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This work presents the fusion of integral channel features to improve the effectiveness and efficiency of pedestrian detection. The
proposed method combines the histogram of oriented gradient (HOG) and local binary pattern (LBP) features by a concatenated
fusionmethod. Although neural network (NN) is an efficient tool for classification, the time complexity is heavy. Hence, we choose
support vector machine (SVM) with the histogram intersection kernel (HIK) as a classifier. On the other hand, although many
datasets have been collected for pedestrian detection, few are designed to detect pedestrians in low-resolution visual images and
at night time. This work collects two new pedestrian datasets—one for low-resolution visual images and one for near-infrared
images—to evaluate detection performance on various image types and at different times. The proposed fusion method uses only
images from the INRIA dataset for training but works on the two newly collected datasets, thereby avoiding the training overhead
for cross-datasets. The experimental results verify that the proposed method has high detection accuracies even in the variations
of image types and time slots.

1. Introduction

Pedestrian detection is an active area of research in the field
of computer vision [1, 2] and a preliminary task in various
applications, including intelligent video surveillance, auto-
motive robotics, content-based image annotation/retrieval,
and management of personal digital images. Large variations
in appearance caused by articulated body motion, viewpoint,
lighting conditions, occlusions, and cluttered backgrounds
present serious challenges. Hence, pedestrian detection in
still images is more difficult than that of faces [3].

Most pedestrian detection methods use a pretrained
binary classifier to find pedestrians in still images by scanning
the entire image. Such amethod is called the “sliding window
method” (or scanning window). The classifier is “fired”
if the image features inside the local search subwindow
satisfy certain criteria. At the core of the sliding window
framework are image descriptors and classifiers that are
based on these descriptors. According to features used for

pedestrian detection, thesemethods can be divided into three
groups: holistic-based methods, part-based methods, and
patch-based methods.

Holistic-based methods use global features, such as edge
templates, histogram of oriented gradient [4], and Haar-
like wavelet [5]. One popular holistic-based method is the
histogram of oriented gradient (HOG) method, which has
near-perfect classification performance when applied to the
original MIT pedestrian database and is widely used in
other computer vision tasks, such as scene classification,
object tracking, and pose estimation. Part-based methods
model a pedestrian as a set of parts, which include legs,
torso, arms, and head. Hypotheses concerning these parts are
generated by learning local features such as edgelet [6] and
orientation features.These parts are then assembled to form a
final humanmodel based on geometric constraints. Accurate
pedestrian detection depends on accurate part detection and
pedestrian representation by parts. Though this approach
is effective for dealing with partially occluded pedestrian
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detection, part detection is a difficult task. One example
of a patch-based method is implicit-shape-model- (ISM-)
based object detection, developed by Leibe et al. [7], which
combines both detection and segmentation in a probability
framework and requires only a few training images. However,
constructing a smart and discriminative codebook from
various perspectives remains an open problem.

Numerous descriptors used in pedestrian detection have
recently been proposed. Zhao and Thorpe [8] proposed a
pedestrian method by a pair of moving camera through
stereo-based segmentation and neural network-based recog-
nition. Dalal and Triggs [4] developed a descriptor similar to
scale invariant feature transform (SIFT) [9], which encodes
HOG in the detection window. HOG has been subsequently
extended to describe histograms that present information on
motion. Felzenszwalb et al. [10] recently appliedHOG to their
deformable part models and obtained promising results in
the PASCAL VOC Challenge. Zhu et al. [11] implemented
a cascade of rejecters based on HOG descriptors to achieve
near-real-time performance. Cascade models have also been
successfully used with other types of pedestrian descriptors,
such as edgelet features and the region of covariance (COV)
[12].

In order to integrate various pedestrian descriptors, many
works have proposed fusingmultiple features to detect pedes-
trians. Wojek et al. [13] combined the oriented histogram of
flowwithHOGorHaar on an onboard camera setup and con-
cluded that incorporating motion information considerably
enhances detection performance. Y. T. Chen and C. S. Chen
[14] proposed a method for detecting humans in a single
image, based on a novel cascade structure with metastages.
Their method includes both intensity-based rectangular fea-
tures and gradient-based 1D features in the feature pool of the
Real AdaBoost algorithm for weak classifier selection. Wang
et al. [15] combinedHOG and local binary pattern, trained by
a linear SVM, to solve the partial occlusion problem.

However, multicue pedestrian detection methods have
the following disadvantages for detecting pedestrians in still
images. First, optical flow information cannot be extracted
from a single image. Second, edgelet extraction or the COV
feature is computation-intensive. Finally, the AdaBoost has
too many parameters to tune, and the cascading test is
time-consuming and sensitive to occlusion. Therefore, this
work uses HOG and LBP features, which can be extracted
efficiently by integral images. An SVMwith a linear kernel or
HIK [16] has the advantage of ease of training in the training
stage and fast prediction in the test stage [17].

Although many datasets have been collected for pedes-
trian detection, few are designed to detect pedestrians in
cross-dataset, which is still a hot topic in computer vision.
Vazquez et al. [18] proposed an unsupervised domain adap-
tation of virtual and real worlds for pedestrian detection. Jain
and Learned-Miller [19] proposed an online approach for
quickly adapting a pretrained classifier to a new test dataset
without retraining the classifier. In this work, we collect
two new pedestrian datasets—one for low-resolution visual
images and one for near infrared images—to evaluate detec-
tion performance on various image types and at different
times.This work proposes cross-dataset pedestrian detection

by fusing integral channel features, which use only images
from the INRIA dataset for training but are effective on the
two newly collected datasets, thereby avoiding the training
overhead for cross-datasets.

The remainder of this paper is organized as follows.
Section 2 offers a description of the proposedmethod, includ-
ing the features, classifiers, and fusion. Section 3 presents
and offers a discussion of the relevant experimental results.
Finally, Section 4 draws a conclusion and presents sugges-
tions and directions for future work.

2. Proposed Pedestrian Detection Method

Sliding window-based object detection algorithms for static
images consist of two components: feature extraction and
classifier training. Feature extraction encodes the visual
appearance of a detected object using object descriptors.
Classifier training trains a classifier to determine whether
the current searching window contains a pedestrian. In this
section, we discuss the features and classifiers.

2.1. Feature Extraction. Several methods for describing pede-
strians have recently been proposed.Thiswork usesHOGand
LBP as pedestrian descriptors. All of these features can be
extracted using integral histogram techniques, accelerating
the computation process. They are complementary because
they encode gradient and texture information, respectively.

HOG. The HOG proposed by Dalal and Triggs [4] has
been widely used in the computer vision field, including
object detection, recognition, and classification. HOG is
similar to edge orientation histograms, shape context, and
the SIFT descriptor, but it is computed on a dense grid of
uniformly titled cells. Overlapping local contrast normal-
ization in blocks is conducted to improve accuracy. HOG
implementation involves dividing searchwindows into small-
connected regions, called cells, for which the histogram of
gradient directions is computed (Figure 1(a)). In this work,
an HOG descriptor is implemented using the following
parameters. Image derivatives in 𝑥 and 𝑦 directions are
obtained by applying the masks [−1 0 1] and [−1 0 1]𝑇,
respectively. The gradient orientation is linearly voted into
nine orientation bins in the range 0∘–180∘. A block size is 16
× 16; a cell size is 8 × 8; blocks overlap half of a cell in each
direction; Gaussian is weightingwith𝜎 = 4 using an L2-norm
for the feature vector in a block. The final vector consists of
all normalized block histograms, yielding 3780 dimensions.

LBP. Various applications have applied the local binary
pattern (LBP) extensively, which is highly effective in texture
classification and face recognition because it is invariant to
monotonic changes in the gray level [20]. Wang et al. [15]
noted that HOG performs poorly when the background is
cluttered with noisy edges and LBP is complementary when
it exploits the uniform pattern concept (Figure 2). In this
work, we adopt eight sample points and require bilinear
interpolation to find the red points in Figure 2(a) with a
radius of one and take the 𝑙

∞
distance as the distance to the

central pixel. The number of 0/1 transitions is no more than
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Figure 1: Feature extraction using HOG and LBP.
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Figure 2: (a) Eight sample points of the local binary pattern; (b) examples of the uniform local binary pattern.

two. Different uniform patterns are counted into different
bins, and all nonuniform patterns are voted into one bin.
A cell includes 59 bins, and the L2-norm is adopted to
normalize the histogram. We used the procedure by Wang
et al. to extract the LBP feature and to directly establish
pattern histograms in the cells (16 × 16, without overlap, as
shown in Figure 1(b)). LBP histograms in the 32 cells are then
concatenated into a feature vector with dimensions of 59 × 32
= 1888 to describe the texture in the current search window.

2.2. Classifier Training. Linear SVMandAdaBoost arewidely
used for detecting pedestrians.This work focuses on an SVM
with different kernel functions because it is easy to train in
the training stage and can make rapid predictions in the
test stage. Linear SVMs learn the hyperplane that separates
pedestrians from the background in the original feature
space. Extended versions of SVM, such as RBF kernel SVMs,
transform data to a high and potentially infinite number

of dimensions. However, the extensions are seldom used
in pedestrian detection because more dimensions lead to
computational overload.

Maji et al. [16] recently approximated the histogram inter-
section kernel of SVM (HIKSVM) to accelerate prediction,
andWu [17] proposed a fast dual method for HIKSVM learn-
ing. Section 3 describes experiments conducted to compare
the performance of a linear SVM with that of HIKSVM. The
experimental results show that HIKSVM outperforms the
linear SVM. A brief introduction of HIKSVM follows.

Swain and Ballard [21] first proposed the HIK, which is
widely used as a measure of similarity between histograms.
Researchers have proven that HIK is positive definite and
can be used as a discriminative kernel function for SVMs.
However, the HIK requires memory and computation time
that is linearly proportional to the number of support vectors
because it is nonlinear. Maji et al. presented HIKSVMs with
a runtime complexity, that is, the logarithm of the number of
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support vectors. Based on precomputing auxiliary tables, an
approximate classifier can be constructed with runtime and
space requirements that are independent of the number of
support vectors.

For feature vectors x, y ∈ 𝑅𝑛
+
, the HIK can be expressed

as follows:

𝑘HI (x, y) =
𝑛

∑

𝑖 =1

min (𝑥 (𝑖) , 𝑦 (𝑖)) , (1)

and the corresponding discriminative function for a new
input vector x is

ℎ (x) =
𝑚

∑

𝑙 =1

𝛼
𝑙
𝑦
𝑙
𝑘 (𝑥, 𝑥

𝑙
) + 𝑏

=

𝑚
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𝑙
𝑦
𝑙
(

𝑛

∑
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min (𝑥 (𝑖) , 𝑥𝑙 (𝑖))) + 𝑏.

(2)

Maji et al. noticed that for intersection kernels, the summa-
tions in (2) can be reformed as follows:

ℎ (x) =
𝑛

∑

𝑖 =1

(

𝑚

∑

𝑙 =1

𝛼
𝑙
𝑦
𝑙
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𝑛
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𝑖 (
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(3)

where ℎ
𝑖
(𝑠) = ∑

𝑚

𝑙=1
𝛼
𝑙
𝑦
𝑙
min(𝑠, 𝑥

𝑙
(𝑖)). Consider the functions

ℎ
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𝑙
(𝑖)
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given by 𝛼

𝑙
and 𝑦

𝑙
. According to the HIK, let 𝑟 be the largest

integer, such that 𝑥
𝑟
(𝑖) ≤ 𝑠; therefore,
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(4)

where 𝐴
𝑖
(𝑟) = ∑

1≤ 𝑙 ≤ 𝑟
𝛼
𝑙
𝑦
𝑙
𝑥
𝑙
(𝑖), 𝐵
𝑖
(𝑟) = ∑
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𝛼
𝑙
𝑦
𝑙
. Clea-

rly, (4) is piecewise linear, and functions 𝐴
𝑖
and 𝐵

𝑖
are inde-

pendent of the input data.Therefore, s can be precomputed by

first finding the position of 𝑠 = 𝑥(𝑖) in the sorted list by binary
search, with a runtime complexity of 𝑂(log𝑚). Although
the runtime complexity of computing ℎ(𝑥) is 𝑂(𝑛 log𝑚), it
necessitates to double the storage that is required by the
standard implementation because the modified version must
store 𝑥

𝑙
and ℎ
𝑖
(𝑥
𝑙
).

Maji et al. found that the support distributions in each
dimension tend to be smooth and concentrated. Therefore,
the ℎ(𝑥) is relatively smooth and can be approximated by
simpler functions, greatly reducing the required storage and
accelerating the prediction. In this work, ℎ

𝑖
(𝑠) is computed

using a lookup table with a piecewise constant approxima-
tion.

2.3. Feature Fusion. The two main feature fusion methods
(Figure 3) are concatenated fusion (FF1) and weighted sum
(FF2). Concatenated fusion concatenates different feature
descriptors and then feeds the concatenated results into the
classifier. The weighted sum feeds different features into
individual classifiers and then combines classification scores
using a weighted sum.

This work fuses HOG and LBP features for detecting
pedestrians because both can be implemented by integral his-
togram approaches, accelerating the subsequent prediction
process, as described in Section 3. Let the output scores of the
individual SVM classifiers using HOG and LBP features be
𝑓HOG and 𝑓LBP, respectively. For the FF2 fusion method, the
final output score is then defined by the weighted sum

𝑓 = 𝛼𝑓HOG + (1 − 𝛼) 𝑓LBP, 0 < 𝛼 < 1. (5)

The values of 𝛼 to 𝛼 ∈ {𝛼 | 𝛼 = 0.1𝐾, 𝐾 = 1, 2, . . . , 9} are
herein. Section 3 verifies that FF1 performance is superior to
FF2 for all of the values of𝛼, andFF2has the best performance
when 𝛼 = 0.5. Hence, this work fuses HOG, LBP, and Haar
using HIKSVM by the FF1 method because this method is
highly accurate, as confirmed in Section 3.

3. Experimental Results

The accuracies achieved using various integral channel fea-
tures, different kernels of support vector machines, and
two feature fusion methods for detecting pedestrians are
extensively compared. Random noise blocks are added to
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Figure 4: Examples of pedestrian images: (a) INRIA; (b) XMU-VIS; (c) XMU-NIR.

Table 1: INRIA training and test sets, XMU-VIS test sets, and XMU-NIR datasets.

Training Test
Pedestrians Nonpedestrians Pedestrians Nonpedestrians

#imgs #win #imgs #win #imgs #win #imgs #win
INRIA 615 2416 1218 22111 288 1126 453 4484965
XMU-VIS — — — — 4207 10154 413 1834994
XMU-NIR — — — — 1057 2596 — —

the pedestrian image to test the robustness achieved using
various features and classifiers. Experimental results obtained
using the INRIA person dataset and two newly collected
Xiamen databases indicate that the combined HOG and LBP
features by the concatenated-fusion method using the SVM
with the HIK as a classifier yield the highest accuracy. The
multiple feature combination outperforms single features,
and the HIK consistently outperforms the linear SVM.

3.1. Dataset and Performance EvaluationMeasures. Thiswork
evaluates the performance of pedestrian detection using three
databases: the INRIA person database [4] and two new
databases collected at Xiamen University, called XMU-VIS
and XMU-NIR, respectively. The INRIA dataset contains
human images taken from several viewing angles under
various lighting conditions both indoors and outdoors.
Figure 4(a) shows samples of the INRIA dataset. INRIA
images fall into three groups, which are further divided into
training and testing sets. The first group is composed of 615
full-size positive images containing 1208 pedestrian instances
for training and 288 images containing 566 instances, for
testing. The second group comprises scale-normalized crops
of humans sized 64 × 128, including 2416 positive images for
training and 1126 positive images for testing. The third group
comprises full-size negative images including 1218 images for
training and 453 images for testing.

This work used 2416 scale-normalized crops of human
images as positive training samples and randomly sampled
22111 subimages from 1218 person-free training photographs
as negative training samples. All of the training images are
from the INRIA dataset, including the situations of test
images fromXMU-VIS or XMU-NIR datasets, to show cross-
dataset human detection. For the INRIA dataset, the 1126
cropped images of pedestrians were used for testing. The
negative test samples were obtained by scanning the 453
testing images in steps of eight pixels in the 𝑥- and 𝑦-
directions using five scales (0.8, 0.9, 1.0, 1.1, and 1.2) of image
size, yielding 4484965 negative cropping windows.

The XMU-VIS dataset was collected at various places
around Xiamen University and at different time. The size of
each pedestrian image in the XMU-VIS dataset is 640 × 480
smaller than that of INRIA in 720 × 576. The goal is to
simulate images captured by onboard cameras in intelligent
vehicles for detecting pedestrians in low resolution. The
XMU-VIS test set is composed of 4207 pedestrian images
with 10154 cropped images and 413 negative images with
1834994 cropped images. The XMU-NIR dataset was also
collected at various locations around Xiamen University and
at different times. The images captured by near-infrared
sensors were sized 1280× 720.TheXMU-NIR dataset consists
of 1057 pedestrian images, in which 2596 are pedestrians.
Table 1 summarizes the three datasets.
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Figure 5: Comparison of accuracies achieved by combining HOG and LBP features through FF1 and FF2 methods on the INRIA dataset.
The classifiers are linear SVM and HIKSVM in (a) and (b), respectively.

Feature fusion performance is measured by plotting the
number of false positives per window (FPPW) versus the
miss rate, as proposed by Dalal and Triggs [4] in Section 3.2.
This only measures classification performance and excludes
nonmaximum suppression and other postprocessing steps.
The FPPW miss rate curves are plotted in log-log space. To
avoid sampling bias, negative samples are selected as a fixed
set and are not boosted by bootstrap learning.

Pedestrian detection performance over cross-datasets
is measured by precision and recall curves, described in
Section 3.3. This is a measure of both classification and
location performance, including nonmaximum suppression
and various postprocessing steps. Efficiency and robustness
to occlusion of the proposed method are also discussed in
Sections 3.4.

3.2. Performance Evaluation of Feature Fusion. Asmentioned
in Section 2.3, the two main feature fusion methods are FF1
and FF2. This experiment was conducted to compare the
performances of FF1 and FF2. Both the linear SVM and
HIKSVM are applied on the INRIA dataset. HIKSVM is
approximated as 20 linear segments with a piecewise constant
function. Experimental results show that the FF1 method
outperforms FF2 for all of the values of 𝛼 and FF2 has the
best performance when 𝛼 = 0.5 (Figure 5). Therefore, FF1 is
selected by default for feature fusion hereafter.

The experimental results show that combining HOG and
LBP features through the FF1 method using the HIKSVM
classifier yields the best performance. Figure 6 shows a com-
parison of the results obtained by applying combined features
(single features or combining HOG and LBP features) and

different SVMs (HIKSVM or linear SVM) on the INRIA
and XMU-VIS datasets, respectively. Figure 6(a) shows that
applying feature HOG to the INRIA dataset is better than
applying feature LBP. In contrast, Figure 7(b) shows that
applying feature LBP is better than applying HOG on the
XMU-VIS dataset. The HIKSVM outperforms the linear
SVM, regardless of the features used. Combining HOG
and LBP features through the FF1 method with HIKSVM
as a classifier yields the best performance, regardless of
the INRIA or XMU-VIS datasets. Therefore, the proposed
method fusesHOGandLBP features through the FF1method
and uses the HIKSVM as a classifier. The method is then
applied to test images using the sliding window strategy
to evaluate pedestrian detection performance over cross-
datasets in Section 3.3.

3.3. Performance Evaluation of Pedestrian Detection over
Cross-Datasets. As shown in [2], the per-window measure
for pedestrian classification is flawed and fails to predict
full image performance for pedestrian detection. Therefore,
the proposed method is also evaluated on full images
using the PASCAL criteria in this section. The details are
described as follows. The proposed pedestrian detection,
fusing HOG and LBP features through the FF1 method
with the HIKSVM as a classifier, is used to find pedestrians
in an image by scanning the entire image with a fixed
size rectangle. A denoted window, labeled as a rectangle in
Figure 7, presents the framework of the proposed HIKSVM-
based pedestrian detection with sliding window scanning
on full images, called sliding window scanning. Various
sized windows are scanned to detect multiscale humans.
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Figure 6: Comparing accuracies achieved by applying single features (HOG and LBP) and fusing features (HOG + LBP) using HIKSVM and
FF1 to INRIA and XMU-VIS datasets.

Pedestrians Nonpedestrians
Training

Classifier

Testing: scan on multiscale images

Postprocessing

Detection results

Figure 7: Framework of the proposed HIKSVM-based pedestrian detection with sliding window scanning.

The local block features of each window are fed to the
HIKSVM-based pedestrian classifier to determine whether a
human exists in the window. Windows determining whether
a human exists are considered as candidate windows. After
performing multiscale sliding window scanning, candidate
windows of various sizes may overlap each other, specifi-
cally surrounding authentic humans. Overlapping windows
should be postprocessed to locate humans with an accurate

position. Two typical postprocessing methods, mean-shift
location and window overlapping handling, denoted by nms
and olp, respectively, are used and compared to determine the
proper postprocessing methods. Experimental results show
that the proposed pedestrian detection, fusing HOG and
LBP features through the FF1 method with the HIKSVM
classifier and window overlap postprocessing, is superior
(Figure 8).
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Figure 8: Comparison of precision and recalls achieved by using single features (HOG and LBP) and fusing HOG and LBP through various
postprocessing: (a) XMU-VIS; (b) XMU NIR.

3.4. Robustness Evaluation to Partial Occlusion. An exper-
iment was conducted to show that the proposed method
by concatenating HOG and LBP features through the FF1
method with an HIKSVM classifier is typically robust to
partial occlusion (Figures 9 and 10). The experiment was
designed to randomly add one to five random blocks of size
16 × 16 to the 1126 test-cropped images of pedestrians in the
INRIA dataset (Figure 11). Figure 11 shows that when random
blocks are added to the test-cropped images, the number
of missed pedestrians increases, regardless of the features
and SVMs used.The number of missed pedestrians increases
when more random blocks are added. Figure 12 shows that
the number ofmissing pedestrians for HOG and LBP is lower
than that when using a single feature, regardless of the SVM
that is used. In this experiment, a test sample is considered to
include a pedestrian when the SVM output score exceeds 0.5.

4. Conclusion

This work systematically compares integral channel features,
fusion methods, and kernels of SVM. The experimental
results show that fusing HOG and LBP features through
concatenation with the HIKSVM classifier yields the best

performance, even for cross-datasets. The comparison is
conducted using the INRIA person dataset for training and
two newly collected Xiamen databases, XMU-VIS and XMU-
NIR, combined with INRIA for testing.The results are as fol-
lows. First, directly concatenating various features as the final
feature for classification is better than the weighted fusion
of individual classifier results. Second, combining HOG and
LBP features outperforms using a single feature, regardless
of whether HIKSVM or linear SVM is used. As to kernel
mapping, there are also some non-linear kernels [22], such as
RBF and Chi2 kernel, which have reported obtaining better
performance than HIK. But non-linear kernels are time-
consuming in testing state; so, in this paper, we only discuss
the linear kernels for pedestrian detection. Third, HIKSVM
consistently outperforms linear SVM, evenwhennoise blocks
are added that cause the occlusion problem. Fourth, for
the postprocessing method, window-overlap-based postpro-
cessing outperforms the mean-shift-based postprocessing.
Finally, the proposed method is effective to detect pedestrian
locations, even for cross-datasets collected in Xiamen Uni-
versity and captured by low-resolution visual sensors or near-
infrared sensors. However, themethod proposed in this work
has certain limitations.Therefore, futureworks should extend
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Figure 9: Detection results on XMU-VIS. From left to right and top to down, the classifiers are HOG lin, LBP lin, HOG LBP lin, HOG HIK,
LBP HIK, and HOG LBP HIK.

Figure 10: Detection results on XMU-NIR. From left to right and top to down, the classifiers are HOG lin, LBP lin, HOG LBP lin,
HOG HIK, LBP HIK, and HOG LBP HIK.
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Figure 11: Examples of adding random blocks of size 16 × 16 to test-cropped images in the INRIA dataset.
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Figure 12: Comparison of missing rates using various combinations of features (single features or feature fusion) when random blocks were
added to test-cropped images.

the proposed method to construct a practical pedestrian
detection system for videos that integrates additional motion
features and scene geometry information.
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