
If 𝑘 − 1 = 𝑑 − 𝑘 − 1, 𝑈

0
(𝑝
𝑘
) ≅ 𝑈
0
(𝑝
𝑘+2
).

If 𝑘 − 1 < 𝑑 − 𝑘 − 1, we can obtain Φ(𝐿V𝑘+2(𝑈0)) in which
the rows and columns correspond to vertices as the ordering
V
𝑑+2
, V
𝑘+1
, V
𝑘
, . . . , V

1
, V
𝑘+3
, . . . , V

𝑑+1
. Then by Lemma 11(ii),

Φ(𝐿V𝑘+2 (𝑈0))

= (𝑥 − 2) [(𝑥
2
− 4𝑥 + 2)Φ (𝐷

𝑘−1
) − 2 (𝑥 − 1)Φ (𝐷𝑘−2

)]

× [Φ (𝐷
𝑑−𝑘−1

) + Φ (𝐷
𝑑−𝑘−2

)] .

(26)

Similarly,

Φ(𝐿V𝑘 (𝑈0))

= (𝑥 − 2) [(𝑥
2
− 4𝑥 + 2)Φ (𝐷

𝑑−𝑘−1
) − 2 (𝑥 − 1)Φ (𝐷𝑑−𝑘−2

)]

× [Φ (𝐷
𝑘−1
) + Φ (𝐷

𝑘−2
)] .

(27)
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Combining the two equations above with Lemmas 10 and
12(iii), we get

Φ(𝑈
0
(𝑝
𝑘
)) − Φ (𝑈

0
(𝑝
𝑘+2
))

= 𝑡𝑥(𝑥 − 1)
𝑡−1
[Φ (𝐿V𝑘+2 (𝑈0)) − Φ (𝐿V𝑘 (𝑈0))]

= 𝑡𝑥
2
(𝑥 − 2)

2
(𝑥 − 1)

𝑡−1
Φ(𝐷
𝑑−2𝑘−1

) > 0

(28)

for 𝑥 ≥ 𝜇
1
(𝑈
0
(𝑝
𝑘+2
)).

From Lemma 8, 𝜇
1
(𝑈
0
(𝑝
𝑘
)) < 𝜇

1
(𝑈
0
(𝑝
𝑘+2
)) holds.

Case 2. 𝑖 = 𝑘 + 1, 𝑑 + 2.
From Lemma 7, when 𝑡 ≥ 2, we have

𝜇1 (𝑈0 (𝑝𝑘+1))

< max {𝑑
𝑖
+ 𝑚
𝑖
| V
𝑖
∈ 𝑉 (𝑈

0
(𝑝
𝑘+1
))}

= 𝑡 + 2 +

3 + 3 + 𝑡

𝑡 + 2

≤ 𝑡 + 4 = Δ (𝑈0 (𝑝𝑘+2)) + 1

< 𝜇
1
(𝑈
0
(𝑝
𝑘+2
)) .

(29)

For 𝑡 = 1, we can obtain Φ(𝐿V𝑘+1(𝑈0)) in which the
rows and columns correspond to vertices as the ordering
V1, . . . , V𝑘−1, V𝑘, V𝑑+2, V𝑘+2, . . . , V𝑑+1. Then

Φ(𝐿V𝑘+1 (𝑈0)) = [Φ (𝐷𝑘−1) + Φ (𝐷𝑘−2)] 𝑓 (𝑥)

− [Φ (𝐷𝑘−2
) + Φ (𝐷

𝑘−3
)] 𝑔 (𝑥)

= [(𝑥 − 2) 𝑔 (𝑥) − ℎ (𝑥)]Φ (𝐷𝑘−1
)

− [2𝑔 (𝑥) + ℎ (𝑥)]Φ (𝐷𝑘−2
) ,

(30)

where

𝑓 (𝑥) = (𝑥
3
− 7𝑥
2
+ 14𝑥 − 7)Φ (𝐷𝑑−𝑘−1)

− (2𝑥
2
− 9𝑥 + 7)Φ (𝐷

𝑑−𝑘−2
) ,

𝑔 (𝑥) = (𝑥 − 1) (𝑥 − 3)Φ (𝐷𝑑−𝑘−1) − (2𝑥 − 3)Φ (𝐷𝑑−𝑘−2) ,

ℎ (𝑥) = (𝑥 − 3) 𝑔 (𝑥) − 𝑓 (𝑥)

= (𝑥 − 2)Φ (𝐷𝑑−𝑘−1
) − 2Φ (𝐷

𝑑−𝑘−2
) .

(31)

By (26) and (30),

Φ(𝐿V𝑘+2 (𝑈0)) − Φ (𝐿V𝑘+1 (𝑈0))

= 𝑥 {(𝑥 − 1)Φ (𝐷𝑑−𝑘−2
) [(𝑥 − 3)Φ (𝐷𝑘−1

) − 2Φ (𝐷
𝑘−2
)]

− Φ (𝐷𝑑−𝑘−1)Φ (𝐷𝑘−2)} .

(32)

From Lemmas 11(ii) and 12(i), when 𝑥 ≥ 5,

(𝑥 − 1)Φ (𝐷𝑑−𝑘−2
) − Φ (𝐷

𝑑−𝑘−1
)

= Φ (𝐷
𝑑−𝑘−2

) + Φ (𝐷
𝑑−𝑘−3

) > 0,

(𝑥 − 3)Φ (𝐷𝑘−1
) − 3Φ (𝐷

𝑘−2
)

= {

(𝑥
2
− 5𝑥 + 3)Φ(𝐷𝑘−2)− (𝑥 − 3)Φ(𝐷𝑘−3) > 0 if 𝑘 ≥ 2,

𝑥 − 3 > 0 if 𝑘 = 1
(33)

hold (since (𝑥2 −5𝑥+3)− (𝑥−3) = 𝑥2 −6𝑥+6 > 0 for 𝑥 ≥ 5).
By Lemma 9 and (32), when 𝑥 ≥ 5,

Φ(𝑈
0
(𝑝
𝑘+1
)) − Φ (𝑈

0
(𝑝
𝑘+2
))

= 𝑥 [Φ (𝐿V𝑘+2 (𝑈0)) − Φ (𝐿V𝑘+1 (𝑈0))] > 0.
(34)

From Lemma 8, 𝜇
1(𝑈0(𝑝𝑘+1)) < 𝜇1(𝑈0(𝑝𝑘+2)) holds.

Hence, we complete the proof.

Let ⬦𝑘
𝑛
be a graph of order 𝑛 obtained from the cycle 𝐶

4

by attaching 𝑛 − 𝑑 − 2 pendant edges and a path of length
𝑑−𝑘−1 at one vertex of the cycle and a path of length 𝑘−1 to
another nonadjacent vertex of the cycle, respectively, where
0 ≤ 𝑘 − 1 ≤ 𝑑 − 𝑘 − 1.

Lemma 20. Let ⬦𝑘
𝑛
be a graph defined as above; then

(i) if 𝑘 − 1 < 𝑑 − 𝑘 − 1, then 𝜇
1
(⬦
𝑘−1

𝑛
) < 𝜇

1
(⬦
𝑘

𝑛
), where

2 ≤ 𝑘 ≤ ⌊𝑑/2⌋;
(ii) if 𝑘 − 1 = 𝑑 − 𝑘 − 1(i.e., 𝑘 = ⌊𝑑/2⌋), then

(a) when 𝑛 − 𝑑 − 2 = 0, or 1, 𝜇1(⬦𝑘−1𝑛 ) < 𝜇1(⬦
𝑘

𝑛
);

(b) when 𝑛 − 𝑑 − 2 ≥ 2, 𝜇
1(⬦
𝑘

𝑛
) < 𝜇1(⬦

𝑘−1

𝑛
).

Proof. Suppose that 𝑛−𝑑−2 = 𝑡; by Lemma 7(i),𝜇
1(⬦
𝑘

𝑛
) > 𝑡+4

holds. Let 𝑈∗ = 𝑈0 − V1; by Lemma 9,

Φ(⬦
𝑘−1

𝑑+2
) − Φ (⬦

𝑘

𝑑+2
)

= 𝑥 [Φ (𝐿V2 (𝑈
∗
)) − Φ (𝐿V𝑑+1 (𝑈

∗
))]

= 𝑥 [Φ (𝐿V𝑑+1 ,V2 ,V3 (𝑈
∗
)) − Φ (𝐿V2 ,V𝑑+1,V𝑑 (𝑈

∗
))]

= ⋅ ⋅ ⋅ = 𝑥 [𝑠
𝑑,𝑘 (

𝑥) − 𝑡𝑑,𝑘 (
𝑥)] ,

(35)

where

𝑠
𝑑,𝑘 (

𝑥) = (𝑥 − 2) [(𝑥 − 1) (𝑥 − 4)Φ (𝐷𝑑−2𝑘+1
)

− (𝑥 − 2)Φ (𝐷𝑑−2𝑘
)] ,

𝑡
𝑑,𝑘 (

𝑥) = (𝑥 − 2) [(𝑥 − 3) (𝑥
2
− 5𝑥 + 2)Φ (𝐷

𝑑−2𝑘
)

− (𝑥 − 1) (𝑥 − 4)Φ (𝐷𝑑−2𝑘−1) ] .

(36)
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By Lemmas 10 and 11(ii) and (26) and (35),

Φ(⬦
𝑘−1

𝑛
) − Φ (⬦

𝑘

𝑛
)

= (𝑥 − 1)
𝑡
[Φ (⬦

𝑘−1

𝑑+2
) − Φ (⬦

𝑘

𝑑+2
)]

− 𝑡𝑥(𝑥 − 1)
𝑡−1
[Φ (𝐿V𝑘+1 (⬦

𝑘−1

𝑑+2
)) − Φ (𝐿V𝑘+2 (⬦

𝑘

𝑑+2
))]

= 𝑥
2
(𝑥 − 1)

𝑡−1
(𝑥 − 2) 𝑢 (𝑥) ,

(37)

where 𝑢(𝑥) = (𝑥2−(𝑡+5)𝑥+4)Φ(𝐷𝑑−2𝑘)+𝑡(𝑥−2)Φ(𝐷𝑑−2𝑘−1).
When 𝑘 − 1 < 𝑑 − 𝑘 − 1, by Lemma 11(ii), we get

𝑢 (𝑥) = (𝑥 − 2) (𝑥
2
− (𝑡 + 5) 𝑥 + 𝑡 + 4)Φ (𝐷𝑑−2𝑘−1

)

− (𝑥
2
− (𝑡 + 5) 𝑥 + 4)Φ (𝐷𝑑−2𝑘−2

) .

(38)

Denote by 𝑒(𝑡) the largest root of 𝑥2 − (𝑡 + 5)𝑥 + 4 = 0. Then

𝑥
2
− (𝑡 + 5) 𝑥 + 4 ≤ 0, if 𝑥 ∈ (𝑡 + 4, 𝑒 (𝑡)] ,

𝑥
2
− (𝑡 + 5) 𝑥 + 𝑡 + 4

> 𝑥
2
− (𝑡 + 5) 𝑥 + 4 > 0, if 𝑥 > 𝑒 (𝑡) .

(39)

Hence, by Lemma 12(i), (37) is greater than 0 when 𝑥 ≥

𝜇
1(⬦
𝑘

𝑛
). So 𝜇1(⬦

𝑘−1

𝑛
) < 𝜇1(⬦

𝑘

𝑛
) follows from Lemma 8.

When 𝑘 − 1 = 𝑑 − 𝑘 − 1, (37) becomes

Φ(⬦
𝑘−1

𝑛
) − Φ (⬦

𝑘

𝑛
)

= 𝑥
2
(𝑥 − 1)

𝑡−1
(𝑥 − 2) [(𝑥

2
− (𝑡 + 5) 𝑥 + 4)] .

(40)

If 𝑡 = 1, let ⬦2
7
and ⬦1

7
be two graphs with 𝑑 = 4. Through

Maple 15, the largest root of 𝑥2−6𝑥+4 = 0 is e(1) = 5.2363 (up
to four decimal places), which is less than 𝜇

1
(⬦
2

7
) = 5.3145

and 𝜇
1
(⬦
1

7
) = 5.3008. From Lemma 5, 𝜇

1
(⬦
2

7
) ≤ 𝜇
1
(⬦
𝑘

𝑛
) and

𝜇1(⬦
1

7
) ≤ 𝜇1(⬦

𝑘−1

𝑛
) hold when 𝑛 ≥ 7. So, (40) is greater than

0 for 𝑥 ≥ 𝜇
1
(⬦
𝑘

𝑛
). By Lemma 8, 𝜇

1
(⬦
𝑘−1

𝑛
) < 𝜇
1
(⬦
𝑘

𝑛
) holds.

If 𝑡 ≥ 2, by Lemmas 11(ii) and 12(iii),

𝑡 (𝑥) − [(𝑥
2
− (𝑡 + 5) 𝑥 + 4)]

× [(𝑥 − 2)Φ
2
(𝐷
𝑚
) − (𝑡 + 4)Φ (𝐷𝑚

)Φ (𝐷
𝑚−1

)]

= 2𝑡 (𝑥 − 1)Φ
2
(𝐷
𝑚
) − [(𝑡

2
+ 3𝑡 + 4) 𝑥 − 4]

× Φ (𝐷
𝑚
)Φ (𝐷

𝑚−1
) + 2 (𝑡 + 2) (𝑥 − 1)Φ

2
(𝐷
𝑚−1

)

= [2𝑡𝑥
2
− (𝑡
2
+ 9𝑡 + 4) 𝑥 + (4𝑡 + 4)]Φ (𝐷𝑚)Φ (𝐷𝑚−1)

− 2𝑡 (𝑥 − 1)Φ (𝐷𝑚)Φ (𝐷𝑚−2)

+ 2 (𝑡 + 2) (𝑥 − 1)Φ
2
(𝐷
𝑚−1

)

= [2𝑡𝑥
2
− (𝑡
2
+ 9𝑡 + 4) 𝑥 + (4𝑡 + 4)]Φ (𝐷𝑚

)Φ (𝐷
𝑚−1

)

+ 4 (𝑥 − 1)Φ
2
(𝐷
𝑚−1

) + 2𝑡 (𝑥 − 1) ,

(41)
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�d+2�d+3
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□
k

d+3

(b)

Figure 2

where

𝑡 (𝑥) = [𝑥
3
− (𝑡 + 7) 𝑥

2
+ (4𝑡 + 14) 𝑥 − (2𝑡 + 8)]

× Φ
2
(𝐷
𝑚
) − [(𝑡 + 4) 𝑥

2
− (6𝑡 + 16) 𝑥 + (4𝑡 + 12)]

× Φ (𝐷
𝑚
)Φ (𝐷

𝑚−1
) + 2 (𝑡 + 2) (𝑥 − 1)Φ

2
(𝐷
𝑚−1

)

(42)

(one may refer to (52) in Lemma 24).
By Lemma 12(ii), (𝑥−2)Φ2(𝐷

𝑚
)−(𝑡+4)Φ(𝐷

𝑚
)Φ(𝐷
𝑚−1

) >

0 when 𝑥 ≥ 𝑡 + 4. And by derivative, 2𝑡𝑥2 − (𝑡2 + 9𝑡 + 4)𝑥 +
(4𝑡 + 4) > 0 when 𝑥 ≥ 𝑡 + 4.

Thus, (41) is greater than 0 for 𝑥 ≥ 𝑒(𝑡) > 𝑡 + 4. From
Lemma 8, 𝜇

1
(⬦
𝑘

𝑛
) < 𝑒(𝑡) holds. Put 𝑥 = 𝜇

1
(⬦
𝑘

𝑛
) into (40),

whose right side is less than 0. So 𝜇1(⬦
𝑘

𝑛
) < 𝜇1(⬦

𝑘−1

𝑛
). We

complete the proof.

Form Lemma 20, the below corollary holds.

Corollary 21. When 1 ≤ 𝑘 ≤ ⌊𝑑/2⌋,

(i) if 𝑑 is odd, then 𝜇
1
(⬦
𝑘

𝑛
) ≤ 𝜇
1
(⬦
⌊𝑑/2⌋

𝑛
); the equality holds

if and only if ⬦𝑘
𝑛
≅ ⬦
⌊𝑑/2⌋

𝑛
;

(ii) if 𝑑 is even, then

(a) when 𝑛 − 𝑑 − 2 = 0, 1, 𝜇
1
(⬦
𝑘

𝑛
) ≤ 𝜇
1
(⬦
⌊𝑑/2⌋

𝑛
); the

equality holds if and only if ⬦𝑘
𝑛
≅ ⬦
⌊𝑑/2⌋

𝑛
;

(b) when 𝑛 − 𝑑 − 2 ≥ 2, 𝜇
1
(⬦
𝑘

𝑛
) ≤ 𝜇
1
(⬦
⌊𝑑/2⌋−1

𝑛
); the

equality holds if and only if ⬦𝑘
𝑛
≅ ⬦
⌊𝑑/2⌋−1

𝑛
.

Let 𝑊
0
be the unicyclic graph of order 𝑑 + 3 shown in

Figure 2. Let𝑊0(𝑝2, . . . , 𝑝𝑑, 𝑝𝑑+2, 𝑝𝑑+3) be a graph of order 𝑛
obtained from 𝑊0

by attaching 𝑝
𝑖
pendant vertices to each

V𝑖 ∈ 𝑉(𝐻0) \ {V1, V𝑑+1}, respectively. When 𝑘 = 2, 𝑝𝑑+2 and
𝑝𝑑+3 = 0. Denote that

̃W
𝑑

𝑛
= {𝑊

0
(𝑝
2
, . . . , 𝑝

𝑑
, 𝑝
𝑑+2
, 𝑝
𝑑+3
) :

𝑑

∑

𝑖=2

𝑝𝑖 + 𝑝𝑑+2 + 𝑝𝑑+3 = 𝑛 − 𝑑 − 3} ,

W
𝑑

𝑛
= {𝑊
0
(0, . . . , 0, 𝑝

𝑖
, 0, . . . , 0)

= 𝑊
0
(𝑝
𝑖
) : 𝑝
𝑖
= 𝑛 − 𝑑 − 3} .

(43)
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Lemma 22. Let𝐺 ∈
̃W𝑑
𝑛
. Then there is a graph𝐺∗ ∈W

𝑑

𝑛
such

that 𝜇
1
(𝐺
∗
) ≥ 𝜇
1
(𝐺).

Proof. The proof is similar to that of Lemma 14.

Lemma 23. For any𝐺 ∈W
𝑑

𝑛
, 𝜇1(𝐺) ≤ 𝜇1(𝑊0(𝑝𝑘)), where 1 ≤

𝑘−1 ≤ 𝑑−𝑘+1; the equality holds if and only if𝐺 ≅ 𝑊0(𝑝𝑘+1).

Proof. Suppose that 𝑛−𝑑−3 = 𝑡. If 𝑡 = 0, the result is obvious.
If 𝑡 ≥ 1, by Lemma 7, we have

𝜇
1 (
𝐺)

< max {max {𝑑
𝑖
+ 𝑚
𝑖
| V
𝑖
∈ 𝑉 (𝐺)} | 𝐺 ∈W

𝑑

𝑛
, 𝑖 ̸= 𝑘}

= 𝑡 + 2 +

2 + 4 + 𝑡

𝑡 + 2

< 𝑡 + 5 = Δ (𝑊
0
(𝑝
𝑘
)) + 1

< 𝜇
1 (𝑊0 (𝑝𝑘)) .

(44)

Hence, the lemma holds.

3. Main Results and Their Proofs

In this section, we first show that 𝜇1(∇
⌊𝑑/2⌋+1

𝑛
) < 𝜇1(Δ

⌈𝑑/2⌉

𝑛
) <

𝜇
1
(⬦
⌊𝑑/2⌋

𝑛
).

Lemma 24. 𝜇
1
(Δ
⌈𝑑/2⌉

𝑛
) < 𝜇
1
(⬦
⌊𝑑/2⌋

𝑛
).

Proof. Suppose that 𝑛 − 𝑑 − 2 = 𝑡; by Lemma 7, 𝑡 + 4 <

𝜇
1
(Δ
⌈𝑑/2⌉

𝑛
), 𝜇
1
(⬦
⌊𝑑/2⌋

𝑛
) < 𝑡 + 5 holds. We distinguish the

following two cases.

Case 1. 𝑑 = 2𝑚 + 1 (𝑚 ≥ 1).
Let Δ𝑚+1

𝑛
and ⬦𝑚

𝑛
be two graphs on the left of Figure 3. If

𝑡 = 0, denote Δ𝑚+1
𝑛

and ⬦𝑚
𝑛
by 𝐺1 and 𝐺2, respectively. Let

𝐻1 = 𝐺1 − V𝑚+3 − ⋅ ⋅ ⋅ − V𝑑+1 and𝐻2 = 𝐺2 − V𝑚+3 − ⋅ ⋅ ⋅ − V𝑑+1.
By Lemma 9,

Φ(𝐺
1
) = [Φ (𝑃

𝑚
) − Φ (𝐿V𝑚+2 (𝑃𝑚))]Φ (𝐻1)

− Φ (𝑃𝑚)
Φ (𝐿V𝑚+2 (𝐻1)) ,

Φ (𝐺
2
) = [Φ (𝑃

𝑚
) − Φ (𝐿V𝑚+2 (𝑃𝑚))]Φ (𝐻2)

− Φ (𝑃𝑚)Φ (𝐿V𝑚+2 (𝐻2)) ,

(45)

where

Φ(𝐻
1
) = 𝑥 (𝑥 − 3) [(𝑥 − 3)Φ (𝐷𝑚

) − 2Φ (𝐷
𝑚−1

)] ,

Φ (𝐿V𝑚+2 (𝐻1))

= (𝑥 − 1) (𝑥 − 3)Φ (𝐷𝑚
) − (2𝑥 − 3)Φ (𝐷𝑚−1

) ,

Φ (𝐻2)

= 𝑥 (𝑥 − 2)

× [(𝑥 − 2) (𝑥 − 4)Φ (𝐷𝑚−1
) − 2 (𝑥 − 3)Φ (𝐷𝑚−2

)] ,

Φ (𝐿V𝑚+2 (𝐻2))

= (𝑥 − 2) [(𝑥
2
− 4𝑥 + 2)Φ (𝐷𝑚−1) − 2 (𝑥 − 1)Φ (𝐷𝑚−2)] .

(46)

Note thatΦ(𝑃
𝑚
) = 𝑥Φ(𝐷

𝑚−1
) andΦ(𝐿V𝑚+2(𝑃𝑚)) = Φ(𝐷𝑚−1)+

Φ(𝐷
𝑚−2

).
Combining the equations above with Lemma 10, we get

Φ(Δ
𝑚+1

𝑛
)

= (𝑥 − 1)
𝑡−1
[(𝑥 − 1)Φ (𝐺1

) − 𝑡𝑥Φ (𝐿V𝑚+2 (𝐺1))]

= 𝑥(𝑥 − 1)
𝑡−1
{(𝑥 − 1) (𝑥 − 3) (𝑥 − 3 − 𝑡)Φ

2
(𝐷𝑚)

− [(𝑡 + 4) 𝑥
2
− (6𝑡 + 16) 𝑥 + (6𝑡 + 12)]

× Φ (𝐷
𝑚
)Φ (𝐷

𝑚−1
)

+ [(2𝑡 + 3) 𝑥 − 3 (𝑡 + 1)]Φ
2
(𝐷
𝑚−1

)} ,

(47)

Φ(⬦
𝑚

𝑛
)

= (𝑥 − 1)
𝑡−1
[(𝑥 − 1)Φ (𝐺2

) − 𝑡𝑥Φ (𝐿V𝑚+2 (𝐺2))]

= 𝑥 (𝑥 − 2) (𝑥 − 1)
𝑡−1

× {(𝑥 − 1) [𝑥
3
− (𝑡 + 8) 𝑥

2
+ (4𝑡 + 18) 𝑥 − (2𝑡 + 10)]

× Φ
2
(𝐷𝑚−1)

− [3𝑥
3
− (3𝑡 + 19) 𝑥

2
+ 8 (𝑡 + 4) 𝑥 − 4 (𝑡 + 4)]

× Φ (𝐷
𝑚−1

)Φ (𝐷
𝑚−2

) + 2 (𝑥 − 1) (𝑥 − 3 − 𝑡)

× Φ
2
(𝐷
𝑚−1

)} .

(48)

Hence, by Lemmas 11(ii) and 12(i), when𝜇
1
(⬦
𝑚+1

𝑛
) ≤ 𝑥 < 𝑡+5,

Φ(Δ
𝑚+1

𝑛
) − Φ (⬦

𝑚

𝑛
)

= 𝑥(𝑥 − 1)
𝑡
[𝑑 (𝑥)Φ

2
(𝐷
𝑚−1

) + 𝑒 (𝑥)Φ (𝐷𝑚−1
)Φ (𝐷

𝑚−2
)

−𝑟 (𝑥)Φ
2
(𝐷
𝑚−2

)]

> 𝑥(𝑥 − 1)
𝑡
[𝑑 (𝑥) + 𝑒 (𝑥) − 𝑟 (𝑥)]Φ

2
(𝐷
𝑚−2

) ≥ 0,

(49)
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where

𝑑 (𝑥) = − (𝑥 − 1) (𝑥 − 𝑡 − 5) > 0,

𝑒 (𝑥) = (𝑥
2
− 2𝑥 + 2) (𝑥 − 𝑡 − 4) > 0,

𝑟 (𝑥) = (𝑥 − 1) (𝑥 − 𝑡 − 3) > 0,

𝑑 (𝑥) + 𝑒 (𝑥) − 𝑟 (𝑥) = (𝑥 − 2)
2
(𝑥 − 𝑡 − 4) > 0.

(50)

So 𝜇
1
(Δ
𝑚+1

𝑛
) < 𝜇
1
(⬦
𝑚+1

𝑛
) holds by Lemma 8.

Case 2. 𝑑 = 2𝑚 + 2 (𝑚 ≥ 1).
LetΔ𝑚+1
𝑛

and⬦𝑚+1
𝑛

be two graphs on the right of Figure 3.
If 𝑡 = 0, denoteΔ𝑚+1

𝑛
and⬦𝑚+1

𝑛
by𝐺∗
1
and𝐺∗

2
, respectively. By

similar computations as Case 1, we have

Φ(Δ
𝑚+1

𝑛
)

= (𝑥 − 1)
𝑡−1
[(𝑥 − 1)Φ (𝐺

∗

1
) − 𝑡𝑥Φ (𝐿V𝑚+2 (𝐺

∗

1
))]

= 𝑥(𝑥 − 1)
𝑡−1
{(𝑥 − 1)

2
(𝑥 − 3) (𝑥 − 4 − 𝑡)Φ

2
(𝐷
𝑚
)

− (𝑥 − 1) [3𝑥
2
− (3𝑡 + 16) 𝑥 + (6𝑡 + 18)]

× Φ (𝐷
𝑚
)Φ (𝐷

𝑚−1
)

+ [2𝑥
2
− 2 (𝑡 + 4) 𝑥 + 3 (𝑡 + 2)]Φ

2
(𝐷𝑚−1)} ,

(51)

Φ(⬦
𝑚+1

𝑛
)

= (𝑥 − 1)
𝑡−1
[(𝑥 − 1)Φ (𝐺

∗

2
) − 𝑡𝑥Φ (𝐿V𝑚+3 (𝐺

∗

2
))]

= 𝑥 (𝑥 − 2) (𝑥 − 1)
𝑡−1

× {[𝑥
3
− (𝑡 + 7) 𝑥

2
+ (4𝑡 + 14) 𝑥 − (2𝑡 + 8)]Φ

2
(𝐷
𝑚
)

− [(𝑡 + 4) 𝑥
2
− (6𝑡 + 16) 𝑥 + (4𝑡 + 12)]

× Φ (𝐷
𝑚)Φ (𝐷𝑚−1)

+2 (𝑡 + 2) (𝑥 − 1)Φ
2
(𝐷
𝑚−1

)} .

(52)

Hence, by Lemmas 11(ii), 12(i) and 12(iii), when 𝑥 ≥ 𝑡 + 4,

Φ(Δ
𝑚+1

𝑛
) − Φ (⬦

𝑚+1

𝑛
)

= 𝑥(𝑥 − 1)
𝑡

× {− [(𝑡 + 1) 𝑥
2
− (3𝑡 + 5) 𝑥 + (𝑡 + 4)]Φ

2
(𝐷𝑚)

+ [(𝑡 + 1) 𝑥
3
− (5𝑡 + 5) 𝑥

2
+ (7𝑡 + 10) 𝑥 − (2𝑡 + 6)]

× Φ (𝐷
𝑚
)Φ (𝐷

𝑚−1
)

− [(2𝑡 + 2) 𝑥
2
− (4𝑡 + 4) 𝑥 + (𝑡 + 2)]Φ

2
(𝐷
𝑚−1

)}
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Figure 3

= 𝑥(𝑥 − 1)
𝑡

× {[𝑝 (𝑥)Φ (𝐷𝑚−1
) − 𝑞 (𝑥)Φ (𝐷𝑚−2

)]Φ (𝐷
𝑚−1

) − 𝑤 (𝑥)} ,

≥ 𝑥(𝑥 − 1)
𝑡
Φ(𝐷
𝑚−1

)

× [(𝑝 (𝑥) − 𝑤 (𝑥))Φ (𝐷𝑚−1
) − 𝑞 (𝑥)Φ (𝐷𝑚−2

)] > 0,

(53)

where

𝑝 (𝑥) = 2𝑥
3
− (𝑡 + 9) 𝑥

2
+ (𝑡 + 9) 𝑥 − 2 > 0,

𝑞 (𝑥) = 2(𝑥 − 1)
2
> 0,

𝑤 (𝑥) = (𝑡 + 1) 𝑥
2
− (3𝑡 + 5) 𝑥 + (𝑡 + 4) > 0,

𝑝 (𝑥) − 𝑤 (𝑥) − 𝑞 (𝑥)

= 2𝑥
3
− (2𝑡 + 12) 𝑥

2
+ (4𝑡 + 18) 𝑥 − (𝑡 + 8) > 0.

(54)

So 𝜇
1
(Δ
𝑚+1

𝑛
) < 𝜇
1
(⬦
𝑚+1

𝑛
) follows from Lemma 8.

Let ∇𝑘
𝑛
be a graph of order 𝑛 obtained from a triangle by

attaching 𝑛 − 𝑑 − 3 pendant edges, a path of length 𝑘 − 1 and
a path of length 𝑑 − 𝑘 + 1 at one vertex of the triangle, where
1 ≤ 𝑘 − 1 ≤ 𝑑 − 𝑘 + 1.

Lemma 25. 𝜇1(∇⌊𝑑/2⌋+1𝑛
) < 𝜇1(Δ

⌈𝑑/2⌉

𝑛
).

Proof. Suppose that 𝑛 − 𝑑 − 3 = 𝑡; by Lemma 7(i),
𝜇
1
(∇
⌊𝑑/2⌋+1

𝑛
), 𝜇
1
(Δ
⌈𝑑/2⌉

𝑛
) > 𝑡 + 5 holds. We distinguish the

following two cases.

Case 1. 𝑑 = 2𝑚 + 1 (𝑚 ≥ 1).
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Let∇𝑚+1
𝑛

be a graph on the left of Figure 3. If 𝑡 = 0, denote
∇
𝑚+1

𝑛
by 𝐺
3
. Let𝐻

3
= 𝐺
3
− V
1
− ⋅ ⋅ ⋅ − V

𝑚
. By Lemma 9,

Φ(𝐺
3) = [Φ (𝑃𝑚) − Φ (𝐿V𝑚 (𝑃𝑚))]Φ (𝐻3)

− Φ (𝑃
𝑚
)Φ (𝐿V𝑚+1 (𝐻3)) ,

(55)

where

Φ(𝐻
3
) = 𝑥 (𝑥 − 3)

× [(𝑥 − 1) (𝑥 − 4)Φ (𝐷𝑚
) − (𝑥 − 3)Φ (𝐷𝑚−1

)] ,

Φ (𝐿V𝑚+1 (𝐻3)) = (𝑥 − 1) (𝑥 − 3)

× [(𝑥 − 1)Φ (𝐷𝑚
) − Φ (𝐷

𝑚−1
)] .

(56)

By Lemma 10, we get

Φ(∇
𝑚+1

𝑛
)

= (𝑥 − 1)
𝑡−1
[(𝑥 − 1)Φ (𝐺3

) − 𝑡𝑥Φ (𝐿V𝑚+1 (𝐺3))]

= 𝑥 (𝑥 − 3) (𝑥 − 1)
𝑡

× {(𝑥 − 1) (𝑥 − 𝑡 − 4)Φ
2
(𝐷
𝑚
) − [(𝑡 + 4) 𝑥 − (2𝑡 + 6)]

× Φ (𝐷
𝑚
)Φ (𝐷

𝑚−1
) + (𝑡 + 2)Φ

2
(𝐷
𝑚−1

)} .

(57)

By (47), we have

Φ(Δ
𝑚+1

𝑛
) = 𝑥(𝑥 − 1)

𝑡

× {(𝑥 − 1) (𝑥 − 3) (𝑥 − 𝑡 − 4)Φ
2
(𝐷
𝑚
)

− [(𝑡 + 5) 𝑥
2
− (6𝑡 + 22) 𝑥 + (6𝑡 + 18)]

× Φ (𝐷
𝑚
)Φ (𝐷

𝑚−1
)

+ [(2𝑡 + 5) 𝑥 − 3 (𝑡 + 2)]Φ
2
(𝐷
𝑚−1

)} .

(58)

Hence,

Φ(∇
𝑚+1

𝑛
) − Φ (Δ

𝑚+1

𝑛
)

= 𝑥
2
(𝑥 − 1)

𝑡
Φ(𝐷𝑚−1)

× [(𝑥 − 𝑡 − 4)Φ (𝐷𝑚
) − (𝑡 + 3)Φ (𝐷𝑚−1

)] .

(59)

When𝑚 = 1, (59) = 𝑥2(𝑥 − 1)𝑡+1(𝑥 − 𝑡 − 5) > 0 holds for
𝑥 > 𝑡 + 5. So 𝜇

1
(∇
𝑚+1

𝑛
) < 𝜇
1
(Δ
𝑚+1

𝑛
) follows from Lemma 8.

When 𝑚 ≥ 2, 𝜇
1
(∇
𝑚+1

𝑛
) < 𝜇
1
(Δ
𝑚+1

𝑛
) also holds (the proof

will be given in Case 2 of the lemma).

Case 2. 𝑑 = 2𝑚 + 2 (𝑚 ≥ 1).

Let ∇𝑚+2
𝑛

be a graph on the right of Figure 3. By similar
computations as in Case 1, we have

Φ(∇
𝑚+2

𝑛
) = 𝑥 (𝑥 − 3) (𝑥 − 1)

𝑡

× {(𝑥 − 1)
2
(𝑥 − 𝑡 − 5)Φ

2
(𝐷
𝑚
)

− 2 (𝑥 − 1) (𝑥 − 𝑡 − 4)Φ (𝐷𝑚
)Φ (𝐷

𝑚−1
)

+ (𝑥 − 𝑡 − 3)Φ
2
(𝐷
𝑚−1

)} .

(60)

By (51), we get

Φ(Δ
𝑚+1

𝑛
)

= 𝑥(𝑥 − 1)
𝑡−1
{(𝑥 − 1)

2
(𝑥 − 3) (𝑥 − 𝑡 − 5)Φ

2
(𝐷
𝑚
)

− (𝑥 − 1) [3𝑥
2
− (3𝑡 + 19) 𝑥 + (6𝑡 + 24)]

× Φ (𝐷
𝑚
)Φ (𝐷

𝑚−1
)

+ [2𝑥
2
− 2 (𝑡 + 5) 𝑥 + (3𝑡 + 9)]Φ

2
(𝐷
𝑚−1

)} .

(61)

Hence,

Φ(∇
𝑚+2

𝑛
) − Φ (Δ

𝑚+1

𝑛
)

= 𝑥
2
(𝑥 − 1)

𝑡
Φ(𝐷𝑚−1)

× [(𝑥 − 𝑡 − 4)Φ (𝐷𝑚+1
) − (𝑡 + 3)Φ (𝐷𝑚

)] .

(62)

Let 𝑡
𝑘
(𝑥) = (𝑥 − 𝑡 − 4)Φ(𝐷

𝑘
) − (𝑡 + 3)Φ(𝐷

𝑘−1
) and the

largest root of 𝑡
𝑘
(𝑥) = 0 is denoted by 𝜇

1
(𝑡
𝑘
(𝑥)), where 𝑘 ≥ 0.

We first show that 𝜇
1
(𝑡
𝑘
(𝑥)) is strictly increasing.

We use the induction on 𝑘. Clearly, 𝜇
1
(𝑡
0
(𝑥)) = 𝑡 + 4 <

𝜇
1
(𝑡
1
(𝑥)) = 𝑡 + 5 holds. Generally, assume that 𝜇

1
(𝑡
𝑘−1
(𝑥)) <

𝜇
1
(𝑡
𝑘
(𝑥)), then by Lemmas 11(ii) and 12(iii),

𝑡
𝑘+1 (

𝑥) = (𝑥 − 2) 𝑡𝑘 (
𝑥) − 𝑡𝑘−1 (

𝑥) , (63)

𝑡
2

𝑘
(𝑥) − 𝑡𝑘+1 (

𝑥) 𝑡𝑘−1 (
𝑥)

= − [(𝑡 + 2) 𝑥
2
− (𝑡 + 2) (𝑡 + 5) 𝑥 − 1] = −V (𝑥) .

(64)

Put 𝑥 = 𝜇1(𝑡𝑘(𝑥)) into (63), whose right side is less than 0. So
𝜇1(𝑡𝑘(𝑥)) < 𝜇1(𝑡𝑘+1(𝑥)).

Furthermore, 𝜇1(𝑡𝑘(𝑥)) has the upper bound.
Denote that the largest root of V(𝑥) = 0 is𝜇1(V(𝑥)). If there

exists some𝑚 such that 𝜇1(𝑡𝑚(𝑥)) ≥ 𝜇1(V(𝑥)), we substitute 𝑘
with 𝑚 and put 𝑥 = 𝜇1(𝑡𝑚(𝑥)) into (64). So, the right side of
it is less than and equal to 0 and the left side is greater than 0,
a contradiction.

Let 𝐺
3
= ∇
𝑚+2

𝑛
− V
1
− ⋅ ⋅ ⋅ − V

𝑚−1
− V
𝑚+5

− ⋅ ⋅ ⋅ − V
2𝑚+3

and
𝐺


1
= Δ
𝑚+1

𝑛
− V
1
− ⋅ ⋅ ⋅ − V

𝑚−1
− V
𝑚+5

− ⋅ ⋅ ⋅ − V
2𝑚+3

.
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By (60) and (62),

Φ(𝐺


3
) = 𝑥(𝑥 − 1)

𝑡
(𝑥 − 3) (𝑥

2
− 3𝑥 + 1) 𝑟 (𝑥) ,

Φ (𝐺


3
) − Φ (𝐺



1
)

= 𝑥
2
(𝑥 − 1)

𝑡
[𝑥
3
− (𝑡 + 8) 𝑥

2
+ (3𝑡 + 16) 𝑥 − (𝑡 + 6)]

= 𝑥
2
(𝑥 − 1)

𝑡
(𝑟 (𝑥) + 1) ,

(65)

where 𝑟(𝑥) = 𝑥3 − (𝑡 + 8)𝑥2 + (3𝑡 + 16)𝑥 − (𝑡 + 7).
By Lemma 7(i), 𝜇

1
(𝐺


3
) is the largest root of 𝑟(𝑥) = 0. If

𝜇
1(𝐺


3
) ≥ 𝜇1(𝐺



1
), then [Φ(𝐺

3
)−Φ(𝐺



1
)]|𝑥=𝜇1(𝐺



3
) ≤ 0 and 𝑟(𝑥)+

1|
𝑥=𝜇1(𝐺



3
)
> 0, a contradiction. So 𝜇

1
(𝐺


3
) < 𝜇
1
(𝐺


1
).

By derivative, when 𝑥 > 𝑡 + 5,

𝑥V (𝑥) − (𝑡 + 2) 𝑟 (𝑥)

= 3 (𝑡 + 2) 𝑥
2
− (3𝑡
2
+ 22𝑡 + 33) 𝑥 + (𝑡 + 2) (𝑡 + 7) > 0.

(66)

From Lemma 8, 𝜇
1
(V(𝑥)) < 𝜇

1
(𝐺


3
) holds. Furthermore,

𝜇
1
(𝐺


3
) ≤ 𝜇
1
(∇
𝑚+2

𝑛
) and 𝜇

1
(𝐺


1
) ≤ 𝜇
1
(Δ
𝑚+1

𝑛
) hold by Lemma 5.

Hence, (62) is greater than 0 for 𝑥 ≥ 𝜇
1
(Δ
𝑚+1

𝑛
). From

Lemma 8, we get 𝜇
1
(∇
𝑚+2

𝑛
) < 𝜇
1
(Δ
𝑚+1

𝑛
) as desired.

Let ◻𝑘
𝑑+3

be the unicyclic graph of order 𝑑 + 3 shown in
Figure 2.

Lemma 26. 𝜇
1
(◻
⌈𝑑/2⌉

𝑑+3
) < 𝜇
1
(Δ
⌈𝑑/2⌉

𝑑+3
).

Proof. Note that by Lemma 7(i), 𝜇
1
(Δ
⌈𝑑/2⌉

𝑑+3
) > 5.

Case 1. 𝑑 = 2𝑚 + 1(𝑚 ≥ 1).
By Lemma 9, we have

Φ(◻
𝑚+1

2𝑚+4
) = [Φ (𝑃𝑚) − Φ (𝐿V𝑚 (𝑃𝑚))]

× Φ (𝐻
4
) − Φ (𝑃

𝑚
)Φ (𝐿V𝑚+1 (𝐻4))

= 𝑥 [(𝑥 − 2)
2
(𝑥 − 4)Φ

2
(𝐷𝑚) − 4 (𝑥 − 2) (𝑥 − 3)

× Φ (𝐷
𝑚
)Φ (𝐷

𝑚−1
) + (3𝑥 − 8)Φ

2
(𝐷
𝑚−1

)] ,

(67)

where𝐻
4
= ◻
𝑚+1

2𝑚+4
− V
1
− ⋅ ⋅ ⋅ − V

𝑚
.

By (47), we get

Φ(Δ
𝑚+1

2𝑚+4
)

= 𝑥 [(𝑥 − 1) (𝑥 − 3) (𝑥 − 4)Φ
2
(𝐷
𝑚
) − (5𝑥

2
− 22𝑥 + 18)

× Φ (𝐷
𝑚
)Φ (𝐷

𝑚−1
) + (5𝑥 − 6)Φ

2
(𝐷
𝑚−1

)] .

(68)

Hence, by Lemmas 11(ii), 12(ii), and 12(iii), when 𝑥 ≥ 5,

Φ(◻
𝑚+1

2𝑚+4
) − Φ (Δ

𝑚+1

2𝑚+4
)

= 𝑥 [(𝑥 − 4)Φ
2
(𝐷
𝑚
) + (𝑥

2
− 2𝑥 − 6)Φ (𝐷

𝑚
)Φ (𝐷

𝑚−1
)

−2 (𝑥 + 1)Φ
2
(𝐷
𝑚−1

)]

= 𝑥Φ (𝐷
𝑚−1

) [2 (𝑥
2
− 4𝑥 + 1)Φ (𝐷

𝑚
) − (3𝑥 − 2)Φ (𝐷𝑚−1

)]

+ 𝑥 (𝑥 − 4)

> 𝑥Φ
2
(𝐷
𝑚−1

) (4𝑥
2
− 19𝑥 + 6) + 𝑥 (𝑥 − 4) > 0.

(69)

So 𝜇
1
(◻
𝑚+1

2𝑚+4
) < 𝜇
1
(Δ
𝑚+1

2𝑚+4
) follows from Lemma 8.

Case 2. 𝑑 = 2𝑚 + 2 (𝑚 ≥ 1).
By a similar proof as of Case 1, 𝜇

1
(◻
𝑚+1

2𝑚+5
) < 𝜇

1
(Δ
𝑚+1

2𝑚+5
)

holds.

Next we give the proof of Theorem 1, which is the most
important result.

Proof of Theorem 1. Let 𝐺 ∈ C𝑑
𝑛
and 𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

be a unit eigenvector of 𝜇
1
(𝐺), where 𝑥

𝑖
corresponds to the

vertex V
𝑖
(1 ≤ 𝑖 ≤ 𝑛).

Choose𝐺 ∈ C𝑑
𝑛
such that the Laplacian spectral radius of

𝐺 is as large as possible. Then, by Lemma 6, we can assume
that 𝐺 ̸=𝐶𝑛. Let 𝑃𝑑+1 = V1V2, . . . , V𝑑+1 be the induced path of
length 𝑑 and let 𝐶𝑞 be the only cycle in 𝐺. Since 𝐺 ̸=𝐶𝑛, we
have min{𝑑(V1), 𝑑(V𝑑+1)} = 1, say 𝑑(V1) = 1. We first show
some claims.

Claim 1. 𝑉(𝐶
𝑞
)⋂𝑉(𝑃

𝑑+1
) ̸= 0.

Proof of Claim 1.Otherwise, since𝐺 is connected, there exists
an only path 𝑃 = V

𝑖
V
𝑘
V
𝑘+1
, . . . , V

𝑙−1
V
𝑙
connecting 𝐶

𝑞
and 𝑃
𝑑+1

,
where V

𝑖
∈ 𝑉(𝐶

𝑞
), V
𝑙
∈ 𝑉(𝑃

𝑑+1
),and V

𝑘
, . . . , V

𝑙−1
∈ 𝑉(𝐺) \

(𝑉(𝐶
𝑞
)⋃𝑉(𝑃𝑑+1

)).
For each 𝑗, let 𝑇

𝑗
be a rooted tree (with 𝑟

𝑗
as its root)

attached at V
𝑗
(𝑘 ≤ 𝑗 ≤ 𝑙 − 1), where the order of 𝑇

𝑗
is

𝑛
𝑗
. We assume that all trees , but 𝑇

𝑖
, are kept fixed, while 𝑇

𝑖

(along with its root) can be changed. Suppose that 𝑇
𝑖
̸= 𝑆
𝑛𝑖
.

Let V be a vertex belonging to 𝑇𝑖 chosen so that 𝑑(V) > 2

and that 𝑑(V, 𝑟𝑖) (the distance between V and 𝑟𝑖) is the largest.
By Lemma 4 (applied in the reverse direction), the Laplacian
spectral radius is increased when any hanging path at V is
replaced by a hanging star (namely, edges of a hanging path
now become the hanging edges at V). If the same is repeated
for other hanging paths at V, we get one star attached at V
(its central vertex is identified with V) whose size is equal to
the sum of the lengths of the aforementioned paths. Let 𝑤 be
a vertex in 𝑇

𝑖
, adjacent to V, and belonging to the (unique)

path between 𝑟
𝑖
and V. By Lemma 3, the Laplacian spectral

radius is increased when all hanging edges at V become the
hanging edges at 𝑤. Note also that 𝑑(𝑤, 𝑟

𝑖
) = 𝑑(V, 𝑟

𝑖
) − 1. By

repeating the same procedure (for any other vertex as V), we
arrive at 𝐺1, where the rooted tree 𝑇𝑖 becomes a star 𝑆𝑛𝑖 , so
that 𝜇

1
(𝐺
1
) ≥ 𝜇
1
(𝐺).

By the same way to other rooted trees, we arrive at 𝐺
2
,

where every rooted tree 𝑇
𝑗 ≅ 𝑆𝑛𝑗

(𝑘 ≤ 𝑗 ≤ 𝑙−1), and 𝜇1(𝐺2) ≥
𝜇
1
(𝐺
1
). From 𝐺

2
, applying Lemma 2, we arrive at 𝐺

3
, where

only a rooted tree 𝑆
𝑛𝑘+⋅⋅⋅+𝑛𝑙−1

is attached at some vertex V
𝑚
∈

{V
𝑘
, . . . , V

𝑙−1
}. So 𝜇

1
(𝐺
3
) ≥ 𝜇
1
(𝐺
2
).

From 𝐺
3
, by Lemma 3, the Laplacian spectral radius

increased when all vertices adjacent to V
𝑙
become adjacent
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vertices to V
𝑙−1

. By repeating the same procedure (for any
other vertex of 𝑃 − V

𝑖 as V𝑙), we arrive at 𝐺4, where
𝑉(𝐶
𝑞
)⋂𝑉(𝑃

𝑑+1
) ̸= 0, and 𝜇

1
(𝐺
4
) ≥ 𝜇
1
(𝐺
3
).

Hence, we have 𝜇
1
(𝐺
4
) ≥ 𝜇
1
(𝐺), a contradiction.

By Claim 1, 𝑉(𝐶
𝑞
)⋂𝑉(𝑃

𝑑+1
) ̸= 0. Denote that

𝐶
𝑞

= V
𝑘
V
𝑘+1
, . . . , V

𝑙−1
V
𝑙
V
𝑑+2

V
𝑑+3
, . . . , V

𝑠
V
𝑘
(𝑠 ≥ 𝑑 + 2),

where {V
𝑘
, V
𝑘+1
, . . . , V

𝑙−1
, V
𝑙
} = 𝑉(𝐶

𝑞
)⋂𝑉(𝑃

𝑑+1
) and

{V
𝑑+2
, V
𝑑+3
, . . . , V

𝑠
} = 𝑉(𝐶

𝑞
) \ 𝑉(𝑃

𝑑+1
).

Claim 2. 𝑑(V) = 1 for V ∈ 𝑉(𝐺) \ (𝑉(𝐶
𝑞)⋃𝑉(𝑃𝑑+1)).

Proof of Claim 2. Consider other rooted trees attached at
𝑉(𝐶𝑞) and 𝑉(𝑃𝑑+1), respectively. By a similar proof as Claim
1 (the procedure until 𝐺

3
), we can get �̃�

𝑖
and 𝜇

1
(�̃�
𝑖
) ≥

𝜇
1
(𝐺), where only a rooted tree is attached at V

𝑖
(V
𝑖
∈

{𝑉(𝐶
𝑞
)⋃𝑉(𝑃

𝑑+1
)} \ {V

1
, V
𝑑+1
}), a contradiction.

Claim 3. 𝑙 = 𝑘 + 1 and 𝑠 = 𝑑 + 2.

Proof of Claim 3. Denote that 𝐴 = {V | V ∈ 𝑉(𝐺) \

(𝑉(𝐶
𝑞
)⋃𝑉(𝑃𝑑+1

)} = {V
𝑠+1
, . . . , V

𝑛
} and |𝐴| = 𝑛 − 𝑠 = 𝑡 ≥ 0.

Case 1. 𝑙 = 𝑘. By Lemma 7,

𝜇
1
(�̃�
𝑖
) ≤ max {max {𝑑V𝑖 + 𝑚V𝑖 | V𝑖 ∈ 𝑉 (�̃�𝑖)} | 𝑖 ̸= 𝑘}

= 𝑡 + 2 +

2 + 4 + 𝑡

𝑡 + 2

≤ 𝑡 + 5 = Δ (�̃�
𝑘
) + 1

< 𝜇1 (�̃�𝑘) < max {𝑑V𝑖 + 𝑚V𝑖 | V𝑖 ∈ 𝑉 (�̃�𝑘)}

= 𝑡 + 4 +

2 + 2 + 2 + 2 + 𝑡

𝑡 + 4

≤ 𝑡 + 6 ≤ 𝑛 − 𝑑 + 2

= Δ (∇
𝑘

𝑛
) + 1 < 𝜇

1
(∇
𝑘

𝑛
)

(70)

for 𝑠 ≥ 𝑑 + 4 (|𝐶
𝑞| ≥ 4).

When 𝑠 = 𝑑 + 3 (|𝐶
𝑞
| = 3), �̃�

𝑖
≅ 𝑊
0
(𝑝
𝑖
). By Lemma 23,

𝜇
1
(�̃�
𝑖
) < 𝜇
1
(∇
𝑘

𝑛
) for any 𝑖 ̸= 𝑘, where �̃�

𝑘
≅ ∇
𝑘

𝑛
.

Hence, by Lemma 4, ∇⌊𝑑/2⌋+1
𝑛

has the larger Laplacian
spectral radius. Furthermore, from Lemmas 24 and 25,
𝜇
1
(⬦
⌊𝑑/2⌋

𝑛
) > 𝜇
1
(∇
⌊𝑑/2⌋+1

𝑛
) holds.

Case 2. 𝑙 = 𝑘 + 1.

Subcase 2.1. 𝑡 ≥ 1. By Lemma 7,

𝜇
1 (�̃�𝑖)

≤ max {max {𝑑V𝑖 + 𝑚V𝑖 | V𝑖 ∈ 𝑉 (�̃�𝑖)} , 𝑖 ̸= 𝑘, 𝑘 + 1}

= 𝑡 + 2 +

2 + 3 + 𝑡

𝑡 + 2

≤ 𝑡 + 4 = Δ (�̃�
𝑘
) + 1 (Δ (�̃�

𝑘+1
) + 1)

< 𝜇
1
(�̃�
𝑘
) (𝜇
1
(�̃�
𝑘+1
)) < max {𝑑V𝑖 + 𝑚V𝑖 | V𝑖 ∈ 𝑉 (�̃�𝑘)}

≤ 𝑡 + 3 +

2 + 3 + 𝑡

𝑡 + 3

< 𝑡 + 5 ≤ 𝑛 − 𝑑 + 2 = Δ (Δ
𝑘

𝑛
) + 1

< 𝜇
1
(Δ
𝑘

𝑛
)

(71)

for 𝑠 ≥ 𝑑 + 3 (|𝐶
𝑞| ≥ 4).

When 𝑠 = 𝑑 + 2 (|𝐶
𝑞
| = 3), �̃�

𝑖
≅ 𝐻
0
(𝑝
𝑖
), By Lemma 15,

𝜇
1
(�̃�
𝑖
) < 𝜇
1
(Δ
𝑘

𝑛
) for any 𝑖 ̸= 𝑘 + 1, where �̃�

𝑘+1
≅ Δ
𝑘

𝑛
.

Subcase 2.2. 𝑡 = 0. By Lemma 7,

𝜇1 (�̃�𝑖) ≤ max {max {𝑑V𝑖 + 𝑚V𝑖 | V𝑖 ∈ 𝑉 (�̃�𝑖)} 𝑖 ̸= 1, 𝑑 + 1}

= 3 +

2 + 3 + 2

3

< 6 < 𝑛 − 𝑑 + 2 = Δ (Δ
𝑘

𝑛
) + 1

< 𝜇
1
(Δ
𝑘

𝑛
)

(72)

for 𝑠 ≥ 𝑑 + 4 (|𝐶
𝑞
| ≥ 5).

When 𝑠 = 𝑑 + 3 (|𝐶
𝑞
| = 4), by Lemma 13, 𝜇

1
(◻
𝑘

𝑑+3
) <

𝜇
1(◻
⌈𝑑/2⌉

𝑑+3
). Furthermore, from Lemma 26, 𝜇1(Δ

⌈𝑑/2⌉

𝑑+3
) >

𝜇
1(◻
⌈𝑑/2⌉

𝑑+3
).

When 𝑠 = 𝑑 + 2 (|𝐶
𝑞
| = 3), �̃�

𝑖
≅ 𝐻
0
(𝑝
𝑖
) ≅ Δ
𝑘

𝑛
.

Hence, in view of Subcases 2.1 and 2.2, byCorollary 17 and
Lemma 24, 𝜇

1
(⬦
⌊𝑑/2⌋

𝑛
) > 𝜇
1
(Δ
⌈𝑑/2⌉

𝑛
) holds.

Case 3. 𝑙 ≥ 𝑘 + 2. By Lemma 7,

𝜇
1
(�̃�
𝑖
)

≤ max {max {𝑑V𝑖 + 𝑚V𝑖 | V𝑖 ∈ 𝑉 (�̃�𝑖)} 𝑖 ̸= 1, 𝑑 + 1}

= 𝑡 + 3 +

2 + 2 + 2 + 𝑡

𝑡 + 3

≤ 𝑡 + 5 ≤ 𝑛 − 𝑑 + 2 = Δ (⬦
𝑘

𝑛
) + 1

< 𝜇
1 (⬦
𝑘

𝑛
)

(73)

for 𝑠 ≥ 𝑑 + 3 (|𝐶
𝑞
| ≥ 5).

When 𝑠 = 𝑑 + 2 (|𝐶
𝑞
| = 4), �̃�

𝑖
≅ 𝑈
0
(𝑝
𝑖
), by Lemma 19,

𝜇
1(�̃�𝑖) < 𝜇1(⬦

𝑘

𝑛
) for any 𝑖 ̸= 𝑘 + 2, where �̃�𝑘+2 ≅ ⬦

𝑘

𝑛
.

Hence, in view of Cases 1, 2, and 3 and Corollary 21, if 𝑑
is odd, ⬦⌊𝑑/2⌋

𝑛
has the largest Laplacian spectral radius; if 𝑑 is

even and 𝑛 − 𝑑 − 2 = 0, 1, ⬦⌊𝑑/2⌋
𝑛

has the largest Laplacian
spectral radius; If 𝑑 is even and 𝑛 − 𝑑 − 2 ≥ 2, ⬦⌊𝑑/2⌋−1

𝑛
has the

largest Laplacian spectral radius, a contradiction.
By Claims 1, 2, and 3,Theorem 1 follows immediately.
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