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This paper considers them-machine flow shop scheduling problem with the no-wait constraint to minimize total completion time
which is the typical model in steel production. First, the asymptotic optimality of the Shortest Processing Time (SPT) first rule is
proven for this problem. To further evaluate the performance of the algorithm, a new lower bound with performance guarantee is
designed. At the end of the paper, numerical simulations show the effectiveness of the proposed algorithm and lower bound.

1. Introduction

Steel-making is a multistage process in which melted iron is
converted into steel products sequentially by the processes
of converting furnace, heating furnace, and rolling mill.
Distinctly, this is a very typical model of the flow shop.
Differently, in the steel production, the hot work-in-processes
can not wait between two successive operations. For example,
a slab has to reach a rolling temperature through the heat
furnace before it can be processed by the rolling mill. If a
heated slab waits for a long time in front of the machine,
its temperature will drop significantly. Once the temperature
of a slab falls below the rolling temperature, the reheating
must be executed, which will consume a lot of energy.
Furthermore, the size of the work-in-process in steel-making
is especially large, which limits the storage capacity of the
buffer between two successive machines. As minimizing the
criterion of total completion time (TCT; the detail about
TCT objective can be found in [1, 2]) can effectively reduce
the in-process inventory, the research of no-wait flow shop
with TCT objective is reasonably effective for iron and steel
industry.

With the standard scheduling notation suggested by Gra-
ham et al. in 1979 [3], the no-wait flow shop scheduling prob-
lem to minimize TCT can be denoted by 𝐹𝑚|no-wait|Σ𝐶𝑗.

Röck [4] indicated the strong NP-hardness for problem
𝐹2|no-wait|Σ𝐶𝑗 which means that the optimal solution for
the general problem, 𝐹𝑚|no-wait|Σ𝐶𝑗, cannot be obtained in
polynomial time unless P = NP. Allahverdi and Aldowaisan
[5] considered the 𝐹2|no-wait, 𝑠𝑗𝑘|Σ𝐶𝑗 problem, where 𝑠𝑗𝑘
denotes that the setup time is sequence dependent. Optimal
solutionswere obtained for two special flow shops and a dom-
inance relation is developed for the general problem. Several
heuristic algorithms with polynomial computational time
are constructed. Allahverdi and Aldowaisan [6] addressed
problem 𝐹3|no-wait, 𝑠𝑗|Σ𝐶𝑗, where 𝑠𝑗 denotes that the setup
times are separate from processing times and sequence inde-
pendent. Optimal solutions and a dominance relation were
presented, respectively, for certain cases and the general case.
Five heuristic algorithms were developed and evaluated for
small and large number of jobs. Aldowaisan and Allahverdi
[7] provided new heuristics and compared the performance
of these proposed algorithms with that of three existing
heuristics for problem𝐹𝑚|no-wait|Σ𝐶𝑗. Gao et al. [8] present
two constructive heuristics, improved standard deviation
heuristic (ISDH), and improved Bertolissi heuristic (IBH)
for problem 𝐹𝑚|no-wait|Σ𝐶𝑗, and propose four composite
heuristics, using the insertion-based local search method
and iteration operator to improve the solutions of the ISDH
and IBH. Allahverdi and Aydilek [9] discussed problem



2 Journal of Applied Mathematics

𝐹𝑚|no-wait|Σ𝐶𝑗, 𝐶max ≤ 𝜃, where 𝜃 is a certain value.
An algorithm is proposed to find an upper bound on the
makespan in case the upper bound is not given or unknown.
Given the upper bound on makespan, a proposed algorithm
and a genetic algorithm are utilized for solving the problem.
A survey of problem 𝐹𝑚|no-wait|Σ𝐶𝑗 can be found in [10].

In this paper, the asymptotic optimality of the Shortest
Processing Time (SPT) first SPT rule is proved for problem
𝐹𝑚|no-wait|Σ𝐶𝑗 in the sense of probability limit, where the
research is restricted to the permutation schedule (the details
about permutation schedule can be found in [1, 2]). To further
evaluate the strategy, a new lower bound with performance
guarantee is designed. At the end of the paper, numerical
simulations show the convergence of the algorithm and the
effectiveness of the lower bound.

The remainder of the paper is organized as follows. The
problem is formulated in Section 2, the asymptotic optimality
of the SPT rule is proved in Section 3. The new lower bound
and computational experiments are presented in Sections 4
and 5, respectively. And in Section 6, this paper is closed by
the conclusions.

2. Problem Specification

In no-wait flow shop problem, a set of n jobs has to be sequen-
tially processed onm differentmachines without preemption.
Each job 𝑗, 𝑗 = 1, 2, . . . , 𝑛, passes through the m machines
in identical order and requires processing time 𝑝(𝑖, 𝑗) on
machine 𝑖, 𝑖 = 1, 2, . . . , 𝑚. It is assumed that the processing
times are independently and identically distributed (i.i.d.)
random variables, defined on the interval (0, 1]. At any given
time each machine can handle at most one job and each job
can be processed on at most one machine. Jobs are available
simultaneously, and the permutation schedule is considered;
that is, all jobs are processed on all machines in the same
order.The jobs cannot wait between two successive machines

and the intermediate storage is zero. A job that was finished
on a given machine must remain on it until the next machine
completes the processing of the preceding job. Let 𝐷(𝑖, 𝑗)
denote the time that job 𝑗, 𝑗 = 1, 2, . . . , 𝑛, actually takes to
depart machine 𝑖, 𝑖 = 1, 2, . . . , 𝑚. The time job j starts its
processing at the first machine is denoted by 𝐷(0, 𝑗). The
completion time of job 𝑗 is denoted by𝐷𝑗. The objective is to
find a sequence of jobs under the constraint of permutation
schedule to minimize the sum of completion times on the
final machine; that is, min∑𝑛𝑗=1𝐷𝑗.

3. Proof of Asymptotic Optimality for
SPT Rule

The SPT rule is actually a heuristic in which the jobs are
scheduled in nondecreasing order according to value 𝑃𝑗 =
∑
𝑚
𝑖=1 𝑝(𝑖, 𝑗). With the tool of asymptotic analysis, the asymp-

totic optimality of the SPT rule for problem 𝐹𝑚|no-wait|Σ𝐶𝑗
is introduced as follows.

Theorem 1. Let the processing times 𝑝(𝑖, 𝑗), 𝑗 = 1, 2, . . . , 𝑛, 𝑖 =
1, 2, . . . , 𝑚, be independent random variables having the same
continuous distribution with bounded density 𝜑(⋅) defined on
(0, 1]. Then, with probability one

lim
𝑛→∞

𝑍
SPT

𝑛2
= lim
𝑛→∞

𝑍
∗

𝑛2
, (1)

where𝑍SPT is the objective value obtained by the SPT rule, and
𝑍
∗ is the optimal value.

Proof. The jobs to be scheduled are index in the SPT
sequence. For arbitrary job number 𝑗, 𝑗 = 1, 2, . . . , 𝑛, the
processing times that appear in a SPT sequence can be
expressed as follows

𝑝 (1, 1) 𝑝 (1, 2) ⋅ ⋅ ⋅ 𝑝 (1, 𝑗)

𝑝 (2, 1) 𝑝 (2, 2) ⋅ ⋅ ⋅ 𝑝 (2, 𝑗)

𝑝 (3, 1) 𝑝 (3, 2) ⋅ ⋅ ⋅ 𝑝 (3, 𝑗)

d d
𝑝 (𝑚, 1) 𝑝 (𝑚, 2) ⋅ ⋅ ⋅ 𝑝 (𝑚, 𝑗) .

(2)

We add the processing times of job 1 at the left bottom and
that of job 𝑗 at the right top, respectively, and obtain a matrix
𝐴 as follows:

𝐴 =(

𝑝(1, 1) 𝑝 (1, 2) ⋅ ⋅ ⋅ 𝑝 (1, 𝑗) 𝑝 (2, 𝑗) 𝑝 (3, 𝑗) ⋅ ⋅ ⋅ 𝑝 (𝑚, 𝑗)

𝑝 (1, 1) 𝑝 (2, 1) 𝑝 (2, 2) ⋅ ⋅ ⋅ 𝑝 (2, 𝑗) 𝑝 (3, 𝑗) ⋅ ⋅ ⋅ 𝑝 (𝑚, 𝑗)

𝑝 (1, 1) 𝑝 (2, 1) 𝑝 (3, 1) 𝑝 (3, 2) ⋅ ⋅ ⋅ 𝑝 (3, 𝑗) ⋅ ⋅ ⋅ 𝑝 (𝑚, 𝑗)

...
...

... d d
...

𝑝 (1, 1) 𝑝 (2, 1) 𝑝 (3, 1) ⋅ ⋅ ⋅ 𝑝 (𝑚, 1) 𝑝 (𝑚, 2) ⋅ ⋅ ⋅ 𝑝 (𝑚, 𝑗)

). (3)
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For a given SPT sequence, with matrix 𝐴, we have

𝑗

∑

𝑘=1

𝑚

∑

𝑖=1

𝑝 (𝑖, 𝑘)

<

𝑚

∑

𝑖=1

(

𝑖−1

∑

𝑖=1

𝑝 (𝑖, 1) +

𝑗

∑

𝑘=1

𝑝 (𝑖, 𝑘) +

𝑚

∑

𝑖=𝑖+1

𝑝 (𝑖, 𝑗)) .

(4)

Summing all over the jobs and dividing m on both sides of
(4), we have

𝑍
(1)
1 =

1

𝑚

𝑛

∑

𝑗=1

𝑗

∑

𝑘=1

𝑚

∑

𝑖=1

𝑝 (𝑖, 𝑘)

<
1

𝑚

𝑛

∑

𝑗=1

𝑚

∑

𝑖=1

(

𝑖−1

∑

𝑖=1

𝑝 (𝑖, 1) +

𝑗

∑

𝑘=1

𝑝 (𝑖, 𝑘) +

𝑚

∑

𝑖=𝑖+1

𝑝 (𝑖, 𝑗))

= 𝑍
(2)
,

(5)

where 𝑍(1) and 𝑍(2) are the lower bound values of LB(1) and
LB(2), respectively. Denote the completion time of job j in
LB(1), LB(2), and the SPT sequence by 𝐷(1)𝑗 , 𝐷

(2)
𝑗 , and 𝐷

SPT
𝑗 ,

respectively. For the 𝑛 jobs, the gap between the SPT sequence
and the lower bound is

𝐼𝑛 = 𝐷
SPT
𝑛 − 𝐷

(2)
𝑛 < 𝐶

SPT
𝑛 − 𝐶

(1)
𝑛

= max
1≤|𝐽1|,|𝐽2|,...,|𝐽𝑚|≤𝑛

{

{

{

∑

𝑗∈𝐽
1

𝑝 (1, 𝑗)

+∑

𝑗∈𝐽
2

𝑝 (2, 𝑗) + ⋅ ⋅ ⋅ + ∑

𝑗∈𝐽
𝑚

𝑝 (𝑚, 𝑗)

}

}

}

−
1

𝑚

𝑚

∑

𝑖=1

(

𝑖−1

∑

𝑖=1

𝑝 (𝑖, 1) +

𝑗

∑

𝑘=1

𝑝 (𝑖, 𝑘) +

𝑚

∑

𝑖=𝑖+1

𝑝 (𝑖, 𝑗))

=
1

𝑚
( max
1≤|𝐽1|,|𝐽2|,...,|𝐽𝑚|≤𝑛

{

{

{

∑

𝑗∈𝐽
1

𝑝 (1, 𝑗) + ∑

𝑗∈𝐽
2

𝑝 (2, 𝑗)

+ ⋅ ⋅ ⋅ + ∑

𝑗∈𝐽
𝑚

𝑝 (𝑚, 𝑗)

}

}

}

−

𝑚

∑

𝑖=1

(

𝑖−1

∑

𝑖=1

𝑝 (𝑖, 1) +

𝑗

∑

𝑘=1

𝑝 (𝑖, 𝑘) +

𝑚

∑

𝑖=𝑖+1

𝑝 (𝑖, 𝑗))) ,

(6)

where 𝐽𝑖 denotes the set that includes the jobs on machine 𝑖,
𝑖 = 1, 2, . . . , 𝑚, in the critical path. Dividing 𝑛 on both sides
of (6) and taking limit, we have

lim
𝑛→∞

𝐼𝑛

𝑛

= lim
𝑛→∞

𝐷
SPT
𝑛

𝑛
− lim
𝑛→∞

𝐷
(2)
𝑛

𝑛

< lim
𝑛→∞

𝐷
SPT
𝑛

𝑛
− lim
𝑛→∞

𝐷
(1)
𝑛

𝑛

=
1

𝑚

× ( lim
𝑛→∞

1

𝑛

× max
1≤|𝐽1|,|𝐽2|,...,|𝐽𝑚|≤𝑛

{

{

{

∑

𝑗∈𝐽
1

𝑝 (1, 𝑗)

+∑

𝑗∈𝐽
2

𝑝 (2, 𝑗)+⋅ ⋅ ⋅ +∑

𝑗∈𝐽
𝑚

𝑝 (𝑚, 𝑗)

}

}

}

− lim
𝑛→∞

1

𝑛

𝑚

∑

𝑖=1

𝑗

∑

𝑘=1

𝑝 (𝑖, 𝑘)

− lim
𝑛→∞

1

𝑛

𝑚

∑

𝑖=1

(

𝑖−1

∑

𝑖=1

𝑝 (𝑖, 1) +

𝑚

∑

𝑖=𝑖+1

𝑝 (𝑖, 𝑗)))

=
1

𝑚
(𝐸 (𝑝𝑗) − 𝐸 (𝑝𝑗)) −

1

𝑚
× 0 = 0,

(7)

where 𝐸(𝑝𝑗) denotes the expectation of the processing times,
and the penultimate inequality of (7) is because of the Law of
Large Numbers. Let 𝐼max be the maximum value of 𝐼𝑛 among
the 𝑛 jobs. Therefore, we have

lim
𝑛→∞

𝐼max
𝑛
= 0, (8)

lim
𝑛→∞

𝐷
(1)
𝑛

𝑛
= lim
𝑛→∞

𝐷
(2)
𝑛

𝑛
= lim
𝑛→∞

𝐷
SPT
𝑛

𝑛
. (9)

Summing all over the 𝑛 jobs, we have

𝑍
(1)
+ 𝑛𝐼max ≤ 𝑍

∗
≤ 𝑍

SPT
≤ 𝑍
(2)
+ 𝑛𝐼max. (10)

Dividing 𝑛2 on both sides of (8) and taking limit, we have

lim
𝑛→∞

𝑍
(1)

𝑛2
+ lim
𝑛→∞

𝑛𝐼max
𝑛

≤ lim
𝑛→∞

𝑍
∗

𝑛2
≤ lim
𝑛→∞

𝑍
SPT

𝑛2
≤ lim
𝑛→∞

𝑍
(2)

𝑛2
+ lim
𝑛→∞

𝑛𝐼max
𝑛2
.

(11)

With limits (8) and (9), we obtain the result of the theorem.
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Figure 1: Gantt chart of Example 1.

4. The New Lower Bound

As the strongerNP-hardness of the problem, the lower bound
is usually a substitution of the optimal solution. In 2013,
Bai and Ren [11] presented an asymptotically optimal lower
bound, LB1, for problem 𝐹𝑚|no-wait|Σ𝐶𝑗 as follows:

LB1 = max {𝑋1,𝑋2,𝑋3} , (12)

where

𝑋1 =
1

𝑚

𝑛

∑

𝑗=1

(

𝑗

∑

𝑘=1

𝑚

∑

𝑖=1

𝑝 (𝑖, 𝑘) +

𝑚

∑

𝑖=1

(𝑚 − 𝑖) 𝑝 (𝑖, 1)

+

𝑚

∑

𝑖=1

(𝑖 − 1) 𝑝 (𝑖, 𝑗)) ,

𝑋2 =

𝑛

∑

𝑗=1

(

𝑗

∑

𝑘=1

𝑝 (1, 𝑘) +

𝑚

∑

𝑖=2

𝑝 (𝑖, 𝑗)) ,

𝑋3 =

𝑛

∑

𝑗=1

(

𝑚−1

∑

𝑖=1

𝑝 (𝑖, 1) +

𝑗

∑

𝑘=1

𝑝 (𝑚, 𝑘)) .

(13)

This lower bound can deal with problem𝐹𝑚|no-wait|Σ𝐶𝑗
without any change. But in some cases, LB1 does not work
well. For instance, consider the following example (see
Figure 1).

Example 1. There is three-machine flow shop problem with
three jobs. The processing times of these jobs are 𝑝(1, 1) =
𝑝(2, 1) = 𝑝(3, 1) = 1; 𝑝(1, 2) = 𝑝(3, 2) = 1, 𝑝(2, 2) = 10;
and 𝑝(1, 3) = 𝑝(2, 3) = 𝑝(3, 3) = 5. Therefore, the optimal
sequence is {1, 2, 3} and the optimal value is 38 (see Figure 1).
For the associated LB1 value, we have

LB1 = max {27, 10, 10} = 27. (14)

And the gap between the optimal value andLB1 is (38− 27)/27
× 100% ≈ 40.74%. Obviously, the error is considerable. To
improve the performance of LB1, a new lower bound, LB(3),
is provided. Consider

𝑍
(3)
=

𝑛

∑

𝑗=1

max
1≤𝑖≤𝑚

{

{

{

𝑖−1

∑

𝑖󸀠=1

𝑝 (𝑖
󸀠
, 1) +

𝑛

∑

𝑗=1

𝑝 (𝑖, 𝑗) +

𝑚

∑

𝑖󸀠󸀠=𝑖+1

𝑝 (𝑖
󸀠󸀠
, 𝑛)

}

}

}

,

(15)

where 𝑍(3) is the lower bound value of LB(3). Calculate
Example 1 with LB(3), and obtain the value 38.

Theorem 2. For any instance of problem 𝐹𝑚|no-wait|Σ𝐶𝑗, we
have

𝑍
1
≤ 𝑍
(3)
, (16)

where 𝑍1 is the objective value of LB1.

Proof. Consider a given optimal schedule for 𝐹𝑚|no-
wait|Σ𝐶𝑗 in which the jobs are indexed from 1 to n. Denoting
the completion time of job 𝑗, 1 ≤ 𝑗 ≤ 𝑛, in LB(3) as 𝐷(3)𝑗 , we
have

𝐷
(3)
𝑗 = max
1≤𝑖≤𝑚

{

𝑖−1

∑

𝑖󸀠=1

𝑝 (𝑖
󸀠
, 1) +

𝑗

∑

𝑘=1

𝑝 (𝑖, 𝑘) +

𝑚

∑

𝑖󸀠󸀠=𝑖+1

𝑝 (𝑖
󸀠󸀠
, 𝑗)} .

(17)

Therefore, we have

𝐷
(3)
𝑗 ≥

𝑗

∑

𝑘=1

𝑝 (1, 𝑘) +

𝑚

∑

𝑖=2

𝑝 (𝑖, 𝑗) ,

𝐷
(3)
𝑗 ≥

𝑚−1

∑

𝑖=1

𝑝 (𝑖, 1) +

𝑗

∑

𝑘=1

𝑝 (𝑚, 𝑘) ,

𝐷
(3)
𝑗 ≥

1

𝑚

𝑗

∑

𝑘=1

𝑚

∑

𝑖=1

𝑝 (𝑖, 𝑘)

+

𝑚

∑

𝑖=1

(𝑚 − 𝑖) 𝑝 (𝑖, 1) +

𝑚

∑

𝑖=1

(𝑖 − 1) 𝑝 (𝑖, 𝑗) .

(18)

Summing all over the 𝑛 jobs, we can obtain the result of the
theorem.

5. Computational Results

In this section, we designed a series of computational
experiments to reveal the convergence of the SPT rule and
the effectiveness of the new lower bound in different size
problems. Firstly, we compare the SPT rule with LB(3)
to show convergence trend. And then, we compare LB(3)
with LB(2) to show the effectiveness of LB(3). Different
combinations of jobs and machines are tests to show the
performance variation when parameters vary. Combinations
with five, ten, and 15 machines with 100, 200, 500, 1000,
and 1500 jobs are tested for testing the SPT rule and lower
bound LB(3).The processing times were randomly generated
from a discrete uniform distribution on [1, 100], and a
normal distribution with mean (1 + 100)/2 and variance 49,
respectively. Ten different random tests for each combination
of the parameters were performed, and the averages are
reported.

The ratios SPT/LB(3) showed in Table 1 are the objective
values of the SPT rule to those of LB(3). From the data in
the table, we can see that the ratios of SPT/LB(3) approach
one as the number of jobs increases from 100 to 1500 with
the fixed number of machines. For example, in 15 machines
with uniform distribution, the ratio of SPT/LB(3) drops
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Table 1: Results of SPT/LB(3).

Distribution Uniform Normal
5 10 15 5 10 15

Machine
100 jobs 1.11284 1.07673 1.04071 1.07082 1.05216 1.05210
200 jobs 1.10885 1.06516 1.02421 1.06953 1.04967 1.04013
500 jobs 1.10405 1.06016 1.01848 1.06874 1.04820 1.03421
1000 jobs 1.10193 1.05846 1.01507 1.06835 1.04715 1.02225
1500 jobs 1.09988 1.05631 1.01291 1.06585 1.04639 1.01098

Table 2: Results of LB(3)/LB(2).

Distribution Uniform Normal
5 10 15 5 10 15

Machine
100 jobs 1.0632 1.0369 1.0362 1.0392 1.0310 1.0493
200 jobs 1.0313 1.0305 1.0271 1.0438 1.0321 1.0380
500 jobs 1.0453 1.0709 1.0254 1.0363 1.0248 1.0346
1000 jobs 1.0298 1.0456 1.0245 1.0340 1.0269 1.0259
1500 jobs 1.0199 1.0304 1.0220 1.0273 1.0309 1.0238

from 1.04071 to 1.01291 when the number of jobs increases
from 100 to 1500. This phenomenon indicates the asymptotic
optimality of the SPT rule. Contrarily, for the fixed number of
jobs, ratios of SPT/LB(3) enlarge as the number of machines
increases from 5 to 15. The cause may be that the larger
the number of machines, the larger the quantity of idle
times inserted, which enlarges the gap between the value of
objective and its lower bound.

The ratios LB(3)/LB(2) showed in Table 2 are the values
of LB(3) to LB(2). The data in the table reveal that LB(3) is
obviously superior to LB(2) for moderate scale problems. As
the number of jobs keeps enlarging, LB(3) approaches LB(2)
more and that conforms the asymptotic optimality of LB(3).

6. Conclusions

In this paper, we investigate a very useful scheduling problem
in steel production, the no-wait flow shop minimizing total
completion time. The asymptotic optimality of the classical
SPT rule is proven with the tool of asymptotic analysis when
the problem scale is large enough. For the promotion of
numerical simulation, a new lower bound with performance
guarantee is given. Computational results show that the SPT
rule and the new lower bound work well for large scale
problems.
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[4] H. Röck, “Some new results in flow shop scheduling,” Zeitschrift
für Operations Research A, vol. 28, no. 1, pp. 1–16, 1984.

[5] A. Allahverdi and T. Aldowaisan, “Minimizing total completion
time in a no-wait flowshop with sequence-dependent additive
changeover times,” Journal of the Operational Research Society,
vol. 52, no. 4, pp. 449–462, 2001.

[6] A. Allahverdi and T. Aldowaisan, “No-wait and separate setup
three-machine flowshop with total completion time criterion,”
International Transactions in Operational Research, vol. 7, pp.
245–264, 2000.

[7] T. Aldowaisan and A. Allahverdi, “New heuristics for m-
machine no-wait flowshop to minimize total completion time,”
Omega, vol. 32, no. 5, pp. 345–352, 2004.

[8] K. Gao, Q. Pan, P. N. Suganthan, and J. Li, “Effective heuristics
for the no-wait flow shop scheduling problem with total flow
time minimization,” The International Journal of Advanced
Manufacturing Technology, 66, pp. 1563–1572, 2013.

[9] A. Allahverdi and H. Aydilek, “Algorithms for no-wait flow-
shops with total completion time subject to makespan,” The
International Journal of Advanced Manufacturing Technology,
vol. 68, no. 9, pp. 2237–2251, 2013.

[10] N. G. Hall and C. Sriskandarajah, “A survey of machine
scheduling problems with blocking and no-wait in process,”
Operations Research, vol. 44, no. 3, pp. 510–525, 1996.

[11] D. Bai and T. Ren, “New approximation algorithms for flow
shop total completion time problem,”EngineeringOptimization,
vol. 45, no. 9, pp. 1091–1105, 2013.


