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Present work is aimed at the derivation of a simply usable equation for the total flow resistance associated with river bedforms, by a
unifying approach allowing for bypassing some of the limiting restrictions usually adopted in similar types of studies. Specifically,
we focused on the effect induced by the out-of-phase free surface undulations appearing in presence of sand dunes. The proposed
expression, obtained by combining the balance of momentum referred to the control volume whose longitudinal dimension
coincides with the dune wavelength and the energy balance integrated between its extreme sections, was tested by comparison
with some laboratory experimental measurements available in the literature and referred to steady flow past fixed, variably rough
bedforms. In terms of shear stress or friction factor, the proposed theory provides estimates in good agreement with the real data,
especially if evaluated against the performances provided by other classical similar approaches. Moreover, when analyzed in terms
of hydrodynamic dispersive properties as a function of the skin roughness on the basis of a previously derived analytical solution,
the dune-covered beds seem to behave like meandering channels, responsible for a globally enhanced fluid particles longitudinal
spreading, with a relatively reduced effect in the presence of less pronounced riverbed modelling.

1. Introduction

Stream flow along undulated beds has been widely studied
in the past, both analytically and experimentally, in terms of
resistance factors [1–12]. Several more recent experimental-
analytical works have dealt with the fluid-dynamical aspect
of the problem through innovative techniques (e.g., [13–16]).

Indeed, for a long time it has been commonly accepted
that large-scale bedforms like dunes and bars are generated
by large-scale turbulence, vertical or horizontal, respectively
[17–20] through the so-called bursting processes [19–26].
Bursting process, or simply burst, is synonym of evolution of
a largemacroturbulent eddy. In the zone of highest resistance,
that is, near the flow solid boundaries, very large values
of fluctuating shear stresses make the fluid rolling-up into
eddies. The so-generated vortices move away from river bed
or banks as they are conveyed downstream by the flow, in
the meantime diffusing, coalescing, eventually breaking-up

at the borders of the domain, and thus generating a space-
time rhythmic sequence [27].

The periodic (or, more realistically, pseudoperiodic) dis-
tortion of the velocity field, in its turn, triggers off the
deformation of the mobile bed and, therefore, the creation
of typical bedforms. From turbulence measurements, it has
been found that the fully-developed dune wavelength Λ

scales with the average flow depth H: Λ ∼ 6H. Unavoidably
these bedforms, which constitute the physical imprint of the
turbulent flow, are affected by the strong and ubiquitous
random element characterizing the high Reynolds number
processes and should be therefore analyzed by resorting to
suitable stochastic approaches (e.g., [28–31]). In any case,
even leaving aside the random aspect, in turbulent flow
conditions and in presence of solid transport, there is a wide
set of elements from whose interaction the total resistance
opposed by the river bed to the water flux is determined.
For instance, the skin roughness, commonly identified with
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shape and dimensions of the material constituting the wetted
contour, can incorporate other factors whose quantitative
effect can not be evaluated with the same accuracy, that is, the
concentration and the distribution of the grains, or the vege-
tation.The latter, which is usually present both on the bottom
and the banks of the channel, is associated with a sometimes
considerable reduction of the bed capacity, slowing down
the flow in a more or less pronounced fashion depending
on type, height, density, and distribution of the arboreal
species. To the skin roughness, it is then necessary to add
the resistance induced by the geometric bed irregularities,
like those represented by particularly unevenwetted contours
and, obviously, those deriving from the continuously evolving
bed configuration and related to the specific type of solid load
(ripples, dunes, and anti-dunes up to a limit grain size and
macroroughness for larger grains dimensions). Furthermore,
one should account for the dynamical influence of the solid
transport itself, either as bed or suspended load, which tends
to highlight the effect of the bed irregularities and to increase
the flow resistance and, finally, for the changes that the
transported solid particles cause on the physical-chemical
characteristics of the stream. Even restricting the investi-
gation field to the uniform or on average-uniform flows,
and therefore neglecting the contributions to the resistance
represented by obstacles and obstructions (i.e., bridge piers,
dams and alluvial fans), as well as those attributable to the
flow rate oscillations, it is clearly difficult to quantify the
effects due to so many factors.

The aim of present work is represented by the analytical
derivation of a closed-form solution for the estimation of
the total resistance in presence of river dunes (a typically
two-dimensional sand bed pattern) in perfect equilibrium
conditions, that is, neglecting the effects of their downstream
migration, based on the elaboration of the global momentum
and energy balances. The final expression accounts for skin
and shape roughness in a nontrivially additive way, and for
the free surface undulation as a function of Froude number;
the intrinsically nonstationary phenomenon of the flow sep-
aration near the dune crest is evaluated in terms of resistance
resorting to an equivalent steady flow configuration.

The proposed approach is then tested by comparing
the analytical estimates of the total friction factor with the
laboratory measurements provided by Engel and Lau [9],
and the analytical estimates of the total shear stress with
the laboratory measurements documented in McLean et al.
[15]. Moreover, based on a previously derived closed-form
solution for the hydrodynamic dispersion coefficient [31],
the data by Engel and Lau [9] are utilized to investigate the
relationship between the flow resistance and the dispersive
properties of streams flowing past undulated sand beds.

2. Mathematical Formulation

Consider steady and periodically uniform two-dimensional
streams. For weak curvatures of the fluid particles trajectory
determined by bottom and free surface undulations, the
pressure can be assumed as hydrostatically distributed along
all the verticals. Note that, in the separated flow zone
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Figure 1: Sketch of the physical model.

downstream the dune crest, the validity of the assumption
is guaranteed by Helmholtz theory and by the substantial
immobility of the fluid subject to the geopotential. In the
same zone, the shear stresses are usually neglected due to
their very small negative values. Finally, in the low Froude
number regime flows, water and bed sediment waves are
commonly out of phase. Specifically, it is reasonable to expect
themaximumdrop of the free surface near the dune peak, due
to the acceleration induced by its upstreampositive slope, and
themaximum rise in the separated and highly turbulent zone
where the flow, after having achieved the minimum velocity,
realigns and accelerates again (see Figure 1). In the most
standard situations, with the basic geometric parameters
assuming the most common values, the separation length
𝐿
𝑠
ranges from about 4Δ to about 6Δ, where Δ indicates

the dune height measured along the vertical [9]. Generally,
𝐿
𝑠
= 𝛼Δ. In order to estimate the total friction factor in

such circumstances, we have applied the momentum balance
equation to the control volume (basically, the flow domain
identified by the dunes sequence wavelength) delimited in
Figure 1 by the free surface, the dune contour, and the vertical
bold dashed lines:

I +M
𝑜
−M
𝑖
= G +Π, (1)

where I indicates the local inertia,M
𝑜
andM

𝑖
the outflow and

inflow momentum flux, respectively, G the control volume
weight and Π the resultant of the applied surface forces
(isotropic pressures plus shear stresses). In turbulent steady
conditions, and because of the periodicity of the peculiar
velocity field, the projection of that equation along the
horizontal direction 𝑥 yields

Π
𝑥
= 𝜏


𝐿 + 𝑝
𝑏
(Δ − 𝑖

𝑓
𝐿) − 𝑝

𝑠
[Δ + 𝑖

𝑓
(Λ − 𝐿)] = 0 (2)

with

𝜏
: shear stress due to the skin roughness only;

Λ: horizontal length of the sand wave;
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𝐿 = 𝛽Λ = {1 − Δ/Λ[cos(𝜔 + 𝛾) cos 𝛾/ sin𝜔]}Λ:
horizontal length of the dune back;

𝑖
𝑓
= tan 𝛾: bottom slope (generally weak);

𝜔: angle of the downstream slope;

𝑝
𝑏
: average pressure acting on the dune back;

𝑝
𝑠
: average pressure acting on the dune in the separa-

tion zone (𝐿
𝑠
).

It is worth noting that in (2) the length of the control
volume where the skin shear stress is considered active coin-
cides with the whole upstreamdune surface.That assumption
is justified for bed disturbances characterized by relatively
small amplitude (small 𝐿

𝑠
). Considering an approximately

linear variation of the free surface profile associated with not
exceedingly steep bedforms, and 𝜔 → 𝜋/2, we obtain

𝑝
𝑏
= 𝛾
𝑤
𝐻 𝑝

𝑠
≅ 𝛾
𝑤
(𝐻 −

𝛿

2
) , (3)

where 𝛿 = ℎ
1
− Δ − ℎ

2
represents the difference between

maximum and minimum free surface elevation and 𝛾
𝑤
is the

water specific weight. Actually, the second of the previous
identities should be rewritten as:

𝑝
𝑠
= 𝛾
𝑤
(𝐻 − 𝑏) ,

𝑏 =
𝛿

2
[

𝛽

1 − 𝛼 (Δ/Λ)
−
(1 − 𝛽)

𝛼 (Δ/Λ)
] .

(4)

However, (4) tends to its approximate counterpart for small
Δ/Λ and 𝜔 → 𝜋/2. The relationship linking 𝛿 to the
flow kinematic parameters can be derived by considering
the energy balance (1D Saint Venant equation) integrated
between Sections 1 and 2, characterized by maximum and
minimum flow depths ℎ

1
and ℎ

2
, respectively. Under the

above-mentioned conditions,

𝑖
𝑓
𝐿 + ℎ
1
+
𝑈
2

1

2𝑔
−
𝜏


𝐿

𝛾
𝑤
𝐻
= Δ + ℎ

2
+
𝑈
2

2

2𝑔
(5)

with 𝑈
1
and 𝑈

2
indicating the inflow and outflow section

averaged velocities, respectively, and 𝜏𝐿/𝛾
𝑤
𝐻 the unit weight

energy loss. The result reads

𝛿 =
𝑈
2

2
− 𝑈
2

1

2𝑔
− (𝑖
𝑓
−
𝜏


𝛾
𝑤
𝐻
)𝐿. (6)

Now, by virtue of continuity: 𝑈𝐻 = 𝑈
1
ℎ
1
= 𝑈
2
ℎ
2
, and

assuming𝐻 as the geometric mean of the extreme flow depth
values:𝐻 ∼ (ℎ

1
ℎ
2
)
1/2, one obtains

𝛿 =
Δ𝐹
2

𝑟

1 − 𝐹2
𝑟

− (𝑖
𝑓
−
𝜏


𝛾
𝑤
𝐻
)

𝐿

1 − 𝐹2
𝑟

, (7)

where 𝐹
𝑟
= 𝑈/(𝑔𝐻)

1/2 indicates the average Froude number
(kinetic index). Finally, the combination of (2), (3) and (7)
yields the following expression for the total shear stress

𝜏 = 𝛾𝐻𝑖
𝑓
as a function of Froude number and geometric

bedforms parameters:

𝜏 = 𝛽{1 +
Λ

2𝐻 (1 − 𝐹2
𝑟
)
[
Δ

Λ
+ (1 − 𝛽) 𝑖

𝑓
]} 𝜏


+
𝛾
𝑤

2
[
Δ

Λ
+ (1 − 𝛽) 𝑖

𝑓
](

Δ𝐹
2

𝑟

1 − 𝐹2
𝑟

−

𝛽Λ𝑖
𝑓

1 − 𝐹2
𝑟

) .

(8)

Equation (8) can straightforwardly be transformed in terms
of friction factors invoking the well-known relationships:

𝑓 =
8𝜏

𝜌𝑈2
𝑓


=
8𝜏


𝜌𝑈2
, (9)

where 𝜌 is the water density, leading to

𝑓 = 𝐴𝑓


+ 𝐵,

𝐴 = 𝛽{1 +
Λ

2𝐻 (1 − 𝐹2
𝑟
)
[
Δ

Λ
+ (1 − 𝛽) 𝑖

𝑓
]} ,

𝐵 = 4 [
Δ

Λ

1

1 − 𝐹2
𝑟

−
Λ

𝐻

𝛽𝑖
𝑓

𝐹2
𝑟
(1 − 𝐹2

𝑟
)
] .

(10)

As (10) clearly suggests, the proposed approach produces an
analytical expression for the total friction factor which is
not the mere superposition of the effects of skin roughness
and bed modelling, as it happens in all the previous works
dealing with the same topic by analytical tools. On the
contrary, besides a term dependent on the bed geometric
parameters and on the Froude number only (𝐵), which
essentially accounts for the contribution to the flow resistance
coming from the macroscopic bed deformation, it includes a
coefficient (𝐴)whichmodulates the skin friction factor𝑓 on
the basis of the same characteristics and, therefore, accounts
for the declining contribution of the grain roughness when
the bottom undergoes a transition from flat to mildly steep.
The derivation of the hydrodynamic dispersion coefficient in
presence of sand dunes sequences was carried out based on a
stochastic Lagrangianmodel [31], extensively discussed in the
next section, when the corresponding solution is analyzed in
terms of dependence on the dunes flow resistance.

3. Results and Discussion

In order to test the proposed formulation, we employed the
experimental data provided by Engel and Lau [9], because
they cover, in our opinion, a rather meaningful and well
controlled range of geometrical and hydrodynamical param-
eters for approximately two-dimensional flow in presence
of dunes. In their laboratory surveys, the authors utilized
artificial and fixed bedforms characterized by a constant
height Δ equal to 3 cm, a variable slope Δ/Λ ranging from
0.02 to 0.07, and a downstream angle 𝜔 = 30

∘. The skin
roughness was made by a fixed grain layer with a𝐷

50
varying

between 0.35 and 9mm. Furthermore, based on what was
recommended by Yalin [4] and others, flow conditions and
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Figure 2: Comparison between measured [9] and calculated fric-
tion factors. The dotted lines correspond to the 70% confidence
interval.

effectswere analyzed for ratios ofwavelength to average depth
Λ/𝐻 equal to 2𝜋 (which is almost 6) and 5; the average bed
slope 𝑖

𝑓
and the Froude number Fr varied in a nonsystematic

fashion, from 4.16 × 10
−4 to 0.022 and from 0.22 to 0.42,

respectively. Finally, the estimation of the skin friction factor
was carried out based on the following logarithmic formula:

𝑓


= 1.28(ln 11𝐻
𝐾
𝑠

)

−2

, (11)

where 𝐾
𝑠
, sand-equivalent roughness index, can be approxi-

mated by 2𝐷
50
. Figures 2 and 3 illustrate, for Λ/𝐻 equal to

2𝜋 and 5, respectively, the comparison between the values
of the total friction factor experimentally measured and
those mathematically obtained through the combination of
momentum and energy balances (10). As already mentioned,
for each of the subcategories representing the different dunes
slopes, 𝑖

𝑓
and Fr vary in a non systematic fashion, while

the relative roughness 𝐷
50
/𝐻 increases along with both the

calculated and the measured friction factors, ranging from
0.0016 to 0.0513 for Λ/𝐻 = 2𝜋 and from 0.0013 to 0.0402
for Λ/𝐻 = 5. The grain Reynolds number 𝑢

∗
𝐾
𝑠
/], with

𝑢
∗
indicating the shear velocity and ] the kinematic water

viscosity, is always larger than 70, conventionally meaning
rough fully turbulent flow.

As Figures 2 and 3 (which display the 70% confidence
intervals also) clearly show, the best agreement is obtained
for Δ/Λ = 0.05, that is, for mildly steep dunes. Conversely,
the theoretical formula underestimates the total friction
factor for the flatter bedforms (Δ/Λ = 0.02 e 0.033) and
overestimates that for the steeper ones (Δ/Λ = 0.07). Given
the hypotheses at the basis of (10), it is reasonable to expect
a deterioration of the performance of the equation as the
dune slope increases, whereas it is worth discussing the
discrepancy detected in the field of the flatter bedforms.
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Figure 3: Comparison between measured [9] and calculated fric-
tion factors. The dotted lines correspond to the 70% confidence
interval.

Indeed, it is possible that the proposed formula is not able
to completely account for the greater or lesser relevance
to be attributed to the skin roughness as a function of
the dune slope and, although it is not a simple effects
superposition, it should perhaps incorporate a modulation
coefficient of 𝑓 which could vary with the magnitude of the
flow dragging action and, presumably, in a nonlinear way
with the dune slope. In any case, considering the possibility of
measurement errors, the assumptions underlying the closed
form solution (which, for instance, unavoidably neglects the
pulsatile and crucial phenomenon of the vortex shedding at
the dune crest), and a percentage error which is on average
smaller than 20–25%, we can conclude that (10) incorporates
within a reasonable degree of approximation the influence of
bottom and free surface undulations on the flow resistance
in riverbeds. On the other hand, the comparison with the
performances provided by other compact expressions for the
total 𝑓 (Engelund [5]; Garde and Ranga Raju [6]; Vanoni and
Hwang [7], resp.):

𝑓 = 𝑓


+ 4
Δ

Λ

Δ

𝐻
,

𝑓 =
8

[3.2(𝐻/𝐷
50
)
1/6

]

2
,

𝑓 =
8

(9.3 log (Λ𝐻/Δ2) − 6.5)2

(12)

effectively demonstrates (see Figure 4, displaying the his-
tograms of the percentage errors for the 4 available equations,
including (10)) the interpretative improvement represented
by the present study.
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Figure 5 shows the behaviour of (10) as a function of
Froude for Λ/𝐻 = 2𝜋, 𝑖

𝑓
= 0.0012, 𝐻 = 0.17m, 𝐷

50
=

0.0005m, and the 4 sample values of Δ/Λ. Note that the
selected range of Froude corresponds to the interval of values
detected in the Engel and Lau experiments, while the selected
values of bed slope, depth, and grain size have been obtained
by averaging the laboratory data. The estimates of 𝑓 are
obviously increasing, Fr being the same, asΔ/Λ increases.The
variation of 𝑓 with Fr is not too pronounced for weak dune
slopes, and that is in agreement with the conclusions drawn
by Engel and Lau [9] themselves, which were nevertheless
based on measurements carried out by letting Fr vary in a
non systematic way. The substantial invariance with respect
to the kinetic flow index does not hold for the steeper
bedforms. Indeed, with Δ/Λ = 0.07 the total 𝑓 ranges from
about 0.12 for Fr = 0.24 to about 0.16 for Fr = 0.45.
The effect of the increasing average flow velocity on the
rough bedforms-induced acceleration is further highlighted
in Figure 6, showing the relative free surface drop 𝛿/Δ (with
𝛿 given by (7)) as a function of the Froude number forΛ/𝐻 =

2𝜋. The diagram seems to detect the existence of a single
mathematical relationship linking 𝛿/Δ to Fr regardless of the
dune slope, with values up to the 18% for the faster streams.

In order to double-check the soundness of the proposed
approach, (8) was tested based on the experimental measure-
ments provided by McLean et al. [15]. In that data series (in
all 8 runs) the selected dune slopes were equal to 0.05 (runs
2, 3, T5(7), and T6(8)) or 0.1 (runs 4, 5, 6, and 7). The ratio of
wavelength to average flow depth was 20 or 10, respectively
(thus, larger than what is considered the “expected” value
(∼6) of that parameter). Froude number ranged from 0.1
to 0.31. The measured quantities included the total shear
stress estimated from the average flow depth 𝛾

𝑤
𝐻𝑖
𝑓
, the total

shear stress estimated from the hydraulic ratio 𝛾
𝑤
𝑅𝑖
𝑓
, and the

total shear stress obtained at the bottom from the Reynolds
formula −𝜌⟨𝑢𝑤⟩

0
, with 𝑢 and 𝑤 indicating the fluctuating

component of longitudinal and vertical velocity, respectively,
and the angle brackets indicating the ensemble mean. Note
that, for runs from 2 to 7, with a channel width equal to 0.9m,
the percentage error in substituting the actual hydraulic
radiuswith the average flowdepth [(𝑅−𝐻)/𝑅]%was−35.11%,
−121.33%, −35.33%, −35.33%, −66.67%, and −124.44%. Thus,
the experimental setup reproduced a situation considerably
far from the two-dimensional flow assumed in our mathe-
matical formulation. As Figure 7 clearly shows, although one-
half of the runs was performed with a very high (almost
“extreme”) value of dune slope (0.1) and the boundary effect
was definitely not negligible, the shear stress estimates based
on (8) (black asterisks) fall well inside the range of 𝜏 values
identified by the experimental measurements or, at the most,
coincide with one/two of them, further demonstrating the
robustness of present first-order analytical approach.

Finally, for the sake of completeness, Figure 8 shows the
behaviour of the dimensionless hydrodynamic dispersion
coefficient as a function of the skin friction factor for the
four different dune slopes whose effects were analyzed in the
present work.Thedimensionless coefficient𝐷

𝑥
was evaluated

on the basis of the analytical solution proposed by Pannone

[31], starting from the Lagrangian stochastic interpretation of
the fluid particles spreading process:

𝐷
𝑥
(𝑡) =

1

2

𝑑𝑋
11

𝑑𝑡
= ∫

𝑡

0

⟨𝑈


[𝑋 (𝑡)] 𝑈


[𝑋 (𝜏)]⟩ 𝑑𝜏, (13)

where the primes indicate the random fluctuations,𝑋 = 𝑋(𝑡)
is the longitudinal particle trajectory,𝑋

11
(𝑡) = ⟨𝑋



(𝑡)
2

⟩ is the
particle trajectory covariance, and ⟨𝑈[𝑋(𝑡)]𝑈[𝑋(𝜏)]⟩ the
Lagrangian velocity covariance. Incidentally, the (periodic)
random nature of the Lagrangian velocity field derives from
the sampling of the section averaged velocity distribution
associated with the sand waves sequence (and then repre-
sented by a strong deterministic and periodic trend), by fluid
particles subject to diffusive transport mechanisms usually
described by Fick’s law and Brownian paths. Thus, assuming
a bed elevation covariance represented by a single cosine
function, with a variance proportional to the dune height
squared (e.g., [27]):

⟨ℎ̃ (𝑥) ℎ̃ (𝑥 + 𝜉)⟩ = 𝐶
ℎ
(𝜉) = (

Δ

2
)

2

cos(2𝜋𝜉
Λ
) (14)

and relying on the continuity condition for not exceedingly
high and steep dunes, that is, for relatively small depth
deviations ℎ̃:

𝑈 (𝑥) =
𝑈𝐻

ℎ (𝑥)
=

𝑈𝐻

𝐻 + ℎ̃ (𝑥)

≅ 𝑈(1 −
ℎ̃ (𝑥)

𝐻
) , (15)

the following first order solution for small Δ/Λ was obtained
[31]:

𝐷
𝑥
(𝑡) =

(Δ
2

/16) (𝑈/𝐻)
2

(𝜋2/Λ2) ((4𝜋2𝜀2
𝑥
/Λ2) + 𝑈2)

× {
4𝜋
2

𝜀
𝑥

Λ2
[1 − exp(−

4𝜋
2

𝜀
𝑥

Λ2
𝑡) cos(2𝜋𝑈

Λ
𝑡)]

+
2𝜋𝑈

Λ
exp(−

4𝜋
2

𝜀
𝑥

Λ2
𝑡) sin(2𝜋𝑈

Λ
𝑡)} .

(16)

With 𝐷
𝑥
= 𝐷
𝑥
(∞)/𝑈Λ and 𝜀

𝑥
= 5.93𝑢



∗
𝐻 = 5.93√𝜏/𝜌𝐻

defining the flat bed turbulentmixing coefficient [32], one can
finally write

𝐷
𝑥
≅

1

8𝜋2
(
Δ

𝐻
)

2 √2/𝑓

(1 + (2/𝜋2𝑓))
. (17)

As Figure 8 explains, the regime value of the dimen-
sionless longitudinal dispersion coefficient (which practically
represents one-half of the time-derivative of the solute cloud
inertia moment and is then a measure of the rate at which
the cloud is dispersed and diluted by the flow in the given
direction) generated by the dune-like periodical nonunifor-
mity is strongly affected by the bed-form steepness, raising
with Δ/Λ everything else being the same (more intense
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Figure 4: Histograms of percentage errors corresponding to the use of (10) and (12).

macrovortices dissipation). Furthermore, whereas for low
values of Δ/Λ the coefficient is almost independent of the
degree of wall turbulence depending on 𝑓, as Δ/Λ increases
the asymptotic 𝐷

𝑥
is more and more influenced by the

skin friction factor, to which it is directly related. We could
say that, in terms of hydrodynamic dispersion, the inclined
planes of upstream and downstream faces of the dune seem
to have the same function of the river meanders. Indeed,
less rough flow field contours induce less turbulent (and,
therefore, less uniform) time-mean velocity profiles due to
the slower transverse mixing. Less uniform wall velocity pro-
files in turn cause a more pronounced solute hydrodynamic
dispersion along the local flow direction and, by continuity,
a consequent reduced dispersion along the orthogonal ones.
If the local flow direction is considerably different from the
straight horizontal direction characterizing straight-axis flat-
bed rivers (highly meandering rivers = horizontal deviations;
highly undulated beds = vertical deviations), the longitudinal

dispersion diminishes. That would explain why, as Δ/Λ
increases, the longitudinal dispersion coefficient becomes
more sensitive to the skin roughness variations.

4. Conclusions

Present work has proposed the analytical derivation of a sim-
ple and easily usable closed-form solution for the estimation
of the total flow resistance in presence of river dunes, based
on the application of the global equilibrium equations. The
final expression accounts for skin and shape roughness in a
non trivially additive way and for the free surface undulation
as a function of the Froude number; the intrinsically non
stationary phenomenon of flow separation at the dune crest
is handled in terms of resistance based an equivalent steady
flow configuration.
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Figure 5: Behaviour of the calculated friction factor as a function of
Froude number.
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That expression is tested by comparing the analytical
estimates of the total friction factor with the laboratory
measurements provided by Engel and Lau [9], against the
equations proposed by classical literature works [5–7]. In the
sampled conditions (for varying average flow velocity and
everything else being the same), the three classical formulas
rewritten in terms of dimensionless friction factor (12) are not
able to account for the effect of the free surface undulation
and would provide a constant value for 𝑓 regardless of the
Froude number. Conversely, (10), as shown by Figures 2 and
3, seems to be able to capture the influence systematic and
separated of that crucial parameter by providing friction
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Figure 7: Comparison between measured [15] and calculated total
shear stresses.
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Figure 8: Behaviour of the dimensionless asymptotic dispersion
coefficient as a function of the skin friction factor for different dune
slopes.

factor values rather close to the measured ones, especially for
the mildly steep case Δ/Λ = 0.05. On the other hand, the
comparison of the performances provided by the 4 equations
(Figure 4) in terms of percentage error histograms reveals the
considerable interpretative improvement of the phenomenon
represented by (10). Figure 5 highlights a definite increase
of the flow resistance with the Froude number that is more
pronounced in presence of steeper bedforms, as one would
expect due to the more intense disturbances induced within
the core of the turbulent flow.The analysis of the relative free
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surface drop in Figure 6 shows the substantial independence
of that parameter on the dune slope and its monotonic
increase with the Froude number. A further development
of the research could address the comprehension and the
mathematical modelling of the mechanisms through which
the skin roughness resistance is modulated when added to
the shape resistance, not only as a function of the geometric
characteristics of the sand waves sequence but also as a
consequence of the effective cross-sectional velocity profiles,
which should be reasonably different from the flat bed
logarithmic functions constituting the outcome of the classic
Prandtl theory and which justify equations like (11).

In order to double-check the soundness of the proposed
approach, (8) was tested based on the experimental mea-
surements presented by McLean et al. [15] and including the
total shear stress estimated from the flow dept, the total shear
stress estimated from the hydraulic ratio, and the turbulent
Reynolds shear stress detected at the bottom. Although one
half of the runswas performedwith a quite high value of dune
slope (0.1) and, therefore, theoretically in contrast with the
hypotheses characterizing the proposed approach, the shear
stress estimates obtained by (8) fall well inside the range of
𝜏 values provided by the experimental measurements or, at
the most, coincide with one/two of them, demonstrating the
robustness of our analytical approach even in quite extreme
conditions.

Finally, when analyzed in terms of hydrodynamic dis-
persive properties as a function of the skin roughness on
the basis of a previously derived analytical solution, the
dune-covered beds seem to behave likemeandering channels,
responsible for a globally enhanced hydrodynamic solute
particles spreading, though with a relatively reduced effect in
presence of a less pronounced riverbed modelling.
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