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We study the stability and hyperstability of cubic Lie derivations on normed algebras. At the end, we write some additional
observations about our results.

1. Introduction

A classical question in the theory of functional equations is
under what conditions is it true that a mapping which approxi-
mately satisfies a functional equationEmust be somehow close
to an exact solution of E? We say that a functional equation
E is stable if any approximate solution of E is near to a true
solution of E. The study of stability problem for functional
equations is related to a question of Ulam [1] concerning
the stability of group homomorphisms. This question was
affirmatively answered for Banach spaces by Hyers [2]. Sub-
sequently, the result of Hyers was generalized by Aoki [3] for
additive mappings and by Rassias [4] for linear mappings by
considering an unbounded Cauchy difference. Rassias’ paper
has provided a lot of influence in the development of what
we now call the Hyers-Ulam-Rassias stability of functional
equations. For further information about the topic, we refer
the reader to [5, 6].

Jun and Kim [7] introduced the following functional
equation:

𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) = 2𝑓 (𝑥 + 𝑦) + 2𝑓 (𝑥 − 𝑦)

+ 12𝑓 (𝑥) ,
(1)

and established a general solution for it. Note that, if we
replace 𝑥 = 𝑦 = 0 in (1), we get 𝑓(0) = 0. Therefore, setting
𝑥 = 0 in (1), we obtain 𝑓(−𝑦) = −𝑓(𝑦). Moreover, writing
𝑦 = 0 in (1), we get 𝑓(2𝑥) = 8𝑓(𝑥). Now, it is easy to see that
a function 𝑓(𝑥) = 𝜆𝑥3 is a solution of (1), where 𝜆 is a fixed
scalar. Thus, it is natural that (1) is called a cubic functional

equation. Moreover, every solution of the cubic functional
equation is said to be a cubicmapping. In the last few decades,
a number of mathematicians worked on the stability of some
type of cubic functional equations (see, e.g., [8–13]).

In [14], the authors investigated the stability of cubic
derivations in a connection with the functional equation (1).
Recently, Yang et al. [15] studied the stability of cubic ∗-deri-
vations on Banach ∗-algebras and in [16] the authors proved
the generalizedHyers-Ulam-Rassias stability of ternary cubic
derivations on ternary Fréchet algebras. Motivated by these
results, we investigate the stability of cubic Lie derivations. In
particular, we show that such derivations can be generated by
functions which satisfy some quite natural and simple condi-
tions.

2. Stability of Cubic Lie Derivations

Before stating our first theorem, let us recall some basic
definitions and known results which we will use in the sequel.
Throughout the paper, A will be a complex normed algebra
and M a Banach A-bimodule. We will use the same symbol
‖ ⋅ ‖ in order to represent the norms on a normed algebra A
and a normed A-bimodule M. For all 𝑥, 𝑦 ∈ A, the symbol
[𝑥, 𝑦] will denote the commutator 𝑥𝑦 − 𝑦𝑥. We say that a
mapping 𝑓 : A → M is cubic homogeneous if 𝑓(𝜆𝑥) =
𝜆3𝑓(𝑥) for all 𝑥 ∈ A and all scalars 𝜆 ∈ C. In the following,
Λ will stand for the set of all complex units; that is,

Λ = {𝜆 ∈ C : |𝜆| = 1} . (2)
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A cubic homogeneous mapping 𝑑 : A → M is called a
cubic derivation if

𝑑 (𝑥𝑦) = 𝑑 (𝑥) 𝑦
3 + 𝑥3𝑑 (𝑦) (3)

holds for all 𝑥, 𝑦 ∈ A. Following this notion, we introduce
a cubic Lie derivation as a cubic homogeneous mapping 𝑙 :
A → M satisfying

𝑙 ([𝑥, 𝑦]) = [𝑙 (𝑥) , 𝑦
3] + [𝑥3, 𝑙 (𝑦)] (4)

for all 𝑥, 𝑦 ∈ A.
For a given map 𝑓 : A → M, we consider

Δ𝜆
𝑓
(𝑥, 𝑦) := 𝑓 (2𝜆𝑥 + 𝜆𝑦) + 𝑓 (2𝜆𝑥 − 𝜆𝑦) − 2𝜆3𝑓 (𝑥 + 𝑦)

− 2𝜆3𝑓 (𝑥 − 𝑦) − 12𝜆3𝑓 (𝑥) ,

(5)

where 𝑥, 𝑦 ∈ A, 𝜆 ∈ C, and

Δ
𝑓
(𝑥, 𝑦) := 𝑓 ([𝑥, 𝑦]) − [𝑓 (𝑥) , 𝑦

3]

− [𝑥3, 𝑓 (𝑦)] , 𝑥, 𝑦 ∈ A.
(6)

Moreover, for a function 𝜑 : A × A → [0,∞) we use the
following abbreviation:

𝜙 (𝑥, 𝑦) :=
∞

∑
𝑘=0

𝜑 (2𝑘𝑥, 2𝑘𝑦)

8𝑘
, 𝑥, 𝑦 ∈ A. (7)

Theorem 1. Suppose that 𝑙 : A → M is a mapping for which
there exists a function 𝜑 : A ×A → [0,∞) such that

𝜙 (𝑥, 𝑦) < ∞, 𝑥, 𝑦 ∈ A, (8)
󵄩󵄩󵄩󵄩󵄩Δ
𝜆

𝑙
(𝑥, 𝑦)

󵄩󵄩󵄩󵄩󵄩 ≤ 𝜑 (𝑥, 𝑦) ,
󵄩󵄩󵄩󵄩Δ 𝑙 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝜑 (𝑥, 𝑦) (9)

for all 𝑥, 𝑦 ∈ A and 𝜆 ∈ Λ. If for each fixed 𝑥 ∈ A the
mapping 𝑟 󳨃→ 𝑙(𝑟𝑥) from R to M is continuous, then there
exists a unique cubic Lie derivation 𝐿 : A → M such that

‖𝑙 (𝑥) − 𝐿 (𝑥)‖ ≤
𝜙 (𝑥, 0)

16
(10)

for all 𝑥 ∈ A.

Proof. Writing 𝑦 = 0 and 𝜆 = 1 in the first inequality of (9),
we obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑙 (2𝑥)

8
− 𝑙 (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤
𝜑 (𝑥, 0)

16
(11)

for all 𝑥 ∈ A. Using the induction, it is easy to see that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑙 (2𝑝𝑥)

8𝑝
−
𝑙 (2𝑞𝑥)

8𝑞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤

1

16

𝑝−1

∑
𝑘=𝑞

𝜑 (2𝑘𝑥, 0)

8𝑘
(12)

for all 𝑥 ∈ A and all 𝑝 > 𝑞 ≥ 0. By (8), it follows that, for all
𝑥 ∈ A, the sequence {𝑙(2𝑛𝑥)/8𝑛}∞

𝑛=0
is Cauchy and, since M

is complete, it is convergent. Thus, we can define a mapping
𝐿 : A → M as

𝐿 (𝑥) = lim
𝑛→∞

𝑙 (2𝑛𝑥)

8𝑛
, 𝑥 ∈ A. (13)

Writing 𝑝 = 𝑛 and 𝑞 = 0 in (12), we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑙 (2𝑛𝑥)

8𝑛
− 𝑙 (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤

1

16

𝑛−1

∑
𝑘=0

𝜑 (2𝑘𝑥, 0)

8𝑘
(14)

for 𝑛 > 0. Taking the limit as 𝑛 tends to∞ we get (10).
In the following, we will show that 𝐿 is a unique cubic Lie

derivation such that (10) holds true for all 𝑥 ∈ A.

Claim 1 (𝐿 is a cubic mapping). Recall that

󵄩󵄩󵄩󵄩󵄩Δ
𝜆

𝐿
(𝑥, 𝑦)

󵄩󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ𝜆
𝑙
(2𝑛𝑥, 2𝑛𝑦)

8𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

𝜑 (2𝑛𝑥, 2𝑛𝑦)

8𝑛
= 0

(15)

for all 𝑥, 𝑦 ∈ A and 𝜆 ∈ Λ. Hence, taking 𝜆 = 1 in (15), it
follows that 𝐿 is a cubic mapping.

Claim 2 (𝐿 is cubic homogeneous). By (15), we have Δ𝜆
𝐿
(𝑥, 0) =

0. Thus,

𝐿 (2𝜆𝑥) = 8𝜆
3𝐿 (𝑥) , 𝑥 ∈ A, 𝜆 ∈ Λ. (16)

Let 𝑥
0
∈ A be any fixed element. Firstly, we will show that

𝐿(𝑟𝑥
0
) = 𝑟3𝐿(𝑥

0
) for all 𝑟 ∈ R. We will omit the details since

the arguments are the same as in [17] (see also [18]). So, let us
choose any linear functional 𝜌 ∈ M∗, whereM∗ denotes the
dual space ofM. Then, we can define a function 𝜓 : R → R

by

𝜓 (𝑟) = 𝜌 (𝐿 (𝑟𝑥
0
)) , 𝑟 ∈ R. (17)

It is easy to see that 𝜓 is cubic. Set

𝜓
𝑛 (𝑟) = 𝜌(

𝑙 (2𝑛𝑟𝑥
0
)

8𝑛
) , 𝑛 ≥ 0. (18)

Note that 𝜓 is a pointwise limit of a sequence of continuous
functions 𝜓

𝑛
, 𝑛 ≥ 0. Thus, 𝜓 is a continuous cubic function

and

𝜓 (𝑟) = 𝑟
3𝜓 (1) , 𝑟 ∈ R. (19)

Consequently,

𝜌 (𝐿 (𝑟𝑥
0
)) = 𝜓 (𝑟) = 𝑟

3𝜓 (1) = 𝑟
3𝜌 (𝐿 (𝑥

0
))

= 𝜌 (𝑟3𝐿 (𝑥
0
))

(20)

for all 𝑟 ∈ R. Since 𝜌 ∈ M∗ was an arbitrary linear functional,
we conclude that

𝐿 (𝑟𝑥
0
) = 𝑟3𝐿 (𝑥

0
) , 𝑟 ∈ R. (21)



Abstract and Applied Analysis 3

Let 𝜆 ∈ C. Then 𝜆/|𝜆| ∈ Λ, |𝜆|/2 ∈ R, and we have

𝐿 (𝜆𝑥
0
) = 𝐿(2

𝜆

|𝜆|
(
|𝜆|

2
𝑥
0
)) = 8(

𝜆

|𝜆|
)
3

𝐿(
|𝜆|

2
𝑥
0
)

= 8
𝜆3

|𝜆|3
(
|𝜆|

2
)
3

𝐿 (𝑥
0
) = 𝜆3𝐿 (𝑥

0
) .

(22)

Since 𝑥
0
was any element fromA, we conclude that 𝐿 is cubic

homogeneous.

Claim 3 (𝐿 is a cubic Lie derivation). Using the second ine-
quality in (9), we have

󵄩󵄩󵄩󵄩Δ 𝐿 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑙
(2𝑛𝑥, 2𝑛𝑦)

82𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

𝜑 (2𝑛𝑥, 2𝑛𝑦)

82𝑛
= 0

(23)

for all 𝑥, 𝑦 ∈ A. This, together with Claim 2, yields that 𝐿 is a
cubic Lie derivation.

Claim 4 (𝐿 is unique). Suppose that there exists another cubic
Lie derivation 𝐿̃ : A → M such that

󵄩󵄩󵄩󵄩󵄩𝑙 (𝑥) − 𝐿̃ (𝑥)
󵄩󵄩󵄩󵄩󵄩 ≤

𝜙 (𝑥, 0)

16
(24)

for all 𝑥 ∈ A. Then
󵄩󵄩󵄩󵄩󵄩𝐿 (𝑥) − 𝐿̃ (𝑥)

󵄩󵄩󵄩󵄩󵄩 = lim
𝑛→∞

1

8𝑛
󵄩󵄩󵄩󵄩󵄩𝑙 (2
𝑛𝑥) − 𝐿̃ (2𝑛𝑥)

󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

1

16
(
𝜙 (2𝑛𝑥, 0)

8𝑛
)

= lim
𝑛→∞

1

16

∞

∑
𝑘=0

𝜑 (2𝑘+𝑛𝑥, 0)

8𝑘+𝑛

= lim
𝑛→∞

1

16

∞

∑
𝑘=𝑛

𝜑 (2𝑘𝑥, 0)

8𝑘
= 0.

(25)

Therefore, 𝐿(𝑥) = 𝐿̃(𝑥) for all 𝑥 ∈ A, which proves the
uniqueness of 𝐿. The proof is completed.

Let ], 𝜀 ≥ 0 and 0 ≤ 𝑝 < 3. Applying Theorem 1 for the
case

𝜑 (𝑥, 𝑦) := ] + 𝜀 (‖𝑥‖𝑝 + 󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝
) , 𝑥, 𝑦 ∈ A, (26)

we have the next corollary.

Corollary 2. Suppose that 𝑙 : A → M is a mapping such that
(9) holds true for all 𝑥, 𝑦 ∈ A and 𝜆 ∈ Λ, where 𝜑 is a function
defined as above. If for each fixed𝑥 ∈ A themapping 𝑟 󳨃→ 𝑙(𝑟𝑥)
fromR toM is continuous, then there exists a unique cubic Lie
derivation 𝐿 : A → M such that

‖𝑙 (𝑥) − 𝐿 (𝑥)‖ ≤
]

14
+

𝜀‖𝑥‖𝑝

(16 − 2𝑝+1)
(27)

for all 𝑥 ∈ A.

Proof. Note that we have

𝜙 (𝑥, 𝑦) =
8]

7
+
8𝜀 (‖𝑥‖𝑝 +

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝
)

(8 − 2𝑝)
, 𝑥, 𝑦 ∈ A. (28)

3. Hyperstability of Cubic Lie Derivations

The investigation of the multiplicative Cauchy functional
equation highlighted a new phenomenon, which is nowadays
called superstability (see, e.g., [19]). In this case the so-
called stability inequality implies that the observed function
is either bounded or it is a solution of the functional equation.
But it can also happen that each function 𝑓, satisfying the
functional equation E approximately, must actually be a
solution of the proposed equationE. In this case, we say that
the functional equation E is hyperstable. According to our
best knowledge, the first hyperstability result was published in
[20] and concerned the ring homomorphisms. However, the
term hyperstability has been used for the first time probably
in [21] (see also [22, 23]). Formore information about the new
results on the hyperstability, we refer the reader to [24–26].

Theorem 3. Let A be a normed algebra with an element 𝑒
which is not a zero divisor. Suppose that 𝑙 : A → A is a
mapping for which there exists a function 𝜑 : A×A → [0,∞)
such that

lim
𝑛→∞

𝜑 (𝑛𝑥, 𝑦)

𝑛3
= 0, (29)

󵄩󵄩󵄩󵄩󵄩𝑙 (𝑥) 𝑦
3 − 𝑥3𝑙 (𝑦)

󵄩󵄩󵄩󵄩󵄩 ≤ 𝜑 (𝑥, 𝑦) , (30)

󵄩󵄩󵄩󵄩󵄩𝑙 (𝑧) ([𝑥, 𝑦])
3
− 𝑧3 ([𝑙 (𝑥) , 𝑦

3] + [𝑥3, 𝑙 (𝑦)])
󵄩󵄩󵄩󵄩󵄩 ≤ 𝜑 (𝑧, [𝑥, 𝑦])

(31)

for all 𝑥, 𝑦, 𝑧 ∈ A. Then, 𝑙 is a cubic Lie derivation onA.

Proof. We divide the proof into several steps.

Claim 1 (𝑙 is a cubic mapping). Let 𝑥, 𝑦, 𝑧 ∈ A. Then,

󵄩󵄩󵄩󵄩󵄩𝑛
3𝑧3 (𝑙 (2𝑥 + 𝑦) + 𝑙 (2𝑥 − 𝑦) − 2𝑙 (𝑥 + 𝑦)

−2𝑙 (𝑥 − 𝑦) − 12𝑙 (𝑥))
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩𝑛
3𝑧3𝑙 (2𝑥 + 𝑦) − 𝑙 (𝑛𝑧) (2𝑥 + 𝑦)

3󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩𝑛
3𝑧3𝑙 (2𝑥 − 𝑦) − 𝑙 (𝑛𝑧) (2𝑥 − 𝑦)

3󵄩󵄩󵄩󵄩󵄩

+ 2
󵄩󵄩󵄩󵄩󵄩𝑙 (𝑛𝑧) (𝑥 + 𝑦)

3
− 𝑛3𝑧3𝑙 (𝑥 + 𝑦)

󵄩󵄩󵄩󵄩󵄩

+ 2
󵄩󵄩󵄩󵄩󵄩𝑙 (𝑛𝑧) (𝑥 − 𝑦)

3
− 𝑛3𝑧3𝑙 (𝑥 − 𝑦)

󵄩󵄩󵄩󵄩󵄩

+ 12
󵄩󵄩󵄩󵄩󵄩𝑙 (𝑛𝑧) 𝑥

3 − 𝑛3𝑧3𝑙 (𝑥)
󵄩󵄩󵄩󵄩󵄩

(32)
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for all positive integers 𝑛. By (30), it follows that
󵄩󵄩󵄩󵄩󵄩𝑧
3 (𝑙 (2𝑥 + 𝑦) + 𝑙 (2𝑥 − 𝑦) − 2𝑙 (𝑥 + 𝑦)

−2𝑙 (𝑥 − 𝑦) − 12𝑙 (𝑥))
󵄩󵄩󵄩󵄩󵄩

≤ 𝑛−3 (𝜑 (𝑛𝑧, 2𝑥 + 𝑦) + 𝜑 (𝑛𝑧, 2𝑥 − 𝑦)

+ 2𝜑 (𝑛𝑧, 𝑥 + 𝑦) + 2𝜑 (𝑛𝑧, 𝑥 − 𝑦)

+ 12𝜑 (𝑛𝑧, 𝑥)) .

(33)

If we let 𝑛 → ∞, we conclude that

𝑧3 (𝑙 (2𝑥 + 𝑦) + 𝑙 (2𝑥 − 𝑦) − 2𝑙 (𝑥 + 𝑦)

−2𝑙 (𝑥 − 𝑦) − 12𝑙 (𝑥)) = 0
(34)

for all 𝑥, 𝑦, 𝑧 ∈ A. Putting 𝑧 = 𝑒 in the last equality, we
conclude that 𝑙 satisfies a cubic functional equation (1).

Claim 2 (𝑙 is cubic homogeneous). Let 𝜆 ∈ C and 𝑥, 𝑦 ∈ A.
Then,
󵄩󵄩󵄩󵄩󵄩𝑛
3𝑦3 (𝑙 (𝜆𝑥) − 𝜆

3𝑙 (𝑥))
󵄩󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩𝑛
3𝑦3𝑙 (𝜆𝑥) − 𝑙 (𝑛𝑦) 𝜆

3𝑥3
󵄩󵄩󵄩󵄩󵄩

+ |𝜆|
3 󵄩󵄩󵄩󵄩󵄩𝑙 (𝑛𝑦) 𝑥

3 − 𝑛3𝑦3𝑙 (𝑥)
󵄩󵄩󵄩󵄩󵄩

≤ 𝜑 (𝑛𝑦, 𝜆𝑥) + |𝜆|
3𝜑 (𝑛𝑦, 𝑥)

(35)

for all positive integers 𝑛. Thus,
󵄩󵄩󵄩󵄩󵄩𝑦
3 (𝑙 (𝜆𝑥) − 𝜆

3𝑙 (𝑥))
󵄩󵄩󵄩󵄩󵄩 ≤ 𝑛
−3 (𝜑 (𝑛𝑦, 𝜆𝑥) + |𝜆|

3𝜑 (𝑛𝑦, 𝑥)) .

(36)

Taking the limit when 𝑛 tends to∞, we conclude that

𝑦3 (𝑙 (𝜆𝑥) − 𝜆
3𝑙 (𝑥)) = 0, 𝑥, 𝑦 ∈ A, 𝜆 ∈ C. (37)

Writing 𝑦 = 𝑒, we get 𝑙(𝜆𝑥) = 𝜆3𝑙(𝑥) for all 𝑥 ∈ A and 𝜆 ∈ C.
In other words, 𝑙 is cubic homogeneous.

Claim 3 (𝑙 is a cubic Lie derivation onA). Let𝑥, 𝑦, 𝑧 ∈ A.Then
󵄩󵄩󵄩󵄩󵄩𝑛
3𝑧3 (𝑙 ([𝑥, 𝑦]) − [𝑙 (𝑥) , 𝑦

3] − [𝑥3, 𝑙 (𝑦)])
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩𝑛
3𝑧3𝑙 ([𝑥, 𝑦]) − 𝑙 (𝑛𝑧) ([𝑥, 𝑦])

3󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩𝑙 (𝑛𝑧) ([𝑥, 𝑦])

3
− 𝑛3𝑧3 ([𝑙 (𝑥) , 𝑦

3] + [𝑥3, 𝑙 (𝑦)])
󵄩󵄩󵄩󵄩󵄩

≤ 2𝜑 (𝑛𝑧, [𝑥, 𝑦])

(38)

for all positive integers 𝑛. Thus,
󵄩󵄩󵄩󵄩󵄩𝑧
3 (𝑙 ([𝑥, 𝑦]) − [𝑙 (𝑥) , 𝑦

3] − [𝑥3, 𝑙 (𝑦)])
󵄩󵄩󵄩󵄩󵄩

≤ 𝑛−32𝜑 (𝑛𝑧, [𝑥, 𝑦])
(39)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐴 and 𝑛 ∈ N. Similarly as in Claims 1 and 2, we
can show that 𝑙([𝑥, 𝑦]) = [𝑙(𝑥), 𝑦3]+[𝑥3, 𝑙(𝑦)] for all 𝑥, 𝑦 ∈ A.
The proof is completed.

Let 𝜀 ≥ 0 and 0 ≤ 𝑝 < 3. ApplyingTheorem 3 for the case

𝜑 (𝑥, 𝑦) := 𝜀‖𝑥‖
𝑝󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩
𝑝
, 𝑥, 𝑦 ∈ A, (40)

we have the next corollary.

Corollary 4. Let A be a normed algebra with an element 𝑒
which is not a zero divisor. Suppose that 𝑙 : A → A is a
mapping such that

󵄩󵄩󵄩󵄩󵄩𝑙 (𝑥) 𝑦
3 − 𝑥3𝑙 (𝑦)

󵄩󵄩󵄩󵄩󵄩 ≤ 𝜀‖𝑥‖
𝑝󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩
𝑝
,

󵄩󵄩󵄩󵄩󵄩𝑙 (𝑧) [𝑥, 𝑦]
3
− 𝑧3 ([𝑙 (𝑥) , 𝑦

3] + [𝑥3, 𝑙 (𝑦)])
󵄩󵄩󵄩󵄩󵄩

≤ 𝜀‖𝑧‖
𝑝󵄩󵄩󵄩󵄩[𝑥, 𝑦]

󵄩󵄩󵄩󵄩
𝑝

(41)

for all 𝑥, 𝑦, 𝑧 ∈ A. Then 𝑙 is a cubic Lie derivation onA.

4. Some Additional Remarks

In this section, we will write some additional observations
about our results. We start with the theorem which is
analogue toTheorem 1. Since the proof is similar, it is omitted.

Theorem 5. Suppose that 𝑙 : A → M is a mapping for which
there exists a function 𝜑 : A×A → [0,∞) such that (9) holds
true for all 𝑥, 𝑦 ∈ A, 𝜆 ∈ Λ, and

∞

∑
𝑘=0

8𝑘𝜑(
𝑥

2𝑘
,
𝑦

2𝑘
) < ∞, 𝑥, 𝑦 ∈ A. (42)

If for each fixed 𝑥 ∈ A the mapping 𝑟 󳨃→ 𝑙(𝑟𝑥) from R to M
is continuous, then there exists a unique cubic Lie derivation
𝐿 : A → M such that (10) is valid for all 𝑥 ∈ A.

Similarly, the next result is analogue to Theorem 3.

Theorem 6. Let A be a normed algebra with an element 𝑒
which is not a zero divisor. Suppose that 𝑙 : A → A is a
mapping for which there exists a function 𝜑 : A×A → [0,∞)
such that (30) and (31) hold true for all 𝑥, 𝑦, 𝑧 ∈ A and

lim
𝑛→∞

𝑛3𝜑(
𝑥

𝑛
, 𝑦) = 0, 𝑥, 𝑦 ∈ A. (43)

Then, 𝑙 is a cubic Lie derivation onA.

Let us end this paper with a remark on 𝑘-cubic functional
equations. In [27], Najati introduced the following functional
equations:

𝑓 (𝑘𝑥 + 𝑦) + 𝑓 (𝑘𝑥 − 𝑦) = 𝑘𝑓 (𝑥 + 𝑦) + 𝑘𝑓 (𝑥 − 𝑦)

+ 2 (𝑘3 − 𝑘)𝑓 (𝑥) ,
(44)

where 𝑘 ≥ 2 is a positive integer. For 𝑘 = 2, we obtain
(1). Najati proved that a function 𝑓 satisfies the functional
equation (1) if and only if 𝑓 satisfies the functional equation
(44).Therefore, every solution of the functional equation (44)
is also a cubic function. Following these results, it is easy to
see that we can consider (44) in our theorems instead of (1).
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