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The aim of this research was to determine the variables that characterize slate exploitability and to model spatial distribution. A
generalized linear spatialmodel (GLSMs)was fitted in order to explore relationship between exploitability and different explanatory
variables that characterize slate quality.Modelling the influence of these variables and analysing the spatial distribution of themodel
residuals yielded a GLSM that allows slate exploitability to be predicted more effectively than when using generalized linear models
(GLM), which do not take spatial dependence into account. Studying the residuals and comparing the prediction capacities of the
two models lead us to conclude that the GLSM is more appropriate when the response variable presents spatial distribution.

1. Introduction

The exploitability of a slate deposit depends onmany quality-
determining factors that are spatially correlated. Knowledge
and study of these factors are essential for the evaluation
of deposits [1, 2]. Therefore, it can be fairly safely assumed
that better evaluations of quality parameters and better
predictions of slate exploitability could be obtained by using
specific statistical models that take spatial correlation into
account.

Traditionally, the main aim of geostatistical models has
been to predict a spatially correlated response variable. Under
this approach, estimating the parameters of the geostatistical
model is not usually the main interest. However, estimating
and inferring parameters enables a more precise identifica-
tion of the factors influencing the geographical distribution
of exploitable slate, thus allowing greater knowledge to be
gained regarding the response variable of interest.

In our research, the model-based geostatistics methodol-
ogy was adapted in the analysis of slate exploitability using
a generalized linear spatial model (GLSM). With this type
of model, the objective of inference can be focused on the
parameters of the regression function, on the properties of the
residuals, or on the distribution of the residuals conditionally
on the response variable.

A brief description of the statistical models used in
this study is given in Section 2. The data studied and the
formulated model are described in Section 3. The statistical
results and analyses are presented in Section 4, and some
comments and the discussion can be found in Section 5.

2. Statistical Analysis Methods

2.1. Generalized Linear Spatial Models. Generalized linear
models (GLMs) were introduced by [3] and studied in depth
by [4] and later by several authors (see [5–9]).

In a GLM, a response variable 𝑌 = (𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑛
)

is assumed so that the variables 𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑛
are mutually

independent and with its expected value related to a linear
predictor 𝐸[𝑌] = 𝑔−1(𝑑𝑇𝛽), where 𝛽 ∈ R𝑝 is a vector of
unknown regression parameters, d are known explanatory
variables, and 𝑔 is a known function called link function.

An important extension of the GLM is the generalized
linear mixed model (GLMM) [10], in which the response
variables are considered independent of one another con-
ditionally on the values for a set of latent variables. The
generalized linear spatial model (GLSM) [11] is basically a
GLMM, in as much as the latent variables derive from a
spatial process.The term “model-based geostatistics” was first
used by these authors to describe an approach to geostatistical
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problems based on formal statistical models and inference
procedures. This leads to the following specification of the
model.

Consider 𝑛 different locations {𝑥
1
, . . . , 𝑥

𝑛
} ⊂ 𝐼 ⊂ R2 and

assume that a realization 𝑦 = (𝑦
1
, . . . , 𝑦

𝑛
)
𝑇 of 𝑌 is observed,

where 𝑦 = 𝑌(𝑥
𝑖
).

Let 𝑆 = {𝑆(𝑥) : 𝑥 ∈ 𝐼}, 𝐼 ⊂ R2 be a Gaussian process
with mean function 𝐸[𝑆(𝑥)] = 𝑑(𝑥)𝑇𝛽 and covariance
cov(𝑆(𝑥), 𝑆(𝑥󸀠)) = 𝜎2𝜌(𝑥, 𝑥󸀠; 𝜑) + 𝜏21{𝑥 = 𝑥󸀠}, where 𝛽 ∈ R𝑝
is, as in theGLMcase, a vector of unknown regression param-
eters, 𝑑(𝑥) are known explanatory variables now with spatial
dependence, 𝜌(𝑥, 𝑥󸀠; 𝜑) is a correlation function in R2, 𝜑 is
a scale parameter that controls the speed at which spatial
correlation approaches 0 as the distance between locations
grows, and, finally, 𝜏2 ≥ 0 is known as the nugget effect,
in accordance with the usual geostatistical terminology. The
nugget effect can be interpreted as a measurement error or a
microscale variation or a combination of both.

Conditionally on 𝑆, the process {𝑌(𝑥), 𝑥 ∈ 𝐼} consists
of random mutually independent variables and, for each
location 𝑥 ∈ 𝐼, the error distribution or [𝑌(𝑥) | 𝑆] has a
density that depends only on the conditional mean 𝐸[𝑌(𝑥

𝑖
) |

𝑆(𝑥
𝑖
)]. A known link function 𝑔 relates the conditional mean

and 𝑆(𝑥) so that 𝐸[𝑌(𝑥
𝑖
) | 𝑆(𝑥

𝑖
)] = 𝑔

−1
(𝑆(𝑥
𝑖
)).

When the regression parameters 𝛽 are of interest, it is
important to remember that their interpretation is more
conditional than marginal. In particular, 𝐸[𝑌(𝑥

𝑖
) | 𝑆(𝑥

𝑖
)] and

𝐸[𝑌(𝑥
𝑖
)] differ in terms of the structural dependence of the

explanatory variables 𝑑(𝑥
𝑖
); thus, the interpretation of 𝛽 calls

for caution. Only in the case where 𝑌(𝑥
𝑖
) | 𝑆(𝑥

𝑖
) is Gaussian

and the link function is identity parameter, comparison is
direct. The need to distinguish between conditional and
marginal regression parameters, which is not possible in
Gaussian linearmodels, is well known in the context of GLMs
for longitudinal data (see, e.g., [12]).

To estimate the parameters for the GLSM and due
to the fact that the stationary Gaussian process 𝑆(𝑥) is
not observable, it is not possible to obtain a closed-form
likelihood function except as a high-dimension integral.
Reference [11] suggests using algorithms based on Markov
chain Monte Carlo (MCMC) to calculate GLSM parameters
in a Bayesian framework. This is the approach used in our
analysis, implemented using geoR and geoRglm packages
(free open-source programs for use with𝑅 statistical software
[13]).

2.2. ROC Curves. When the marginal distribution (in the
GLM) or conditional distribution (in the GLSM) of the
response variable𝑌 follows a binomial distribution, themod-
els can be called binary classification systems. The exactitude
of a diagnostic test for a binary classification system can
be summarized as a receiver operating characteristic (ROC)
curve, which is a graphic representation of true positive
versus false positive rates when the discrimination threshold
is varied. Within the framework of binary GLMs, it is normal
to estimate the ROC curves of models in which one or more
explanatory variables have been excluded so as to evaluate
the effects of these variables. Analysing ROC curves provides

tools for comparing and selecting the best models. More
precisely, the area under the curve (AUC) of the ROC curve
is usually calculated in order to compare the different binary
models and thereby select the explanatory variables to be
included in the model. Reference [14] described a bootstrap-
based method for testing the significant effect of dependent
variables on the ROC curve.

We used the AUC and residual semivariograms to
demonstrate the goodness-of-fit of the binary GLSM com-
pared with the binary GLM when working with spatially
correlated data.

3. Data Description and Model Formulation

3.1. The Studied Area and the Geographic Database. The
data used to build the proposed model was collected from
borehole samples taken from slate deposits in Baja Cabrera
Leonesa (northwest Spain), an area with a long tradition of
extracting, processing, and exporting roofing slate.

When surveying a slate deposit, in-depth studies of the
rock are performed by taking continuous borehole samples,
which enable geologists to study the living rock and analyse
the possibility of using it as ornamental slate, see [15]; these
samples also reveal the degree of fracturation inside the rock
mass.

The specific borehole logging process was based on
manual and visual inspection of the borehole by an expert
who, after evaluating the aesthetic and functional defects
and properties of the slate, differentiated between seams of
commercial and unusable slate. The survey was performed
by taking a control sample every 25 centimetres; rock quality
designation (RQD), however, was defined by homogeneously
fractured sections.

A total of 313 equally spaced in-depth observations
were obtained, resulting from prior evaluation of various
parameters affecting the ornamental quality of the slate and
from direct binary values (0 or 1) assigned by the expert to
indicate exploitation potential. The 9 specific variables that
affected the results of borehole logging were as follows.

(i) RQD: borehole core samples recovered in pieces
greater than 10 cm long as a percentage of the total
borehole length. This is an indicator of the degree of
rock mass fracturing.

(ii) Veins: presence of microfractures filled with quartz
that determine the breakage resistance of a commer-
cial slab.

(iii) Crenulations: effect of crenulation cleavage on the
main schistosity planes. This increases the roughness
of the foliation surfaces of the slate and reduces
fissility.

(iv) Kink bands: Presence of microfolding caused by late
Variscan deformations.

(v) Sandy laminations: presence of sedimentary sand
layers which cut the schistosity planes and have a
negative effect on fissility.
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Table 1: Correlation matrix of the 𝑝 = 9 explanatory variables that affected the results of borehole logging.

(a)

RQD Veins Crenulation Kink bands Sandy laminations
RQD 1
Veins 0.1624 1
Crenulation 0.3038 0.1631 1
Kink bands 0.1040 0.0408 0.1962 1
Sandy laminations 0.0177 0.0187 0.0200 0.0736 1
Microfractures 0.6696 0.0035 0.1284 −0.0590 −0.0138

Pyrite −0.1953 −0.0403 −0.1221 −0.0891 −0.1202

Oxidation 0.2053 0.0837 0.1722 0.0821 −0.0645

Rough cleavage −0.0908 −0.0593 0.2096 −0.0058 −0.0454

(b)

Microfractures Pyrite Oxidation Rough cleavage
Microfractures 1
Pyrite −0.1587 1
Oxidation 0.1162 −0.1152 1
Rough cleavage −0.0989 0.0065 −0.0366 1

(vi) Microfractures: presence of barely visible fractures
which determine the breakage resistance of slabs
measuring 3–5mm thick.

(vii) Pyrite: presence of iron sulphides.

(viii) Oxidation: degree of oxidation of iron sulphides in the
slate.

(ix) Rough cleavage: slatewith poor fissility due to textural
heterogeneity.

In-depth knowledge of the variability and distribution of
exploitable slate and possible correlation between properties
are conducive to the use of GLSM to spatially model the
geographic database.

Table 1 shows the correlation matrix of the explanatory
variables given above in order to know the degree of depen-
dence between them.

3.2. Model Formulation. The response variable, 𝑌(𝑥), takes
the values 0 or 1 to indicate disposable or exploitable slate
respectively, in a particular location 𝑥. It is assumed in what
follows that slate exploitability is a spatial phenomenon that
can bemodelled using aGLSM. In otherwords, conditional to
the Gaussian process 𝑆(𝑥), the data 𝑌(𝑥

𝑖
), 𝑖 = 1, . . . , 𝑛 follow

the classic GLM. The role of 𝑆(𝑥) is, therefore, to explain
the residual spatial variation after considering all the known
explanatory variables. It is also reasonable to assume that
the conditional distribution of exploitability can be modelled
as a binomial distribution, which is why a binomial error
distribution was considered in our study.

Binomial error distribution was used by Diggle et al. [6]
and Zhang [8]. A class of transformations that can be used as
link functions for this distribution was described by [16]. We
assume the stationary Gaussian process 𝑆(⋅) to be the basis for
a model of spatial variation in the probability, 𝑃(𝑥), that the

slate in𝑥 is exploitable, but with a logit transformation tomap
the domain of 𝑆(⋅) onto the unit interval. Thus,

𝑔 [𝑃 (𝑥)] = log{ 𝑃 (𝑥)
[1 − 𝑃 (𝑥)]

} = 𝜇 + 𝑆 (𝑥) . (1)

The regression function 𝐸[𝑌(𝑥
𝑖
) | 𝑆(𝑥

𝑖
)] varies spatially only

through 𝑆(𝑥) in the locations 𝑥
𝑖
.

We adopted a Bayesian framework for inference and
prediction of the parameters, using algorithms based on
MCMC.

The parameters of this binomial GLSM are 𝜃 = (𝜎2, 𝜑)
and 𝛽 = (𝛽

0
, . . . , 𝛽

𝑝
), where 𝛽

0
is the independent term

and 𝛽
1
, . . . , 𝛽

𝑝
are the regression coefficients corresponding

to each known dependent variable.

4. Statistical Analysis

We initially included all the variables that characterize
slate exploitability, namely, RQD, veins, crenulations, kink
bands, sandy laminations, microfractures, pyrite, oxidation,
and poor fissility. Taking this data and, considering slate
exploitability as the response variable, we fitted a binary
GLM, called GLM1. A ROC curve was estimated for this
complete binary model and the AUC was 0.99.

Next, binary GLMs were fitted to different groups of
dependent variables in an attempt to find the minimum
number of variables that would provide a high AUC value,
that is, close to 0.99. The model, called GLM2, fitted with
the RQD, crenulation, kink band, andmicrofracture variables
obtained an AUC of 0.92. Figure 1 shows the ROC curves and
the corresponding AUC values for both GLM1 and GLM2.
The study was continued with the four variables included in
GLM2, given that the reduction in the number of variables
did not overly affect the accuracy of the model. A binary
nonspatial GLM was fitted using Bayesian methods and the
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Table 2: Estimated coefficients and 2.5%, 25%, 75%, and 97.5% quantiles for the GLM.

Coefficient 2.5% quantile 25% quantile 75% quantile 97.5% quantile
𝛽
0
(intercept) −35.6747 −77.6804 −49.0098 −26.0904 −18.6385

𝛽
1
(RQD) 1.2826 −1.1476 0.4192 2.0516 3.9633
𝛽
2
(crenulation) 0.5875 0.3288 0.5089 0.6761 0.8352
𝛽
3
(kink band) 0.5668 0.3965 0.5019 0.6395 0.7857
𝛽
4
(microfracture) 2.5815 0.9221 1.6093 3.9181 6.7967

Table 3: Estimated coefficients and 2.5%, 25%, 75%, and 97.5% quantiles for the GLSM.

Coefficient 2.5% quantile 25% quantile 75% quantile 97.5% quantile
𝛽
0
(intercept) −27.7021 −32.0664 −29.6753 −24.7446 −17.7297

𝛽
1
(RQD) 0.2521 −0.0385 0.1291 0.3726 0.5388
𝛽
2
(crenulation) 0.7334 0.3762 0.6121 0.8283 1.0691
𝛽
3
(kink band) 0.9189 0.5881 0.7802 1.0274 1.2261
𝛽
4
(microfracture) 1.2911 0.8834 1.0125 1.4480 1.6261
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Figure 1: ROC curves and the corresponding AUC values for the
two binary GLMs included in the study.

MCMClogit function from the MCMCpack (R language).
The vector𝛽 of the parameters fitted for theGLM2model was
𝛽 = (−35.6747, 1.2826, 0.5875, 0.5668, 2.5815), where the first
value is the independent term and the remaining values are
the corresponding coefficients of the explanatory variables in
the same order as they were mentioned above.

Table 2 shows the estimated coefficients and the 2.5%,
25%, 75%, and 97.5% quantiles for the fitted model. It can be
observed that, for a significance level of 𝛼 = 0.05, the only
nonsignificant variable is the RQD.

The study of the residuals of the GLM2 model fitted
with four explanatory variables detected a spatial dependence
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Figure 2: Experimental semivariogram for the GLM2 residuals
(points), together with the fitted theoretical model fitted according
to an exponential model (continuous line).

that could be modelled using an exponential theoretical
semivariogram with range 0.81 and sill 1.61. Figure 2 shows
the experimental semivariogram for the GLM2 residuals,
together with the corresponding fitted theoretical model.

Given the presence of spatial dependence in the resid-
uals, it then made sense to fit a GLSM, maintaining four
explanatory variables and assuming an exponential model
for the process 𝑆(𝑥). The correlation function considered was
of the type cov(𝑆(𝑥), 𝑆(𝑥󸀠)) = 𝜎2𝜌(𝑥, 𝑥󸀠; 𝜑) + 𝜏21{𝑥 = 𝑥󸀠},
with 𝜌(𝑢; 𝜑) = exp(−𝑢/𝜑). The fit was made using Bayesian
inference implemented via the MCMC algorithms. The first
10,000 sample observations from the simulationwere ignored
as burn-in, at which point it was considered that convergence
time had been achieved. The subsequent samples were used
to obtain the subsequent distribution of the parameters of
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Figure 3: Two-dimensional likelihood profile for (𝜑, 𝜏2) for the
GLSM.

interest. The chain was sampled for each 100 of the 50,000
iterations to obtain samples containing 500 values (for further
details, see [17]).

Using this procedure, the parameters were estimated as
𝜑 = 0.82, 𝜎

2
= 1.46, 𝜏

2
= 0.09, and 𝛽 = (−27.7021,

0.2521, 0.7334, 0.9189, 1.2911). Table 3 shows the estimated 𝛽
coefficients and their 2.5%, 25%, 75%, and 97.5% quantiles.
Once againwe can see how, for a significance level of𝛼 = 0.05,
only the RQD variable was not significant.

It is important to remember that these parameters
should be conditionally and not marginally interpreted and
so should not be directly compared with the parameters
estimated for the GLM. Direct comparison of a spatial and
nonspatial GLM could lead to erroneous conclusions, as the
estimation methods are fundamentally different. Nonethe-
less, there is a certain correlation in the conclusions to be
drawn from these tables, with variables such as crenulation,
kink band, andmicrofracture remaining significant; RQD, on
the other hand, was not significant at 5% level.

Figure 3 shows the likelihood profile in two dimensions
for parameters (𝜑, 𝜏2) of the model, illustrating the flatness of
the likelihood surface obtained using theMCMC algorithms.

A study of the spatial dependence of the GLSM residuals
indicated that the spatial component had been correctly
modelled on this occasion. Figure 4 shows an experimental
semivariogram of the GLSM residuals and a theoretical
model fitted according to a nugget effect model. It is clear
that the empirical semivariogram is essentially flat, which
suggests a suitable fit to the spatial structure. A direct
comparison between Figures 2 and 4 leads to the conclusion
that the spatial dependence has been properly captured by the
stationary Gaussian process 𝑆.

The ROC curve and AUC were calculated for the GLSM.
The AUC of the binary spatial model was 0.99, which
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Figure 4: Experimental semivariogram for the GLSM residuals
(points), together with the theoretical model fitted according to a
nugget effect model (continuous line).

Table 4: Error rates for the binary models for three scenarios
representing different levels of prediction difficulty.

5% test 10% test 15% test
GLM 6.6𝐸 − 2 6.3𝐸 − 2 5.6𝐸 − 2

GLSM 4.1𝐸 − 2 5.1𝐸 − 2 4.6𝐸 − 2

indicates a substantial improvement in the precision of the
GLSM. This improvement is reflected in Figure 5, which
depicts the ROC curves and AUC values for the GLM2 and
GLSM binary models.

The comparison between the two models was completed
with a simulation study, designed to compare the reliability
of the predictions in three scenarios of varying levels of
difficulty. Randomly selected for the first scenario was 95% of
the 313 initial observations, composing the training set that
was used to fit the GLM and GLSM. The fitted models were
then validated with the remaining 5% of the observations.
This procedure was repeated 100 times and the number
of errors in the slate exploitability prediction was recorded
for each repetition. For the second scenario, we randomly
selected 90% of the observations for the training set and the
remaining 10%made up the test set. This simulation was also
repeated 100 times. The procedure for the third scenario was
similar, but this time 85% and 15% of observations made up
the training and test sets, respectively.

Table 4 displays the error rates for the three scenarios
described, with the error rate calculated as the ratio between
the number of prediction errors and the total number of
predictions in the test set.
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Figure 5: ROC curves and correspondingAUCvalues for the binary
GLM2 and the GLSM.

In all the cases, it can be observed that theGLSMprovided
a better explanation not only of the effect of the variables
determining slate quality, but also of the spatial behaviour
of exploitable slate, thereby producing lower prediction error
rates.

5. Conclusions

A general interpretation of the GLSM used in our analysis is
that the spatial term 𝑆 represents the accumulative effect of
possible explanatory variables with an undetermined spatial
structure, which have, therefore, not been observed.

In GLMs, the fact that the spatial correlation of the
variables is not taken into account can significantly affect the
quality of statistical results. Our study highlights the potential
risk of using GLMs when the data is spatially structured.

The conclusion reached after comparing ROC curves
and their corresponding AUCs is that GLSMs predict slate
exploitability better than GLMs. Therefore, it would seem
essential to include unexplained spatial variation when mod-
elling spatially correlated variables.

Based on the comparison of the semivariograms of the
GLM and GLSM residuals, we would like to draw attention
to the presence of spatial dependence in the GLM residuals,
in contrast towhat occurswhen aGLSM is implemented.This
indicates that spatial dependence has been captured correctly
by the stationary Gaussian process 𝑆. We can, therefore,

conclude that a GLSM is more suitable for modelling spatial
dependence, which is overlooked by classic GLMs.

The simulation study demonstrates that, for varying levels
of prediction difficulty, the GLSM had lower error rates than
the GLM.

Although the parameters of the GLSM must be inter-
preted conditionally rather than marginally to 𝑆, the results
of the statistical analysis denote the broader potential of the
GLSM compared to the classic GLM in analysing spatial
data. They also underline the potential risk of reaching
erroneous conclusions when using nonspatial models to
analyse spatially structured data.
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