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This paper is concernedwith introducing twowavelets collocation algorithms for solving linear and nonlinearmultipoint boundary
value problems. The principal idea for obtaining spectral numerical solutions for such equations is employing third- and fourth-
kind Chebyshev wavelets along with the spectral collocation method to transform the differential equation with its boundary
conditions to a system of linear or nonlinear algebraic equations in the unknown expansion coefficients which can be efficiently
solved. Convergence analysis and some specific numerical examples are discussed to demonstrate the validity and applicability of
the proposed algorithms. The obtained numerical results are comparing favorably with the analytical known solutions.

1. Introduction

Spectral methods are one of the principal methods of dis-
cretization for the numerical solution of differential equa-
tions. The main advantage of these methods lies in their
accuracy for a given number of unknowns (see, e.g., [1–
4]). For smooth problems in simple geometries, they offer
exponential rates of convergence/spectral accuracy. In con-
trast, finite difference and finite-element methods yield only
algebraic convergence rates.The threemost widely used spec-
tral versions are the Galerkin, collocation, and tau methods.
Collocationmethods [5, 6] have become increasingly popular
for solving differential equations, also they are very useful in
providing highly accurate solutions to nonlinear differential
equations.

Many practical problems arising in numerous branches of
science and engineering require solving high even-order and
high odd-order boundary value problems. Legendre poly-
nomials have been previously used for obtaining numerical
spectral solutions for handling some of these kinds of prob-
lems (see, e.g., [7, 8]). In [9], the author has constructed some
algorithms by selecting suitable combinations of Legendre

polynomials for solving the differentiated forms of high-
odd-order boundary value problems with the aid of Petrov-
Galerkin method, while in the two papers [10, 11], the authors
handled third- and fifth-order differential equations using
Jacobi tau and Jacobi collocation methods.

Multipoint boundary value problems (BVPs) arise in a
variety of applied mathematics and physics. For instance, the
vibrations of a guy wire of uniform cross-section composed
of𝑁 parts of different densities can be set up as a multipoint
BVP, as in [12]; also, many problems in the theory of
elastic stability can be handled by the method of multipoint
problems [13]. The existence and multiplicity of solutions of
multipoint boundary value problems have been studied by
many authors; see [14–17] and the references therein. For
two-point BVPs, there are many solution methods such as
orthonormalization, invariant imbedding algorithms, finite
difference, and collocation methods (see, [18–20]). However,
there seems to be little discussion about numerical solutions
of multipoint boundary value problems.

Second-ordermultipoint boundary value problems (BVP)
arise in the mathematical modeling of deflection of can-
tilever beams under concentrated load [21, 22], deformation
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of beams and plate deflection theory [23], obstacle problems
[24], Troesch’s problem relating to the confinement of a
plasma column by radiation pressure [25, 26], temperature
distribution of the radiation fin of trapezoidal profile [21,
27], and a number of other engineering applications. Many
authors have used numerical and approximate methods
to solve second-order BVPs. The details about the related
numerical methods can be found in a large number of papers
(see, for instance, [21, 23, 24, 28]). The Walsh wavelets and
the semiorthogonal B-spline wavelets are used in [23, 29]
to construct some numerical algorithms for the solution of
second-order BVPs with Dirichlet and Neumann boundary
conditions. Na [21] has found the numerical solution of
second-, third-, and fourth-order BVPs by converting them
into initial value problems and then applying a class of
methods like nonlinear shooting,method of reduced physical
parameters, method of invariant imbedding, and so forth.
The presented approach in this paper can be applied to both
BVPs and IVPs with a slight modification, but without the
transformation of BVPs into IVPs or vice versa.

Wavelets theory is a relatively new and an emerging area
in mathematical research. It has been applied to a wide range
of engineering disciplines; particularly, wavelets are very
successfully used in signal analysis for wave form repre-
sentation and segmentations, time frequency analysis, and
fast algorithms for easy implementation. Wavelets permit
the accurate representation of a variety of functions and
operators.Moreover, wavelets establish a connectionwith fast
numerical algorithms, (see [30, 31]).

The application of Legendre wavelets for solving differen-
tial and integral equations is thoroughly considered by many
authors (see, for instance, [32, 33]). Also, Chebyshev wavelets
are used for solving some fractional and integral equations
(see, [34, 35]).

Chebyshev polynomials have become increasingly crucial
in numerical analysis, from both theoretical and practical
points of view. It is well known that there are four kinds
of Chebyshev polynomials, and all of them are special cases
of the more widest class of Jacobi polynomials. The first
and second kinds are special cases of the symmetric Jacobi
polynomials (i.e., ultraspherical polynomials), while the third
and fourth kinds are special cases of the nonsymmetric Jacobi
polynomials. In the literature, there is a great concentration
on the first and second kinds of Chebyshev polynomials𝑇

𝑛
(𝑥)

and 𝑈
𝑛
(𝑥) and their various uses in numerous applications,

(see, for instance, [36]). However, there are few articles that
concentrate on the other two types of Chebyshev polynomi-
als, namely, third and fourth kinds 𝑉

𝑛
(𝑥) and 𝑊

𝑛
(𝑥), either

from theoretical or practical point of view and their uses
in various applications (see, e.g., [37]). This motivates our
interest in such polynomials.We therefore intend in this work
to use them in a marvelous application of multipoint BVPs
arising in physics.

There are several advantages of using Chebyshev wavelets
approximations based on collocation spectral method. First,
unlike most numerical techniques, it is now well established
that they are characterized by exponentially decaying errors.
Second, approximation by wavelets handles singularities in
the problem. The effect of any such singularities will appear

in some form in any scheme of the numerical solution,
and it is well known that other numerical methods do not
perform well near singularities. Finally, due to their rapid
convergence, Chebyshev wavelets collocation method does
not suffer from the common instability problems associated
with other numerical methods.

Themain aim of this paper is to develop two new spectral
algorithms for solving second-order multipoint BVPs based
on shifted third- and fourth-kind Chebyshev wavelets. The
method reduces the differential equation with its boundary
conditions to a system of algebraic equations in the unknown
expansion coefficients. Large systems of algebraic equations
may lead to greater computational complexity and large
storage requirements. However the third- and fourth-kind
Chebyshev wavelets collocation method reduces drastically
the computational complexity of solving the resulting alge-
braic system.

The structure of the paper is as follows. In Section 2,
we give some relevant properties of Chebyshev polynomi-
als of third and fourth kinds and their shifted ones. In
Section 3, the third- and fourth-kind Chebyshev wavelets are
constructed. Also, in this section, we ascertain the conver-
gence of the Chebyshev wavelets series expansion. Two new
shifted Chebyshev wavelets collocation methods for solving
second-order linear and nonlinear multipoint boundary
value problems are implemented and presented in Section 4.
In Section 5, some numerical examples are presented to
show the efficiency and the applicability of the presented
algorithms. Some concluding remarks are given in Section 6.

2. Some Properties of 𝑉
𝑘
(𝑥) and 𝑊

𝑘
(𝑥)

The Chebyshev polynomials 𝑉
𝑘
(𝑥) and 𝑊

𝑘
(𝑥) of third and

fourth kinds are polynomials of degree 𝑘 in 𝑥 defined,
respectively, by (see [38])

𝑉
𝑘
(𝑥) =

cos (𝑘 + (1/2)) 𝜃
cos (𝜃/2)

, 𝑊
𝑘
(𝑥) =

sin (𝑘 + (1/2)) 𝜃
sin (𝜃/2)

,

(1)

where 𝑥 = cos 𝜃; also they can be obtained explicitly as
two particular cases of Jacobi polynomials 𝑃(𝛼,𝛽)

𝑘
(𝑥) for the

two nonsymmetric cases correspond to 𝛽 = −𝛼 = ±1/2.
Explicitly, we have

𝑉
𝑘
(𝑥) =

(2
𝑘

𝑘!)
2

(2𝑘)!
𝑃
(−1/2,1/2)

𝑘
(𝑥) ,

𝑊
𝑘
(𝑥) =

(2
𝑘

𝑘!)
2

(2𝑘)!
𝑃
(1/2,−1/2)

𝑘
(𝑥) .

(2)

It is readily seen that

𝑊
𝑘
(𝑥) = (−1)

𝑘

𝑉
𝑘
(−𝑥) . (3)

Hence, it is sufficient to establish properties and relations for
𝑉
𝑛
(𝑥) and then deduce their corresponding properties and

relations for𝑊
𝑛
(𝑥) (by replacing 𝑥 by −𝑥).
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The polynomials 𝑉
𝑛
(𝑥) and 𝑊

𝑛
(𝑥) are orthogonal on

(−1, 1); that is,

∫

1

−1

𝜔
1
(𝑥)𝑉
𝑘
(𝑥) 𝑉
𝑗
(𝑥) 𝑑𝑥

= ∫

1

−1

𝜔
2
(𝑥)𝑊

𝑘
(𝑥)𝑊

𝑗
(𝑥) 𝑑𝑥

= {
𝜋, 𝑘 = 𝑗,

0, 𝑘 ̸= 𝑗,

(4)

where

𝜔
1
(𝑥) = √

1 + 𝑥

1 − 𝑥
, 𝜔

2
(𝑥) = √

1 − 𝑥

1 + 𝑥
, (5)

and they may be generated by using the two recurrence
relations

𝑉
𝑘
(𝑥) = 2𝑥𝑉

𝑘−1
(𝑥) − 𝑉

𝑘−2
(𝑥) , 𝑘 = 2, 3, . . . , (6)

with the initial values

𝑉
0
(𝑥) = 1, 𝑉

1
(𝑥) = 2𝑥 − 1, (7)

𝑊
𝑘
(𝑥) = 2𝑥 𝑊

𝑘−1
(𝑥) − 𝑊

𝑘−2
(𝑥) , 𝑘 = 2, 3, . . . , (8)

with the initial values

𝑊
0
(𝑥) = 1, 𝑊

1
(𝑥) = 2𝑥 + 1. (9)

The shifted Chebyshev polynomials of third and fourth
kinds are defined on [0, 1], respectively, as

𝑉
∗

𝑛
(𝑥) = 𝑉

𝑛
(2𝑥 − 1) , 𝑊

∗

𝑛
(𝑥) = 𝑊

𝑛
(2𝑥 − 1) . (10)

All results of Chebyshev polynomials of third and fourth
kinds can be easily transformed to give the corresponding
results for their shifted ones.

The orthogonality relations of 𝑉∗
𝑛
(𝑡) and𝑊∗

𝑛
(𝑡) on [0, 1]

are given by

∫

1

0

𝑤
∗

1
𝑉
∗

𝑚
(𝑡) 𝑉
∗

𝑛
(𝑡) 𝑑𝑡

= ∫

1

0

𝑤
∗

2
𝑊
∗

𝑚
(𝑡)𝑊
∗

𝑛
(𝑡) 𝑑𝑡

=
{

{

{

𝜋

2
, 𝑚 = 𝑛,

0, 𝑚 ̸= 𝑛,

(11)

where

𝜔
∗

1
= √

𝑡

1 − 𝑡
, 𝜔

∗

2
= √

1 − 𝑡

𝑡
. (12)

3. Shifted Third- and Fourth-Kind
Chebyshev Wavelets

Wavelets constitute of a family of functions constructed from
dilation and translation of single function called the mother

wavelet. When the dilation parameter 𝑎 and the translation
parameter 𝑏 vary continuously, then we have the following
family of continuous wavelets:

𝜓
𝑎,𝑏
(𝑡) = |𝑎|

−1/2

𝜓(
𝑡 − 𝑏

𝑎
) , 𝑎, 𝑏 ∈ R, 𝑎 ̸= 0. (13)

Each of the third- and fourth-kind Chebyshev wavelets
𝜓
𝑛𝑚
(𝑡) = 𝜓(𝑘, 𝑛,𝑚, 𝑡) has four arguments: 𝑘, 𝑛 ∈ N, 𝑚 is

the order of the polynomial 𝑉∗
𝑚
(𝑡) or 𝑊∗

𝑚
(𝑡), and 𝑡 is the

normalized time. They are defined explicitly on the interval
[0, 1] as

𝜓
𝑛𝑚
(𝑡)

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

2
(𝑘+1)/2

√𝜋
𝑉
∗

𝑚
(2
𝑘

𝑡 − 𝑛) ,

resp.,

2
(𝑘+1)/2

√𝜋
𝑊
∗

𝑚
(2
𝑘

𝑡 − 𝑛) , 𝑡 ∈ [
𝑛

2𝑘
,
𝑛 + 1

2𝑘
] , 0 ⩽ 𝑚 ⩽ 𝑀,

0 ⩽ 𝑛 ⩽ 2
𝑘

− 1,

0, otherwise.

(14)

3.1. Function Approximation. A function 𝑓(𝑡) defined over
[0, 1]may be expanded in terms of Chebyshev wavelets as

𝑓 (𝑡) =

∞

∑

𝑛=0

∞

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑡) , (15)

where

𝑐
𝑛𝑚
= (𝑓 (𝑡) , 𝜓

𝑛𝑚
(𝑡))
𝜔
∗

𝑖

= ∫

1

0

𝜔
∗

𝑖
𝑓 (𝑡) 𝜓

𝑛𝑚
(𝑡) 𝑑𝑡, (16)

and the weights 𝑤∗
𝑖
, 𝑖 = 1, 2, are given in (12).

Assume that 𝑓(𝑡) can be approximated in terms of
Chebyshev wavelets as

𝑓 (𝑡) ≃

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑡) . (17)

3.2. Convergence Analysis. In this section, we state and prove
a theorem to ascertain that the third- and fourth-kindCheby-
shev wavelets expansion of a function 𝑓(𝑡), with bounded
second derivative, converges uniformly to 𝑓(𝑡).

Theorem 1. Assume that a function 𝑓(𝑡) ∈ 𝐿
2

𝜔
∗

1

[0, 1], 𝜔∗
1
=

√𝑡/(1 − 𝑡) with |𝑓(𝑡)| ⩽ 𝐿, can be expanded as an infinite
series of third-kind Chebyshev wavelets; then this series con-
verges uniformly to 𝑓(𝑡). Explicitly, the expansion coefficients
in (16) satisfy the following inequality:

𝑐𝑛𝑚
 <

2√2𝜋𝐿𝑚
2

(𝑛 + 1)
5/2

(𝑚4 − 1)

, ∀𝑛 ⩾ 0, 𝑚 > 1. (18)
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Proof. From (16), it follows that

𝑐
𝑛𝑚
=
2
(𝑘+1)/2

√𝜋
∫

(𝑛+1)/2
𝑘

𝑛/2
𝑘

𝑓 (𝑡) 𝑉
∗

𝑚
(2
𝑘

𝑡 − 𝑛) 𝜔
∗

1
(2
𝑘

𝑡 − 𝑛) 𝑑𝑡.

(19)

If we make use of the substitution 2𝑘𝑡−𝑛 = cos 𝜃 in (19), then
we get

𝑐
𝑛𝑚
=
2
(−𝑘+1)/2

√𝜋
∫

𝜋

0

𝑓(
cos 𝜃 + 𝑛
2𝑘

)

×
cos (𝑚 + (1/2)) 𝜃

cos (𝜃/2)
√
1 + cos 𝜃
1 − cos 𝜃

sin 𝜃𝑑𝜃

=
2
(−𝑘+3)/2

√𝜋
∫

𝜋

0

𝑓(
cos 𝜃 + 𝑛
2𝑘

) cos(𝑚 +
1

2
) 𝜃 cos(𝜃

2
)𝑑𝜃

=
2
(−𝑘+1)/2

√𝜋
∫

𝜋

0

𝑓(
cos 𝜃 + 𝑛
2𝑘

)

× [cos (𝑚 + 1) 𝜃 + cos𝑚𝜃] 𝑑𝜃,
(20)

which in turn, and after performing integration by parts two
times, yields

𝑐
𝑛𝑚
=

1

25𝑘/2√2𝜋
∫

𝜋

0

𝑓


(
cos 𝜃 + 𝑛
2𝑘

)𝛾
𝑚
(𝜃) 𝑑𝜃, (21)

where

𝛾
𝑚
(𝜃) =

1

𝑚 + 1
(
sin𝑚𝜃
𝑚

−
sin (𝑚 + 2) 𝜃

𝑚 + 2
)

+
1

𝑚
(
sin (𝑚 − 1) 𝜃

𝑚 − 1
−
sin (𝑚 + 1) 𝜃

𝑚 + 1
) .

(22)

Now, we have

𝑐𝑛𝑚
 =



1

25𝑘/2√2𝜋
∫

𝜋

0

𝑓


(
cos 𝜃 + 𝑛
2𝑘

)𝛾
𝑚
(𝜃) 𝑑𝜃



=
1

25𝑘/2√2𝜋



∫

𝜋

0

𝑓


(
cos 𝜃 + 𝑛
2𝑘

) 𝛾
𝑚
(𝜃) 𝑑𝜃



⩽
𝐿

25𝑘/2√2𝜋
∫

𝜋

0

𝛾𝑚 (𝜃)
 𝑑𝜃

⩽
𝐿√𝜋

2(5𝑘+1)/2
[

1

𝑚 + 1
(
1

𝑚
+

1

𝑚 + 2
)

+
1

𝑚
(

1

𝑚 − 1
+

1

𝑚 + 1
)]

=
𝐿√2𝜋

25𝑘/2
[

1

𝑚2 + 2𝑚
+

1

𝑚2 − 1
]

<
2𝐿√2𝜋

25𝑘/2
(

𝑚
2

𝑚4 − 1
) .

(23)

Finally, since 𝑛 ⩽ 2𝑘 − 1, we have

𝑐𝑛𝑚
 <

2√2𝜋𝐿𝑚
2

(𝑛 + 1)
5/2

(𝑚4 − 1)

. (24)

Remark 2. The estimation in (18) is also valid for the coef-
ficients of fourth-kind Chebyshev wavelets expansion. The
proof is similar to the proof of Theorem 1.

4. Solution of Multipoint BVPs

In this section, we present two Chebyshev wavelets col-
location methods, namely, third-kind Chebyshev wavelets
collocation method (3CWCM) and fourth-kind Chebyshev
wavelets collocationmethod (4CWCM), to numerically solve
the following multipoint boundary value problem (BVP):

𝑎 (𝑥) 𝑦


(𝑥) + 𝑏 (𝑥) 𝑦


(𝑥) + 𝑐 (𝑥) 𝑦 (𝑥)

+ 𝑓 (𝑥, 𝑦


) + 𝑔 (𝑥, 𝑦) = 0, 0 ⩽ 𝑥 ⩽ 1,

(25)

𝛼
0
𝑦 (0) + 𝛼

1
𝑦


(0) =

𝑚
0

∑

𝑖=1

𝜆
𝑖
𝑦 (𝜉
𝑖
) + 𝛿
0
,

𝛽
0
𝑦 (1) + 𝛽

1
𝑦


(1) =

𝑚
1

∑

𝑖=1

𝜇
𝑖
𝑦 (𝜂
𝑖
) + 𝛿
1
,

(26)

where 𝑎(𝑥), 𝑏(𝑥), and 𝑐(𝑥) are piecewise continuous on [0, 1];
𝑎(0)𝑎(1) may equal zero; 0 < 𝜉

𝑖
; 𝜂
𝑖
< 1; 𝛼

𝑖
, 𝛽
𝑖
, 𝜆
𝑖
, 𝜇
𝑖
, and 𝛿

𝑖

are constants such that (𝛼2
0
+𝛼
2

1
)(𝛽
2

0
+𝛽
2

1
) ̸= 0; 𝑓 is a nonlinear

function of 𝑦, and 𝑔 is a nonlinear function in 𝑦.
Consider an approximate solution to (25) and (26) which

is given in terms of Chebyshev wavelets as

𝑦
𝑘,𝑀

(𝑥) =

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑥) ; (27)

then the substitution of (27) into (25) enables one to write the
residual of (25) in the form

𝑅 (𝑥) =

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=2

𝑐
𝑛𝑚
𝑎 (𝑥) 𝜓



𝑛𝑚
(𝑥)

+

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=1

𝑐
𝑛𝑚
𝑏 (𝑥) 𝜓



𝑛𝑚
(𝑥)

+

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=0

𝑐
𝑛𝑚
𝑐 (𝑥) 𝜓

𝑛𝑚
(𝑥)

+ 𝑓(𝑥,

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=1

𝑐
𝑛𝑚
𝜓


𝑛𝑚
(𝑥))

+ 𝑔(𝑥,

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑥)) .

(28)
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Now, the application of the typical collocation method (see,
e.g., [5]) gives

𝑅 (𝑥
𝑖
) = 0, 𝑖 = 1, 2, . . . , 2

𝑘

(𝑀 + 1) − 2, (29)

where 𝑥
𝑖
are the first (2𝑘(𝑀 + 1) − 2) roots of 𝑉∗

2
𝑘
(𝑀+1)

(𝑥) or
𝑊
∗

2
𝑘
(𝑀+1)

(𝑥). Moreover, the use of the boundary conditions
(26) gives

𝛼
0

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(0)

+ 𝛼
1

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=1

𝑐
𝑛𝑚
𝜓


𝑛𝑚
(0)

=

𝑚
0

∑

𝑖=1

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=0

𝜆
𝑖
𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝜉
𝑖
) + 𝛿
0
,

𝛽
0

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(1) + 𝛽

1

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=1

𝑐
𝑛𝑚
𝜓


𝑛𝑚
(1)

=

𝑚
1

∑

𝑖=1

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=0

𝜇
𝑖
𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝜂
𝑖
) + 𝛿
1
.

(30)

Equations (29) and (30) generate 2𝑘(𝑀 + 1) equations in
the unknown expansion coefficients, 𝑐

𝑛𝑚
, which can be

solved with the aid of the well-known Newton’s iterative
method. Consequently, we get the desired approximate solu-
tion 𝑦

𝑘,𝑀
(𝑥) given by (27).

5. Numerical Examples

In this section, the presented algorithms in Section 4 are
applied to solve both of linear and nonlinear multipoint
BVPs. Some examples are considered to illustrate the effi-
ciency and applicability of the two proposed algorithms.

Example 1. Consider the second-order nonlinear BVP (see
[6, 28]):

𝑦


+
3

8
𝑦 +

2

1089
(𝑦


)
2

+ 1 = 0, 0 < 𝑥 < 1,

𝑦 (0) = 0, 𝑦 (
1

3
) = 𝑦 (1) .

(31)

The two proposed methods are applied to the problem for
the case corresponding to 𝑘 = 0 and𝑀 = 8. The numerical
solutions are shown in Table 1. Due to nonavailability of the
exact solution, we compare our results with Haar wavelets
method [6], ADM solution [28] and ODEs Solver from
Mathematica which is carried out by using Runge-Kutta
method. This comparison is also shown in Table 1.

Example 2. Consider the second-order linear BVP (see, [39,
40]):

𝑦


= sinh𝑥 − 2, 0 < 𝑥 < 1,

𝑦


(0) = 0, 𝑦 (1) = 3𝑦 (
3

5
) .

(32)

The exact solution of problem (32) is given by

𝑦 (𝑥) =
1

2
(sinh 1 − 3 sinh 3

5
) + sinh𝑥 − 𝑥2 − 𝑥 + 11

25
.

(33)

In Table 2, the maximum absolute error 𝐸 is listed for
𝑘 = 1 and various values of 𝑀, while in Table 3, we
give a comparison between the best errors resulted from
the application of various methods for Example 2, while in
Figure 1, we give a comparison between the exact solution of
(32) with three approximate solutions.

Example 3. Consider the second-order singular nonlinear
BVP (see [40, 41]):

𝑥 (1 − 𝑥) 𝑦


+ 6𝑦


+ 2𝑦 + 𝑦
2

= 6 cosh 𝑥 + (2 + 𝑥 − 𝑥2 + sinh𝑥) sinh𝑥,

0 < 𝑥 < 1,

𝑦 (0) + 𝑦 (
2

3
) = sinh(2

3
) ,

𝑦 (1) +
1

2
𝑦 (

4

5
) =

1

2
sinh(4

5
) + sinh 1,

(34)

with the exact solution 𝑦(𝑥) = sinh𝑥. In Table 4, the maxi-
mum absolute error 𝐸 is listed for 𝑘 = 0 and various values
of 𝑀, while in Table 5 we give a comparison between the
best errors resulted from the application of various methods
for Example 3. This table shows that our two algorithms are
more accurate if compared with the two methods developed
in [40, 41].

Example 4. Consider the second-order nonlinear BVP (see
[42]):

𝑦


+ (1 + 𝑥 + 𝑥
3

) 𝑦
2

= 𝑓 (𝑥) , 0 < 𝑥 < 1,

𝑦 (0) =
1

6
𝑦 (

2

9
) +

1

3
𝑦 (

7

9
) − 0.0286634,

𝑦 (1) =
1

5
𝑦 (

2

9
) +

1

2
𝑦 (

7

9
) − 0.0401287,

(35)

where

𝑓 (𝑥) =
1

9
[ − 6 cos (𝑥 − 𝑥2) + sin (𝑥 − 𝑥2)

× (−3(1 − 2𝑥)
2

+ (1 + 𝑥 + 𝑥
3

) sin (𝑥 − 𝑥2))] .

(36)
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Figure 1: Different solutions of Example 2.

The exact solution of (35) is given by 𝑦(𝑥) = (1/3) sin(𝑥 −
𝑥
2

). In Table 6, the maximum absolute error 𝐸 is listed for
𝑘 = 2 and various values of 𝑀, and in Table 7 we give a
comparison between best errors resulted from the application
of various methods for Example 4. This table shows that
our two algorithms are more accurate if compared with the
method developed in [42].

Example 5. Consider the second-order singular linear BVP:

𝑦


+ 𝑓 (𝑥) 𝑦 = 𝑔 (𝑥) , 0 < 𝑥 < 1,

𝑦 (0) + 16𝑦 (
1

4
) = 3

4

√𝑒,

𝑦 (1) + 16𝑦 (
3

4
) = 3

4

√𝑒3,

(37)

where

𝑓 (𝑥) =

{{

{{

{

3𝑥, 0 ⩽ 𝑥 ⩽
1

2
,

2𝑥,
1

2
< 𝑥 ⩽ 1,

(38)

and 𝑔(𝑥) is chosen such that the exact solution of (37) is
𝑦(𝑥) = 𝑥(1 − 𝑥)𝑒

𝑥. In Table 8, the maximum absolute error 𝐸
is listed for 𝑘 = 1 and various values of𝑀, while in Figure 2,
we give a comparison between the exact solution of (37) with
three approximate solutions.

Example 6. Consider the following nonlinear second-order
BVP:

𝑦


+ (𝑦


)
2

− 64𝑦 = 32, 0 < 𝑥 < 1, (39)

𝑦 (0) + 𝑦 (
1

4
) = 1, (40)

4𝑦 (
1

2
) − 𝑦 (1) = 0, (41)

with the exact solution 𝑦(𝑥) = 16𝑥
2. We solve (39) using

3CWCM for the case corresponding to 𝑘 = 0 and 𝑀 = 3,
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0.0
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0.2

0.3

0.4

0.5

x

Exact
k = 1,M = 3

k = 1,M = 2

k = 1,M = 1

y
(x
)

Figure 2: Different solutions of Example 5.

to obtain an approximate solution of 𝑦(𝑥). If we make use of
(27), then the approximate solution 𝑦

0,3
(𝑥) can be expanded

in terms of third-kind Chebyshev wavelets as

𝑦
0,3
(𝑥) = 𝑐

0,0
√
2

𝜋
+ 𝑐
0,1
√
2

𝜋
(4𝑥 − 3)

+ 𝑐
0,2
√
2

𝜋
(16𝑥
2

− 20𝑥 + 5) .

(42)

If we set

V
𝑖
= √

2

𝜋
𝑐
0,𝑖
, 𝑖 = 0, 1, 2, (43)

then (42) reduces to the form

𝑦
0,3
(𝑥) = V

0
+ V
1
(4𝑥 − 3) + V

2
(16𝑥
2

− 20𝑥 + 5) . (44)

If we substitute (44) into (39), then the residual of (39) is
given by

𝑅 (𝑥) = 2V
2
+ [V
1
+ V
2
(8𝑥 − 5)]

2

− 4 [V
0
+ V
1
(4𝑥 − 3)

+ V
2
(16𝑥
2

− 20𝑥 + 5)] − 2.

(45)

We enforce the residual to vanish at the first root of 𝑉∗
3
(𝑥) =

64𝑥
3

−112𝑥
2

+56𝑥−7, namely, at 𝑥
1
= 0.18825509907063323,

to get

6.10388V2
2
+ 0.5V2

1
− 3.49396V

2
V
1
− 2.60388V

2

+ 4.49396V
1
− 2V
0
= 1.

(46)

Furthermore, the use of the boundary conditions (40) and
(41) yields

2V
0
− 5V
1
+ 6V
2
= 1,

3V
0
− 5V
1
− 5V
2
= 0.

(47)
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Table 1: Comparison between different solutions for Example 1.

𝑥 3CWCM 4CWCM Haar method [6] ADMmethod [28] ODEs solver fromMathematica
0.1 0.06560 0.06560 0.06561 0.0656 0.06560
0.3 0.16587 0.16587 0.16588 0.1658 0.16587
0.5 0.22369 0.22369 0.22369 0.2236 0.22369
0.7 0.23820 0.23820 0.23821 0.2382 0.23820
0.9 0.20920 0.20920 0.20910 0.2092 0.20920

Table 2: The maximum absolute error 𝐸 for Example 2.

𝑘 𝑀 10 11 12 13 14 15

0 3CWCM 5.173 ⋅ 10
−9

7.184 ⋅ 10
−11

4.418 ⋅ 10
−12

5.018 ⋅ 10
−14

2.442 ⋅ 10
−15

2.220 ⋅ 10
−16

4CWCM 3.324 ⋅ 10
−10

2.533 ⋅ 10
−11

2.811 ⋅ 10
−12

1.665 ⋅ 10
−14

1.110 ⋅ 10
−15

2.220 ⋅ 10
−16

𝑀 4 5 6 7 8 9

1 3CWCM 4.644 ⋅ 10
−6

1.001 ⋅ 10
−8

1.840 ⋅ 10
−9

2.547 ⋅ 10
−10

6.247 ⋅ 10
−11

5.681 ⋅ 10
−12

4CWCM 2.15 ⋅ 10
−6

5.247 ⋅ 10
−9

7.548 ⋅ 10
−10

1.004 ⋅ 10
−10

2.154 ⋅ 10
−11

4.257 ⋅ 10
−12

Table 3: The best errors for Example 2.

Method in [39] Method in [40] 3CWCM 4CWCM
9.00 ⋅ 10

−6

4.00 ⋅ 10
−5

2.22 ⋅ 10
−16

2.22 ⋅ 10
−16

Table 4: The maximum absolute error 𝐸 for Example 3.

𝑀 8 9 10 11 12 13
3CWCM 4.444 ⋅ 10

−10

2.759 ⋅ 10
−11

4.389 ⋅ 10
−13

1.643 ⋅ 10
−14

4.441 ⋅ 10
−16

2.220 ⋅ 10
−16

4CWCM 4.478 ⋅ 10
−9

2.179 ⋅ 10
−10

1.527 ⋅ 10
−12

2.975 ⋅ 10
−14

4.441 ⋅ 10
−16

2.220 ⋅ 10
−16

Table 5: The best errors for Example 3.

Method in [40] Method in [41] 3CWCM 4CWCM
3.00 ⋅ 10

−8

6.60 ⋅ 10
−7

2.22 ⋅ 10
−16

2.22 ⋅ 10
−16

Table 6: The maximum absolute error 𝐸 for Example 4.

𝑀 4 5 6 7 8 9
3CWCM 2.881 ⋅ 10

−3

3.441 ⋅ 10
−3

1.212 ⋅ 10
−5

1.933 ⋅ 10
−5

1.990 ⋅ 10
−6

3.010 ⋅ 10
−8

4CWCM 1.241 ⋅ 10
−3

8.542 ⋅ 10
−4

7.526 ⋅ 10
−6

1.002 ⋅ 10
−6

6.321 ⋅ 10
−7

2.354 ⋅ 10
−9

Table 7: The best errors for Example 4.

Method in [42] 3CWCM 4CWCM
8.00 ⋅ 10

−6

3.010 ⋅ 10
−8

2.35 ⋅ 10
−9

Table 8: The maximum absolute error 𝐸 for Example 5.

𝑀 7 8 9 10 11 12 13 14
3CWCM 7.1 ⋅ 10

−6

3.2 ⋅ 10
−7

1.3 ⋅ 10
−8

7.4 ⋅ 10
−10

1.3 ⋅ 10
−11

3.5 ⋅ 10
−13

9.3 ⋅ 10
−15

8.1 ⋅ 10
−16

4CWCM 2.8 ⋅ 10
−5

1.5 ⋅ 10
−6

6.3 ⋅ 10
−8

2.4 ⋅ 10
−9

7.8 ⋅ 10
−11

2.3 ⋅ 10
−12

6.3 ⋅ 10
−14

1.7 ⋅ 10
−15
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The solution of the nonlinear system of (46) and (47) gives

V
0
= 10, V

1
= 5, V

2
= 1, (48)

and consequently

𝑦
0,3
(𝑥) = 10 + 5 (4𝑥 − 3) + (16𝑥

2

− 20𝑥 + 5) = 16𝑥
2

, (49)

which is the exact solution.

Remark 3. It is worth noting here that the obtained numerical
results in the previous solved six examples are very accurate,
although the number of retained modes in the spectral
expansion is very few, and again the numerical results are
comparing favorably with the known analytical solutions.

6. Concluding Remarks

In this paper, two algorithms for obtaining numerical spectral
wavelets solutions for second-order multipoint linear and
nonlinear boundary value problems are analyzed and dis-
cussed. Chebyshev polynomials of third and fourth kinds
are used. One of the advantages of the developed algorithms
is their availability for application on singular boundary
value problems. Another advantage is that high accurate
approximate solutions are achieved using a few number of
terms of the approximate expansion.The obtained numerical
results are comparing favorably with the analytical ones.
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