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Economic dispatch is one of the popular energy system optimization problems. Recently, it has been solved by various
phenomenon-mimicking metaheuristic algorithms such as genetic algorithm, tabu search, evolutionary programming, particle
swarm optimization, harmony search, honey bee mating optimization, and firefly algorithm. However, those phenomenon-
mimicking problems require a tedious and troublesome process of algorithm parameter value setting. Without a proper parameter
setting, good results cannot be guaranteed. Thus, this study adopts a newly developed parameter-setting-free technique combined
with the harmony search algorithm and applies it to the economic dispatch problem for the first time, obtaining good results.
Hopefully more researchers in energy system fields will adopt this user-friendly technique in their own problems in the future.

1. Introduction

Economic dispatch (ED) is defined in the US Energy Policy
Act of 2005 as the operation of electrical generation facilities
to produce energy at the least cost to reliably serve consumers
while satisfying any operational limits of generation and
transmission facilities. ED became a popular optimization
problem in energy system field, which has been tackled by
various optimization techniques such as genetic algorithm
(GA) [1], tabu search (TS) [2], evolutionary programming
(EP) [3], particle swarm optimization (PSO) [4], harmony
search (HS) [5], honey beemating optimization (HBMO) [6],
and firefly algorithm (FA) [7].

As observed in the literature, better results have been
obtained by phenomenon-mimicking metaheuristic algo-
rithms rather than gradient-based mathematical techniques.
Indeed, the metaheuristic algorithm has advantages over the
mathematical technique in terms of several factors: (1) the
former does not require complex derivative functions; (2) the
former does not require a feasible starting solution vector
which is sensitive to the final solution quality; and (3) the
former has more chance to find the global optimum.

However, the metaheuristic algorithm also has the weak-
ness in the sense that it requires “proper and appropriate”
value setting for algorithm parameters [8]. For example, in
GA, only carefully chosen values for crossover and mutation
rates can guarantee good final solution quality, which is not
an easy task for algorithmusers in practical fields who seldom
know how the algorithm exactly works.

In order to overcome this troublesome parameter setting
process, researchers have proposed adaptive GA techniques
[9], which adjust crossover and mutation rates adaptively,
instead of using fixed rates, to find good solutions without
manually setting the algorithm parameters. This adaptive
technique has been applied to various technical applications
such as environmental treatment [10], structural design [11],
and sewer network design [12].

In energy system field, the adaptive GA was also applied
to a reactive power dispatch optimization as early as 1998 [13].
Afterwards, however, there have been seldom applications
in major research databases using the adaptive technique.
Thus, this study intends to apply a newly developed adap-
tive parameter-setting-free (PSF) technique [8], which is
combined with the HS algorithm, to the economic dispatch
problem for the first time.
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2. Economic Dispatch Problem

Theeconomic dispatch problem can be optimally formulated.
The objective function can be as follows:
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The fourth term in the right-hand side of (2) represents valve-
point effects.

The above objective function is to be minimized while
satisfying the following equality constraint:

∑
𝑖

𝑃
𝑖
= 𝐷, (3)

where 𝐷 is total load demand. Also, each generator should
generate power between minimum and maximum limits as
the following inequality constraint:

𝑃
min
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≤ 𝑃
𝑖
≤ 𝑃

max
𝑖

. (4)

3. Parameter-Setting-Free Technique

The parameter-setting-free harmony search (PSF-HS) algo-
rithm was first proposed for optimizing the discrete-variable
problems such as structural design [14], water network design
[15], and recreational magic square [8]. PSF-HS was also
applied to a continuous-variable problem such as hydrologic
parameter calibration [16].

However, it was never applied to a continuous-variable
problem with technical constraints. Thus, this study first
applies PSF-HS to the ED problem, whose type is the con-
tinuous-variable problemwith a technical constraint, because
its decision variable 𝑃

𝑖
has the continuous value and it has

the equality constraint of total power demand as expressed
in (3). Here, the inequality constraint in (4) can be simply
considered as value rangeswithout using any penaltymethod.

The basic HS algorithm manages a memory matrix,
named harmony memory, as follows:
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Once thisHM is fully filled with randomly generated vectors
(P1, . . . ,PHMS), a new vector PNew is generated as follows:
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(6)

where 𝑅Random is random selection rate, 𝑅Memory is pure
memory consideration rate, 𝑅Pitch is pure pitch adjustment
rate, and Δ is pitch adjustment amount.

If the newly generated vector PNew is better than the
worst vector PWorst inHM, those two vectors are swapped as
follows:

PNew
∈ HM ∧ PWorst

∉ HM. (7)

The basic HS algorithm performs (6) and (7) until a termina-
tion criterion is satisfied.

For PSF-HS, one additionalmatrix, named operation type
matrix (OTM), is also managed as follows:
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OTM memorizes which operation (random selection, mem-
ory consideration, and pitch adjustment) each value comes
from. For example, if the value of 𝑃2

2
in HM comes from

memory consideration operation, the value of 𝑜2
2
in OTM

is also set as “Memory.” This process happens when initial
vectors are populated or when a new vector is inserted into
HM.

Thus, instead of using fixed algorithm parameter values,
PSF-HS can utilize adaptive parameter values by calculating
them at each iteration as follows:
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where 𝑐𝑡(⋅) is a function which counts specific elements that
satisfy the condition.

4. Numerical Example

The PSF-HS is applied to a popular bench-mark ED problem
with three generators. The input data for the three-generator
problem is shown in Table 1.

When the total system demand is set to 850MW, the
optimal solution is known as $8234.07 [2–4], which was
replicated by using a popular gradient-based technique
(generalized reduced gradient (GRG) method), which has
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Table 1: Data for three-generator example with valve-point loading.

Generator 𝑃min
𝑖

𝑃max
𝑖

𝑎
𝑖

𝑏
𝑖

𝑐
𝑖

𝑒
𝑖

𝑓
𝑖

1 100 600 0.001562 7.92 561 300 0.0315
2 50 200 0.00482 7.97 78 150 0.063
3 100 400 0.00194 7.85 310 200 0.042
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Figure 1: Convergence History of Generation Cost.

been also successfully applied to other energy optimization
problems such as building chiller loading [17], combined heat
and power ED [18], and hybrid renewable energy system
design [19]. However, the GRG method was able to obtain
the identical best solution only when it started with a vector
(𝑃
1
= 300; 𝑃

2
= 150; 𝑃

3
= 400). Instead, when, different

starting vector (𝑃
1
= 600, 𝑃

2
= 200, 𝑃

3
= 400) was used,

solution quality was worsened as $8241.41.
When PSF-HS was also applied to the problem, it

obtained a near-optimal solution of $8234.47 after 100 runs,
which has small discrepancy from the optimal solution
($8234.07) by 0.005%. For the results from 100 runs, max-
imum and mean solutions are $8429.74 (2.4% discrepancy)
and $8292.88 (0.7% discrepancy), respectively. Here, PSF-
HS was performed using MS-Excel VBA environment with
Intel CPU 3.3GHz. Each run takes only one second in this
computing environment.

Figure 1 shows the convergence history of power genera-
tion cost for the case of the near-optimal solution $8234.47.
As seen in the figure, PSF-HS closely approached to the near-
optimal solution in early iterations.

Table 2 shows the finalHM with HMS = 30. As observed
in the table, there are many similar vectors in HM because
PSF-HS tried local search, instead of global search, in late
stage of computation.

Figure 2 shows the history of random selection rate
𝑅Random. As observed in the figure, all three parameters
(𝑅
1,Random, 𝑅2,Random, and 𝑅

3,Random) started with higher
values (0.5). In less than 1,000 iterations,𝑅

1,Random went up to
around 0.4, 𝑅

2,Random to around 0.5, and 𝑅
3,Random to around

0.8.Then, they abruptly wend down to less than 0.1 after 3,000
iterations.

Figure 3 shows the history of pure memory consideration
rate 𝑅Memory. As observed in the figure, all three parameters

Table 2: Values of final HM.

Number 𝑃
1

𝑃
2

𝑃
3

∑
𝑖
𝑃
𝑖

∑
𝑖
𝐶
𝑖
(𝑃
𝑖
)

1 300.944 149.782 399.274 850.000 8234.472
2 300.944 149.782 399.274 850.001 8234.477
3 300.944 149.782 399.274 850.001 8234.479
4 300.973 149.754 399.274 850.002 8234.481
5 301.006 149.751 399.244 850.001 8234.482
6 300.974 149.782 399.244 850.000 8234.483
7 300.974 149.754 399.274 850.002 8234.487
8 300.977 149.779 399.244 850.001 8234.489
9 300.977 149.751 399.274 850.003 8234.496
10 300.945 149.782 399.274 850.002 8234.497
11 300.912 149.815 399.274 850.001 8234.501
12 300.934 149.822 399.244 850.000 8234.509
13 300.973 149.784 399.244 850.002 8234.510
14 300.944 149.784 399.274 850.002 8234.511
15 300.912 149.815 399.274 850.002 8234.511
16 300.934 149.794 399.274 850.002 8234.511
17 300.905 149.822 399.274 850.001 8234.514
18 300.974 149.784 399.244 850.002 8234.516
19 300.944 149.784 399.274 850.003 8234.517
20 301.013 149.786 399.202 850.001 8234.520
21 301.013 149.786 399.202 850.002 8234.535
22 300.945 149.784 399.274 850.004 8234.535
23 301.009 149.751 399.244 850.004 8234.536
24 301.006 149.754 399.244 850.004 8234.538
25 300.973 149.786 399.244 850.003 8234.542
26 300.977 149.782 399.244 850.003 8234.542
27 300.944 149.786 399.274 850.004 8234.542
28 301.006 149.794 399.202 850.002 8234.543
29 300.977 149.782 399.244 850.004 8234.547
30 300.974 149.786 399.244 850.004 8234.548

(𝑅
1,Memory, 𝑅2,Memory, and 𝑅3,Memory) abruptly went up from

the starting point of 0.25. After 4,000 iterations, they became
more than 0.8 and stayed.

Figure 4 shows the history of pure pitch adjustment
rate 𝑅Pitch. As observed in the figure, all three parameters
(𝑅
1,Pitch, 𝑅2,Pitch, and 𝑅3,Pitch), from the starting point of 0.25,

monotonically stayed less than 0.3 except for one situation
when 𝑅

3,Pitch spiked near 3,000 iterations.
Furthermore, the sensitivity analysis of initial parameter

values was performed. While the original parameter set
(𝑅Random = 0.5, 𝑅Memory = 0.25, and 𝑅Pitch = 0.25)
resulted in minimal solution of $8,243.56 and average solu-
tion of $8,287.69 after 10 runs, equal-valued parameter set
(𝑅Random = 0.33, 𝑅Memory = 0.33, and 𝑅Pitch = 0.33)
resulted inminimal solution of $8,242.12 and average solution
of $8,322.11; memory-consideration-oriented parameter set
(𝑅Random = 0.1, 𝑅Memory = 0.7, and 𝑅Pitch = 0.2)
resulted in minimal solution of $8,241.34 and average solu-
tion of $8,314.45; random-selection-oriented parameter set
(𝑅Random = 0.8, 𝑅Memory = 0.1, and 𝑅Pitch = 0.1) resulted
in minimal solution of $8,241.29 and average solution of
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Figure 2: History of Random Selection Rate.
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Figure 3: History of Pure Memory Consideration Rate.

$8,272.40. It appeared that the initial parameter values are not
very sensitive to final solution quality.

Especially, when the results frommemory-consideration-
oriented parameter set (𝑅Random = 0.1, 𝑅Memory = 0.7,
and 𝑅Pitch = 0.2) and those from random-selection-oriented
parameter set (𝑅Random = 0.8, 𝑅Memory = 0.1, and 𝑅Pitch =

0.1) were statistically compared, although their variances are
different based on 𝐹-test (𝑝 = 0.04), their averages are not
significantly different based on 𝑡-test (𝑝 = 0.16).

5. Conclusions

This study applied PSF-HS to the ED problem for the first
time, obtaining a good solution which is very close to
the best solution ever found. While existing metaheuristic
algorithms require carefully chosen algorithm parameters,
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Figure 4: History of Pure Pitch Adjustment Rate.

PSF-HS did not require that tedious process. Thus, there
surely exists a tradeoff between original HS and PSF-HS.
Also, it should be noted that PSF-HS respectively considers
individual algorithm parameters for each variable, which is
more efficient way than using lumped parameters for all
variables.

For future study, the structure of PSF-HS should be
improved to do better performance. Also, it can be applied to
large-scale real-world problems to test scalability. Also, other
researchers are expected to apply this novel technique to their
own energy-related problems.
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