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Using a method based on the concept of the Kuratowski measure of the noncompactness of a bounded set as well as some new
estimates of the equicontinuity of the solutions, we prove the existence of a unique pullback attractor in higher regularity space for
the multivalued process associated with the nonautonomous 2D-Navier-Stokes model with delays and without the uniqueness of
solutions.

1. Introduction

It is well known that the Navier-Stokes equations are very
important in the understanding of fluids motion and tur-
bulence. These equations have been studied extensively over
the last decades (see [1–3], and the references cited therein).
Recently, Caraballo and Real [4] considered global attractors
for functional Navier-Stokes models with the uniqueness of
solutions and for the delay, so that a wide range of hereditary
characteristics (constant or variable delay, distributed delay,
etc.) can be treated in a unified way. Very recently, Maŕın-
Rubio and Real [5] used the theory of multivalued dynamical
system to establish the existence of attractors for the 2D-
Navier-Stokes model with delays, when the forcing term
containing the delay is sublinear and only continuous.

For the study of asymptotic behavior for functional partial
differential equations without the uniqueness of solutions,
as far as we know, not many papers have been published.
However, some results in the finite dimensional context can
be found in [6, 7] (see also [8–10] for some preliminary
and interesting results on the structure of the attractors for
ordinary differential delay systems).

The pullback attractor is a possible approach to define an
“attractor” for the nonautonomous dynamical systems, the
long time behavior of nonautonomous dynamical systems is
an interesting and challenging problem; see, for example, [11–
19], and so forth.The purpose of our current paper is to study

existence of pullback attractors for the following functional
Navier-Stokes problem:
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= 𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡))) − ∇𝑝 + 𝑔 (𝑡) in (𝜏, +∞) × Ω,

div 𝑢 = 0 in (𝜏, +∞) × Ω,

𝑢 = 0 on (𝜏, +∞) × Γ,

𝑢 (𝜏 + 𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) , 𝑡 ∈ [−ℎ, 0] , 𝑥 ∈ Ω,

(1)

whereΩ ⊂ R2 is an open bounded set with regular boundary
Γ, ] > 0 is the kinematic viscosity, 𝑢 is the velocity field
of the fluid, 𝑝 is the pressure, 𝜏 ∈ R is the initial time,
𝑔 is a nondelayed external force field, 𝑓 is another external
force term and contains some memory effects during a fixed
interval of time of length ℎ > 0, 𝜌 is an adequate given delay
function, and 𝜙 the initial datum on the interval [−ℎ, 0].

Using the technique of measure of noncompactness, not-
ing that all norms on finite dimensional spaces are equivalent,
we apply the new method to check the pullback 𝜔-limit
compactness given in [20] and then get the existence of the
pullback attractors in 𝐶

𝑉
.
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We consider the following usual abstract spaces:

V = {𝑢 ∈ (𝐶
∞

0
(Ω))

2

: div 𝑢 = 0} , (2)

where 𝐻 = the closure of V in (𝐿2(Ω))2 with norm | ⋅ | and
inner product (⋅, ⋅), where for 𝑢, V ∈ (𝐿2(Ω))2,
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where 𝑉 = the closure ofV in (𝐻1

0
(Ω))

2 with norm ‖ ⋅ ‖ and
associated scalar product ((⋅, ⋅)), where for 𝑢, V ∈ (𝐻1
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2,
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Note that 𝑉 ⊂ 𝐻 ≡ 𝐻
󸀠
⊂ 𝑉

󸀠, where the injections are dense
and compact. We will use ‖ ⋅ ‖

∗
for the norm in 𝑉󸀠 and ⟨⋅, ⋅⟩

for the duality pairing between 𝑉 and 𝑉󸀠.
Define the trilinear form 𝑏 on 𝑉 × 𝑉 × 𝑉 by

𝑏 (𝑢, V, 𝑤) =
2
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𝑖
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𝑖
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𝑑𝑥, ∀𝑢, V, 𝑤 ∈ 𝑉. (5)

Now, let us establish some assumptions for (1).
We assume that the given delay function satisfies 𝜌 ∈

𝐶
1
(R; [0, ℎ]), and there exists a constant 𝜌

∗
satisfying

𝜌
󸀠
(𝑡) ⩽ 𝜌

∗
< 1, ∀𝑡 ∈ R. (6)

Furthermore, we suppose that 𝑓 and 𝑔 satisfy the following
assumptions:

(H1) 𝑓(⋅, V) : R → 𝐻 is measurable for all V ∈ 𝐻,
(H2) 𝑓(𝑡, ⋅) : 𝐻 → 𝐻 is continuous for all 𝑡 ∈ R,
(H3) there exist positive constants 𝑘
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2
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, ∀𝑡 ∈ R, (7)

(H4) there exists a fixed 𝛿
0
> 0 such that for any 𝛿 ∈ (0, 𝛿

0
),

the external force 𝑔 ∈ 𝐿2loc(R; 𝐻) satisfies

∫

𝑡

−∞

󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨
2

𝑒
𝛿𝑟
𝑑𝑟 < ∞, ∀𝑡 ∈ R. (8)

Set𝐴 : 𝑉 → 𝑉
󸀠 as ⟨𝐴𝑢, V⟩ = ((𝑢, V)), 𝐵 : 𝑉×𝑉 → 𝑉

󸀠 by
⟨𝐵(𝑢, V), 𝑤⟩ = 𝑏(𝑢, V, 𝑤), for all 𝑢, V, 𝑤 ∈ 𝑉. Denote by 𝑃 the
corresponding orthogonal projection𝑃 : (𝐿2(Ω))2 → 𝐻.We
further set 𝐴 := −𝑃Δ. The Stokes operator 𝐴 is self-adjoint
and positive from 𝐷(𝐴) = 𝑉 ∩ (𝐻

2
(Ω))

2 to 𝐻. The inverse
operator is compact. Excluding the pressure, the system (1)
can be written in the form

𝑑

𝑑𝑡
𝑢 (𝑡) + ]𝐴𝑢 (𝑡) + 𝐵 (𝑢 (𝑡) , 𝑢 (𝑡))

= 𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡))) + 𝑔 (𝑡) in D
󸀠
(𝜏, +∞;𝑉

󸀠
) ,

𝑢 (𝜏 + 𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] , 𝑥 ∈ Ω.

(9)

2. Preliminaries

Let 𝑋 be a complete metric space with metric 𝑑
𝑋
(⋅, ⋅), and

denote byP(𝑋) the class of nonempty subsets of𝑋. As usual,
let us denote by𝐻∗

𝑋
(⋅, ⋅) the Hausdorff semidistance between

𝐴 and 𝐵, which are defined by

𝐻
∗

𝑋
(𝐴, 𝐵) = sup

𝑎∈𝐴

dist
𝑋
(𝑎, 𝐵) , (10)

where dist
𝑋
(𝑎, 𝐵) = inf

𝑏∈𝐵
𝑑
𝑋
(𝑎, 𝑏). Finally, denote by N(𝐴,

𝑟) the open neighborhood {𝑦 ∈ 𝑋 | dist
𝑋
(𝑦, 𝐴) < 𝑟} of radius

𝑟 > 0 of a subset 𝐴 of a Banach space𝑋.

Definition 1. A family of mappings 𝑈(𝑡, 𝜏) : 𝑋 → P(𝑋),
𝑡 ⩾ 𝜏, 𝜏 ∈ R is called to be a multivalued process (MVP in
short) if it satisfies

(1) 𝑈(𝜏, 𝜏)𝑥 = {𝑥}, for all 𝜏 ∈ R, 𝑥 ∈ 𝑋;
(2) 𝑈(𝑡, 𝑠)𝑈(𝑠, 𝜏)𝑥 = 𝑈(𝑡, 𝜏)𝑥, for all 𝑡 ⩾ 𝑠 ⩾ 𝜏, 𝜏 ∈

R, 𝑥 ∈ 𝑋.

Let D be a nonempty class of parameterized sets D =

{𝐷(𝑡)}
𝑡∈R ⊂ P(𝑋).

Definition 2. Let {𝑈(𝑡, 𝜏)} be amultivalued process on𝑋. One
says that {𝑈(𝑡, 𝜏)} is

(1) pullback D-dissipative, if there exists a family Q =

{𝑄(𝑡)}
𝑡∈R ∈ D, so that for any B = {𝐵(𝑡)}

𝑡∈R ∈ D
and each 𝑡 ∈ R, there exists a 𝑡

0
= 𝑡

0
(B, 𝑡) ∈ R+ such

that

𝑈 (𝑡, 𝑡 − 𝑠) 𝐵 (𝑡 − 𝑠) ⊂ 𝑄 (𝑡) , ∀𝑠 ⩾ 𝑡
0
; (11)

(2) pullbackD-limit-set compact with respect to each 𝑡 ∈
R, if for anyB = {𝐵(𝑡)}

𝑡∈R ∈ D and 𝜀 > 0, there exists
a 𝑡

1
= 𝑡

1
(B, 𝑡, 𝜀) ∈ R+ such that

𝑘(⋃

𝑠⩾𝑡
1

𝑈 (𝑡, 𝑡 − 𝑠) 𝐵 (𝑡 − 𝑠)) ⩽ 𝜀, (12)

where 𝑘 is the Kuratowski measure of noncompactness.

Definition 3. A family of nonempty compact subsets A =

{𝐴(𝑡)}
𝑡∈R ⊂ P(𝑋) is called to be a pullback D-attractor for

the multivalued process {𝑈(𝑡, 𝜏)}, if it satisfies

(1) A = {𝐴(𝑡)}
𝑡∈R is invariant; that is,

𝑈 (𝑡, 𝜏) 𝐴 (𝜏) = 𝐴 (𝑡) , ∀𝑡 ⩾ 𝜏, 𝜏 ∈ R, (13)

(2) A is pullback D-attracting; that is, for every B ∈ D
and any fixed 𝑡 ∈ R,

lim
𝑠→+∞

𝐻
∗

𝑋
(𝑈 (𝑡, 𝑡 − 𝑠) 𝐵 (𝑡 − 𝑠) , 𝐴 (𝑡)) = 0. (14)

Let 𝑋, 𝑌 be two Banach spaces, and let 𝑋∗, 𝑌∗ be their
dual spaces, respectively. We also assume that 𝑋 is a dense
subspace of 𝑌, the injection 𝑖 : 𝑋 󳨅→ 𝑌 is continuous, and its
adjoint 𝑖∗ : 𝑌∗

󳨅→ 𝑋
∗ is densely injective.
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Theorem 4 (see [21, 22]). Let 𝑋,𝑌 be two Banach spaces sat-
isfy the previous assumptions, and let {𝑈(𝑡, 𝜏)} be amultivalued
process on𝑋 and𝑌, respectively. Assume that {𝑈(𝑡, 𝜏)} is upper
semicontinuous or weak upper semicontinuous on 𝑌. If for
fixed 𝑡 ⩾ 𝜏, 𝜏 ∈ R, 𝑈(𝑡, 𝜏) maps compact subsets of 𝑋 into
bounded subsets ofP(𝑋), then 𝑈(𝑡, 𝜏) is norm-to-weak upper
semicontinuous on𝑋.

By slightly modifying the arguments of Theorem 3.4 and
Remark 3.9 in [21], we have the following.

Theorem 5. Let 𝑋 be a Banach space, and let {𝑈(𝑡, 𝜏)} be a
multivalued process on 𝑋. Also let 𝑈(𝑡, 𝜏)𝑥 be norm-to-weak
upper semicontinuous in 𝑥 for fixed 𝑡 ⩾ 𝜏, 𝜏 ∈ R; that is, if
𝑥
𝑛
→ 𝑥, then for any 𝑦

𝑛
∈ 𝑈(𝑡, 𝜏)𝑥

𝑛
, there exist a subsequence

𝑦
𝑛
𝑘

∈ 𝑈(𝑡, 𝜏)𝑥
𝑛
𝑘

and a 𝑦 ∈ 𝑈(𝑡, 𝜏)𝑥 such that 𝑦
𝑛
𝑘

⇀ 𝑦 (weak
convergence). Then the multivalued process {𝑈(𝑡, 𝜏)} possesses
a pullbackD-attractorA = {𝐴(𝑡)}

𝑡∈R in𝑋 given by

𝐴 (𝑡) = 𝜔
𝑡
(𝑄)

= ⋂

𝑇∈R+

⋃

𝑠⩾𝑇

𝑈(𝑡, 𝑡 − 𝑠)𝑄(𝑡 − 𝑠) ⊂ 𝑄 (𝑡)
(15)

if and only if {𝑈(𝑡, 𝜏)} is pullback D-dissipative and pullback
D-limit-set compact with respect to each 𝑡 ∈ R, where Q =

{𝑄(𝑡)}
𝑡∈R ∈ D is pullback D-absorbing for the multivalued

process {𝑈(𝑡, 𝜏)}.

A multivalued process {𝑈(𝑡, 𝜏)} is said to be pullbackD-
asymptotically upper-semicompact in 𝑋 if for each fixed 𝑡 ∈
R, any B = {𝐵(𝑡)}

𝑡∈R ∈ D, any sequence {𝑇
𝑛
} with 𝑇

𝑛
→

+∞, {𝑥
𝑛
} with 𝑥

𝑛
∈ 𝐵(𝑡 − 𝑇

𝑛
), and any {𝑦

𝑛
} with 𝑦

𝑛
∈ 𝑈(𝑡, 𝑡 −

𝑇
𝑛
)𝑥

𝑛
; this last sequence {𝑦

𝑛
} is relatively compact in𝑋.

Remark 6. Let {𝑈(𝑡, 𝜏)} be a multivalued process on𝑋. Then
{𝑈(𝑡, 𝜏)} is pullbackD-asymptotically upper-semicompact if
and only if {𝑈(𝑡, 𝜏)} is pullbackD-limit-set compact; see [21].

Let𝑋 be a Banach space, and let ℎ > 0 be a given positive
number (the delay time). Denote by 𝐶

𝑋
the Banach space

𝐶([−ℎ, 0]; 𝑋) endowed with the norm
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐶
𝑋

= sup
𝜃∈[−ℎ,0]

󵄩󵄩󵄩󵄩𝜙(𝜃)
󵄩󵄩󵄩󵄩𝑋. (16)

Let us consider D
𝐶
𝑋

a class of sets parameterized in time,
D = {𝐷(𝑡)}

𝑡∈R ⊂ P(𝐶
𝑋
). To study the pullback D-limit-set

compactness of the multivalued process on 𝐶
𝑋
, we need the

following result from [20].

Theorem 7. Let {𝑈(𝑡, 𝜏)} be a multivalued process on 𝐶
𝑋
.

Suppose that for each 𝑡 ∈ R, any B ∈ D
𝐶
𝑋

and 𝜀 > 0, there
exist 𝜏

0
= 𝜏

0
(𝑡,B, 𝜀) > 0, a finite dimensional subspace 𝑋

1
of

𝑋, and a 𝛿 > 0 such that

(1) for each fixed 𝜃 ∈ [−ℎ, 0],
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

⋃

𝑠⩾𝜏
0

⋃

𝑢
𝑡
(⋅)∈𝑈(𝑡,𝑡−𝑠)𝐵(𝑡−𝑠)

𝑃𝑢(𝑡 + 𝜃)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋

is bounded; (17)

(2) for all 𝑠 ⩾ 𝜏
0
, 𝑢

𝑡
(⋅) ∈ 𝑈(𝑡, 𝑡−𝑠)𝐵(𝑡−𝑠), 𝜃

1
, 𝜃

2
∈ [−ℎ, 0]

with |𝜃
2
− 𝜃

1
| < 𝛿,

󵄩󵄩󵄩󵄩𝑃(𝑢(𝑡 + 𝜃1) − 𝑢(𝑡 + 𝜃2))
󵄩󵄩󵄩󵄩𝑋 < 𝜀; (18)

(3) for all 𝑠 ⩾ 𝜏
0
, 𝑢

𝑡
(⋅) ∈ 𝑈(𝑡, 𝑡 − 𝑠)𝐵(𝑡 − 𝑠),

sup
𝜃∈[−ℎ,0]

‖(𝐼 − 𝑃)𝑢(𝑡 + 𝜃)‖𝑋 < 𝜀, (19)

where 𝑃 : 𝑋 → 𝑋
1
is the canonical projector.Then {𝑈(𝑡, 𝜏)} is

pullbackD-limit-set compact in𝐶
𝑋
with respect to each 𝑡 ∈ R.

3. Existence of an Absorbing Family of
Sets in 𝐶

𝑉

By the classical Faedo-Galerkin scheme and compactness
method, analogous to the arguments in [5], we have the
following.

Theorem 8. Let one consider 𝜙 ∈ 𝐶
𝐻
, 𝑔 ∈ 𝐿2loc(R; 𝐻), and

assume that 𝑓 : R × 𝐻 → 𝐻 satisfies the hypotheses
(H1)–(H3). Then, for each 𝜏 ∈ R,

(a) there exists a weak solution 𝑢 to problem (9) satisfying

𝑢 ∈ 𝐶 ([𝜏 − ℎ, 𝑇] ;𝐻) ∩ 𝐿
∞
(𝜏, 𝑇;𝐻) ∩ 𝐿

2
(𝜏, 𝑇; 𝑉) ∀𝑇 ⩾ 𝜏;

(20)

(b) if 𝜙 ∈ 𝐶
𝑉
, then there exists a strong solution 𝑢 to

problem (9); that is,

𝑢 ∈ 𝐶 ([𝜏 − ℎ, 𝑇] ; 𝑉) ∩ 𝐿
∞
(𝜏, 𝑇; 𝑉) ∩ 𝐿

2
(𝜏, 𝑇;𝐷 (𝐴)) ,

∀𝑇 ⩾ 𝜏.

(21)

Given 𝑇 > 𝜏 and 𝑢 : [𝜏 − ℎ, 𝑇) → 𝐻, for each 𝑡 ∈ [𝜏, 𝑇),
we denote by 𝑢

𝑡
the function defined on [−ℎ, 0] by the relation

𝑢
𝑡
(𝑠) = 𝑢(𝑡 + 𝑠), 𝑠 ∈ [−ℎ, 0]. We also denote 𝐶

𝐻
= 𝐶([−ℎ, 0];

𝐻) and 𝐶
𝑉
= 𝐶([−ℎ, 0]; 𝑉). Let 𝐶 be the arbitrary positive

constants, which may be different from line to line and even
in the same line.

Thanks to Theorem 8, we can define a multivalued pro-
cess (𝐶

𝑉
, {𝑈(⋅, ⋅)}) as

𝑈 (𝑡, 𝜏) (𝜙) = {𝑢
𝑡
(⋅; 𝜏, 𝜙) | 𝑢 (⋅) is a strong solution of

(9) with initial datum 𝜙 ∈ 𝐶
𝑉
} .

(22)

We first need a priori estimates for the solution 𝑢 of (9)
in the space 𝐶

𝐻
and a necessary bound on the term

∫
𝑡

𝑡−1
𝑒
𝛼𝑟
‖ 𝑢(𝑟) ‖

2
𝑑𝑟, which will be very useful in our analysis;

it relates the absorption property for the multivalued process
{𝑈(𝑡, 𝜏)} on 𝐶

𝑉
.

Lemma 9. In addition to the assumptions (H1)–(H4), assume
that

𝑘
2

2
< (

]𝜆
1

2
)

2

(1 − 𝜌
∗
) (23)
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holds true. Then

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

⩽ (1 +
2𝑘

2

2
𝑒
𝛼ℎ

]𝜆
1
(1 − 𝜌

∗
) 𝛼
) 𝑒

𝛼(𝜏−𝑡+ℎ)󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+
2𝑘

2

1

]𝜆
1
𝛼
+
𝑒
−𝛼(𝑡−ℎ)

2𝜀
2

∫

𝑡

−∞

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨
2

𝑑𝑠,

∀𝑡 ⩾ 𝜏 + ℎ,

(24)

]∫
𝑡

𝑡−1

𝑒
𝛼𝑟
‖𝑢(𝑟)‖

2
𝑑𝑟

⩽ 𝐶𝑒
𝛼𝜏󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+ 𝐶𝑒
𝛼𝑡

+ 𝐶∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟, ∀𝑡 ⩾ 𝜏 + ℎ + 1,

(25)

provided that 𝛼 > 0 is small enough.

Proof. By the energy inequality and the Poincaré inequality,
we have

𝑑

𝑑𝑡
|𝑢 (𝑡)|

2
+ ]𝜆

1|𝑢 (𝑡)|
2
+ ]‖𝑢(𝑡)‖

2

⩽ 2 (𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡))) , 𝑢 (𝑡)) + 2 (𝑔 (𝑡) , 𝑢 (𝑡)) .

(26)

We fixed two positive parameters 𝜀
1
and 𝜀

2
to be chosen later

on. Then by (H3) and Young’s inequality, we can deduce that

󵄨󵄨󵄨󵄨(𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡))) , 𝑢 (𝑡))
󵄨󵄨󵄨󵄨 ⩽

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡)))
󵄨󵄨󵄨󵄨 |𝑢 (𝑡)|

⩽ 𝜀
1|𝑢 (𝑡)|

2

+
𝑘
2

1
+ 𝑘

2

2

󵄨󵄨󵄨󵄨𝑢 (𝑡 − 𝜌 (𝑡))
󵄨󵄨󵄨󵄨
2

4𝜀
1

,

󵄨󵄨󵄨󵄨𝑔 (𝑡) , 𝑢 (𝑡)
󵄨󵄨󵄨󵄨 ⩽ 𝜀2|𝑢 (𝑡)|

2
+
1

4𝜀
2

󵄨󵄨󵄨󵄨𝑔 (𝑡)
󵄨󵄨󵄨󵄨
2

.

(27)

Therefore,

𝑑

𝑑𝑡
|𝑢 (𝑡)|

2
+ ]‖𝑢(𝑡)‖

2
⩽ (2𝜀

1
+ 2𝜀

2
− ]𝜆

1
) |𝑢 (𝑡)|

2

+
𝑘
2

1
+ 𝑘

2

2

󵄨󵄨󵄨󵄨𝑢 (𝑡 − 𝜌 (𝑡))
󵄨󵄨󵄨󵄨
2

2𝜀
1

+

󵄨󵄨󵄨󵄨𝑔 (𝑡)
󵄨󵄨󵄨󵄨
2

2𝜀
2

.

(28)

Let 𝛼 > 0 to be determined later on. Then it follows that

𝑑

𝑑𝑡
(𝑒

𝛼𝑡
|𝑢 (𝑡)|

2
)

= 𝛼𝑒
𝛼𝑡
|𝑢 (𝑡)|

2
+ 𝑒

𝛼𝑡 𝑑

𝑑𝑡
|𝑢 (𝑡)|

2

⩽ (𝛼 + 2𝜀
1
+ 2𝜀

2
− ]𝜆

1
) 𝑒

𝛼𝑡
|𝑢 (𝑡)|

2
+
𝑒
𝛼𝑡
𝑘
2

1

2𝜀
1

+
𝑒
𝛼𝑡
𝑘
2

2

󵄨󵄨󵄨󵄨𝑢 (𝑡 − 𝜌 (𝑡))
󵄨󵄨󵄨󵄨
2

2𝜀
1

+
𝑒
𝛼𝑡󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨
2

2𝜀
2

.

(29)

Integrating between 𝜏 and 𝑡 (⩾ 𝜏), we have

𝑒
𝛼𝑡
|𝑢 (𝑡)|

2
⩽ 𝑒

𝛼𝜏
|𝑢 (𝜏)|

2

+ (𝛼 + 2𝜀
1
+ 2𝜀

2
− ]𝜆

1
) ∫

𝑡

𝜏

𝑒
𝛼𝑠
|𝑢 (𝑠)|

2
𝑑𝑠

+
𝑘
2

1

2𝜀
1

∫

𝑡

𝜏

𝑒
𝛼𝑠
𝑑𝑠

+
𝑘
2

2

2𝜀
1

∫

𝑡

𝜏

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑢 (𝑠 − 𝜌 (𝑠))

󵄨󵄨󵄨󵄨
2

𝑑𝑠

+
1

2𝜀
2

∫

𝑡

𝜏

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨
2

𝑑𝑠.

(30)

Let 𝑟 = 𝑠 − 𝜌(𝑠); note that 𝜌(𝑠) ∈ [0, ℎ] and 1/(1 − 𝜌󸀠(𝑠)) ⩽
1/(1 − 𝜌

∗
) for all 𝑠 ∈ R. Hence,

𝑘
2

2

2𝜀
1

∫

𝑡

𝜏

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑢 (𝑠 − 𝜌 (𝑠))

󵄨󵄨󵄨󵄨
2

𝑑𝑠

⩽
𝑘
2

2

2𝜀
1

1

1 − 𝜌
∗

∫

𝑡

𝜏−ℎ

𝑒
𝛼(𝑟+ℎ)

|𝑢 (𝑟)|
2
𝑑𝑟

⩽
𝑘
2

2
𝑒
𝛼ℎ

2𝜀
1
(1 − 𝜌

∗
)

× (∫

𝜏

𝜏−ℎ

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟 + ∫

𝑡

𝜏

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟)

⩽

𝑘
2

2
𝑒
𝛼(ℎ+𝜏)󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩
2

𝐶
𝐻

2𝜀
1
(1 − 𝜌

∗
) 𝛼

+
𝑘
2

2
𝑒
𝛼ℎ

2𝜀
1
(1 − 𝜌

∗
)
∫

𝑡

𝜏

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟.

(31)

Combining (30) and (31) together, we get

𝑒
𝛼𝑡
|𝑢 (𝑡)|

2
⩽ (1 +

𝑘
2

2
𝑒
𝛼ℎ

2𝜀
1
(1 − 𝜌

∗
) 𝛼
) 𝑒

𝛼𝜏󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+
𝑘
2

1
𝑒
𝛼𝑡

2𝜀
1
𝛼
+
1

2𝜀
2

∫

𝑡

−∞

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨
2

𝑑𝑠

+ (𝛼 + 2𝜀
1
+ 2𝜀

2
− ]𝜆

1
+

𝑘
2

2
𝑒
𝛼ℎ

2𝜀
1
(1 − 𝜌

∗
)
)

× ∫

𝑡

𝜏

𝑒
𝛼𝑠
|𝑢 (𝑠)|

2
𝑑𝑠.

(32)
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Let 𝜀
1
= ]𝜆

1
/4 and using (23), so we can choose positive

constants 𝛼 and 𝜀
2
small enough such that 𝛼 + 2𝜀

1
+ 2𝜀

2
−

]𝜆
1
+ (𝑘

2

2
𝑒
𝛼ℎ
/2𝜀

1
(1 − 𝜌

∗
)) < 0 and 𝛼 < 𝛿

0
(where 𝛿

0
is given

in the assumption (H4)). Then, it follows that

𝑒
𝛼𝑡
|𝑢 (𝑡)|

2
⩽ (1 +

2𝑘
2

2
𝑒
𝛼ℎ

]𝜆
1
(1 − 𝜌

∗
) 𝛼
) 𝑒

𝛼𝜏󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+
2𝑘

2

1
𝑒
𝛼𝑡

]𝜆
1
𝛼
+
1

2𝜀
2

∫

𝑡

−∞

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨
2

𝑑𝑠.

(33)

Setting now 𝑡 + 𝜃 instead of 𝑡 (where 𝜃 ∈ [−ℎ, 0]), multiplying
by 𝑒−𝛼(𝑡+𝜃), it holds

|𝑢 (𝑡 + 𝜃)|
2
⩽ (1 +

2𝑘
2

2
𝑒
𝛼ℎ

]𝜆
1
(1 − 𝜌

∗
) 𝛼
) 𝑒

𝛼(𝜏−𝑡−𝜃)󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+
2𝑘

2

1

]𝜆
1
𝛼
+
𝑒
−𝛼(𝑡+𝜃)

2𝜀
2

∫

𝑡+𝜃

−∞

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨
2

𝑑𝑠

⩽ (1 +
2𝑘

2

2
𝑒
𝛼ℎ

]𝜆
1
(1 − 𝜌

∗
) 𝛼
) 𝑒

𝛼(𝜏−𝑡+ℎ)󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+
2𝑘

2

1

]𝜆
1
𝛼
+
𝑒
−𝛼(𝑡−ℎ)

2𝜀
2

∫

𝑡

−∞

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨
2

𝑑𝑠.

(34)

Note that ‖ 𝑢
𝑡
‖
2

𝐶
𝐻

= sup
𝜃∈[−ℎ,0]

|𝑢(𝑡+𝜃)|
2, thus the conclusion

(24) follows immediately from (34).
Finally, we will obtain the bound on the term

]∫
𝑡

𝑡−1
𝑒
𝛼𝑟
‖ 𝑢(𝑟) ‖

2
𝑑𝑟. It follows from (28) that

]𝑒
𝛼𝑡
‖𝑢(𝑡)‖

2
⩽ (2𝜀

1
+ 2𝜀

2
− ]𝜆

1
) 𝑒

𝛼𝑡
|𝑢 (𝑡)|

2

+
𝑘
2

1
𝑒
𝛼𝑡

2𝜀
1

+
𝑘
2

2
𝑒
𝛼𝑡󵄨󵄨󵄨󵄨𝑢 (𝑡 − 𝜌 (𝑡))

󵄨󵄨󵄨󵄨
2

2𝜀
1

+
𝑒
𝛼𝑡󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨
2

2𝜀
2

+ 𝛼𝑒
𝛼𝑡
|𝑢 (𝑡)|

2

−
𝑑

𝑑𝑡
(𝑒

𝛼𝑡
|𝑢 (𝑡)|

2
) .

(35)

Integrating from 𝑡 − 1 to 𝑡, we have

]∫
𝑡

𝑡−1

𝑒
𝛼𝑟
‖𝑢(𝑟)‖

2
𝑑𝑟

⩽ (𝛼 + 2𝜀
1
+ 2𝜀

2
− ]𝜆

1
) ∫

𝑡

𝑡−1

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟

+
𝑘
2

1

2𝜀
1

∫

𝑡

𝑡−1

𝑒
𝛼𝑟
𝑑𝑟

+
𝑘
2

2

2𝜀
1

∫

𝑡

𝑡−1

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑢 (𝑟 − 𝜌 (𝑟))

󵄨󵄨󵄨󵄨
2

𝑑𝑟

+
1

2𝜀
2

∫

𝑡

𝑡−1

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟

+ 𝑒
𝛼(𝑡−1)

|𝑢 (𝑡 − 1)|
2
.

(36)

Similar to the arguments of (31), we can deduce that

𝑘
2

2

2𝜀
1

∫

𝑡

𝑡−1

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑢 (𝑟 − 𝜌 (𝑟))

󵄨󵄨󵄨󵄨
2

𝑑𝑟

⩽
𝑘
2

2

2𝜀
1

1

1 − 𝜌
∗

∫

𝑡

𝑡−1−ℎ

𝑒
𝛼(𝑟+ℎ)

|𝑢 (𝑟)|
2
𝑑𝑟

⩽
𝑘
2

2
𝑒
𝛼ℎ

2𝜀
1
(1 − 𝜌

∗
)

× (∫

𝑡−1

𝑡−1−ℎ

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟 + ∫

𝑡

𝑡−1

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟)

⩽

𝑘
2

2
𝑒
𝛼(ℎ+𝑡−1)󵄩󵄩󵄩󵄩𝑢𝑡−1

󵄩󵄩󵄩󵄩
2

𝐶
𝐻

2𝜀
1
(1 − 𝜌

∗
) 𝛼

+
𝑘
2

2
𝑒
𝛼ℎ

2𝜀
1
(1 − 𝜌

∗
)
∫

𝑡

𝑡−1

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟.

(37)

Recall that 𝜀
1
= ]𝜆

1
/4 and 𝛼+2𝜀

1
+2𝜀

2
−]𝜆

1
+(𝑘

2

2
𝑒
𝛼ℎ
/2𝜀

1
(1−

𝜌
∗
)) < 0. By (24) and (36)-(37), we have (25) as desired, and

thus the proof of this lemma is completed.

By slightly modifying the proof of Lemma 1.1 in [23], we
have the following result.

Lemma 10. Let 𝑡 ∈ R be given arbitrarily. Let 𝑔, ℎ, and 𝑦 be
three positive locally integrable functions on (−∞, 𝑡] such that
𝑦
󸀠 is locally integrable on (−∞, 𝑡], which satisfy that

𝑑𝑦

𝑑𝑠
⩽ 𝑔𝑦 + ℎ for 𝑠 ⩽ 𝑡,

∫

𝑡

𝑡−1

𝑔 (𝑠) 𝑑𝑠 ⩽ 𝑎
1
, ∫

𝑡

𝑡−1

ℎ (𝑠) 𝑑𝑠 ⩽ 𝑎
2
,

∫

𝑡

𝑡−1

𝑦 (𝑠) 𝑑𝑠 ⩽ 𝑎
3
,

(38)

where 𝑎
1
, 𝑎

2
, and 𝑎

3
are positive constants. Then

𝑦 (𝑡) ⩽ exp (𝑎
1
) (𝑎

3
+ 𝑎

2
) . (39)

Now we state and prove the main result in this section.

Theorem 11. Suppose in addition to the hypotheses in
Lemma 9, assume that

lim
𝑡→−∞

∫

𝑡

−∞

𝑒
−𝛾(𝑡−𝑟)󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟 < ∞ ∀𝛾 > 0 (40)

holds true. Then the multivalued process {𝑈(𝑡, 𝜏)} on 𝐶
𝑉
is

pullbackD-dissipative.

Proof. We take the inner product of (9) with𝐴𝑢(𝑡), we obtain

1

2

𝑑

𝑑𝑡
‖𝑢(𝑡)‖

2
+ ]|𝐴𝑢 (𝑡)|

2
+ (𝐵 (𝑢 (𝑡) , 𝑢 (𝑡)) , 𝐴𝑢 (𝑡))

= (𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡))) , 𝐴𝑢 (𝑡)) + (𝑔 (𝑡) , 𝐴𝑢 (𝑡)) .

(41)
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Now we evaluate the terms, using (H3) and Young’s inequal-
ity, and we arrive to

󵄨󵄨󵄨󵄨(𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡))) , 𝐴𝑢 (𝑡))
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨(𝑔 (𝑡) , 𝐴𝑢 (𝑡))

󵄨󵄨󵄨󵄨

⩽
]

2
|𝐴𝑢 (𝑡)|

2
+

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡)))
󵄨󵄨󵄨󵄨
2

]
+

󵄨󵄨󵄨󵄨𝑔 (𝑡)
󵄨󵄨󵄨󵄨
2

]

⩽
]

2
|𝐴𝑢 (𝑡)|

2
+

𝑘
2

1
+ 𝑘

2

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

]
+

󵄨󵄨󵄨󵄨𝑔 (𝑡)
󵄨󵄨󵄨󵄨
2

]
.

(42)

Next,

|(𝐵 (𝑢 (𝑡) , 𝑢 (𝑡)) , 𝐴𝑢 (𝑡))|

⩽ 𝐶
1|𝑢 (𝑡)|

1/2
‖𝑢 (𝑡)‖ |𝐴𝑢 (𝑡)|

3/2

⩽
]

4
|𝐴𝑢 (𝑡)|

2
+
𝐶
2

]3
|𝑢 (𝑡)|

2
‖𝑢(𝑡)‖

4
.

(43)

Thanks to (41)–(43) and the fact that ‖ 𝜑 ‖2 ⩽ 𝜆−1
1
|𝐴𝜑|

2 for
𝜑 ∈ 𝐷(𝐴), we can deduce that

𝑑

𝑑𝑡
‖𝑢(𝑡)‖

2
+
]𝜆

1

2
‖𝑢(𝑡)‖

2

⩽

2𝑘
2

1
+ 2𝑘

2

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

]
+
2
󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨
2

]

+
2𝐶

2

]3
|𝑢 (𝑡)|

2
‖𝑢(𝑡)‖

4
,

(44)

and consequently,

𝑑

𝑑𝑡
(𝑒

𝛼𝑡
‖𝑢(𝑡)‖

2
) + (

]𝜆
1

2
− 𝛼) 𝑒

𝛼𝑡
‖𝑢(𝑡)‖

2

⩽

2𝑘
2

1
+ 2𝑘

2

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

]
𝑒
𝛼𝑡
+
2
󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨
2

]
𝑒
𝛼𝑡

+
2𝐶

2
𝑒
𝛼𝑡

]3
|𝑢 (𝑡)|

2
‖𝑢(𝑡)‖

4
.

(45)

Since 𝜀
1
= ]𝜆

1
/4 and 𝛼+2𝜀

1
+2𝜀

2
−]𝜆

1
+(𝑘

2

2
𝑒
𝛼ℎ
/2𝜀

1
(1−𝜌

∗
)) <

0, it is easy to see that (]𝜆
1
/2) − 𝛼 > 0. Then

𝑑

𝑑𝑡
(𝑒

𝛼𝑡
‖𝑢 (𝑡)‖

2
)

⩽

2𝑘
2

1
+ 2𝑘

2

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

]
𝑒
𝛼𝑡
+
2
󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨
2

]
𝑒
𝛼𝑡

+
2𝐶

2

]3
|𝑢 (𝑡)|

2
‖𝑢(𝑡)‖

2
‖𝑢(𝑡)‖

2
𝑒
𝛼𝑡
.

(46)

Let 𝑡 ∈ R be given arbitrarily and taking 𝜏 such that 𝑡 ⩾
𝜏 + ℎ + 1. In order to apply Lemma 10, in view of (24), now
we firstly obtain

∫

𝑡

𝑡−1

(

2𝑘
2

1
+ 2𝑘

2

2

󵄩󵄩󵄩󵄩𝑢𝑟
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

]
𝑒
𝛼𝑟
+
2
󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

]
𝑒
𝛼𝑟
)𝑑𝑟

⩽ ∫

𝑡

𝑡−1

2𝑘
2

1
+ 2𝑘

2

2

󵄩󵄩󵄩󵄩𝑢𝑟
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

]
𝑒
𝛼𝑟
𝑑𝑟

+ ∫

𝑡

𝑡−1

2
󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

]
𝑒
𝛼𝑟
𝑑𝑟

⩽ 𝐶𝑒
𝛼𝑡
+ 𝐶𝑒

𝛼𝜏󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+ 𝐶∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟.

(47)

Then, it follows from (24) and (25) that

2𝐶
2

]3
∫

𝑡

𝑡−1

|𝑢 (𝑟)|
2
‖𝑢(𝑟)‖

2
𝑑𝑟

⩽
2𝐶

2

]3
∫

𝑡

𝑡−1

󵄩󵄩󵄩󵄩𝑢𝑟
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

‖𝑢(𝑟)‖
2
𝑑𝑟

⩽
2𝐶

2

]3
∫

𝑡

𝑡−1

(1 +
2𝑘

2

2
𝑒
𝛼ℎ

]𝜆
1
(1 − 𝜌

∗
) 𝛼
) 𝑒

𝛼(𝜏−𝑟+ℎ)

×
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

‖𝑢(𝑟)‖
2
𝑑𝑟

+
4𝐶

2
𝑘
2

1

]4𝜆
1
𝛼
∫

𝑡

𝑡−1

‖𝑢(𝑟)‖
2
𝑑𝑟

+
2𝐶

2

]3
∫

𝑡

𝑡−1

(
𝑒
−𝛼(𝑟−ℎ)

2𝜀
2

‖𝑢(𝑟)‖
2
∫

𝑟

−∞

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨
2

𝑑𝑠)𝑑𝑟

⩽ 𝐶𝑒
2𝛼𝜏
𝑒
−2𝛼𝑡󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+ 𝐶

+ 𝐶𝑒
−𝛼𝑡
∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟 + 𝐶𝑒
𝛼𝜏
𝑒
−𝛼𝑡󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+ 𝐶𝑒
𝛼𝜏
𝑒
−2𝛼𝑡󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩
2

𝐶
𝐻

∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟

+ 𝐶𝑒
−2𝛼𝑡

(∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟)

2

.

(48)

Combining (25) and (47)-(48) together, by Lemma 10, we can
conclude that

‖𝑢(𝑡)‖
2
⩽ (𝑎

3
+ 𝑎

2
) 𝑒

𝑎
1 ∀𝑡 ⩾ 𝜏 + ℎ + 1, (49)
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where

𝑎
3
= 𝐶𝑒

𝛼𝜏󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+ 𝐶𝑒
𝛼𝑡
+ 𝐶∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟,

𝑎
2
= 𝐶𝑒

𝛼𝑡
+ 𝐶𝑒

𝛼𝜏󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+ 𝐶∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟,

𝑎
1
= 𝐶𝑒

2𝛼𝜏
𝑒
−2𝛼𝑡󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+ 𝐶

+ 𝐶𝑒
−𝛼𝑡
∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟 + 𝐶𝑒
𝛼𝜏
𝑒
−𝛼𝑡󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+ 𝐶𝑒
𝛼𝜏
𝑒
−2𝛼𝑡󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩
2

𝐶
𝐻

∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟

+ 𝐶𝑒
−2𝛼𝑡

(∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟)

2

.

(50)

Therefore, if we take 𝜏 such that 𝑡 ⩾ 𝜏 + 1 + 2ℎ, then similar
to the above mentioned, we get

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
2

𝐶
𝑉

= sup
𝜃∈[−ℎ,0]

‖𝑢(𝑡 + 𝜃)‖
2
⩽ (𝑎

3
+ 𝑎

2
) 𝑒

𝑎
1 . (51)

We denote byR the set of all functions 𝑟 : R → (0, +∞)

such that
lim

𝑡→−∞

𝑟
2
(𝑡) = 0, (52)

and denote by D
𝐶
𝑉

the class of all families D = {𝐷(𝑡)}
𝑡∈R ⊂

P(𝐶
𝑉
) such that 𝐷(𝑡) ⊂ N(0, 𝑟D(𝑡)), for some 𝑟D ∈ R,

where P(𝐶
𝑉
) denotes the family of all nonempty subsets of

𝐶
𝑉
andN(0, 𝑟D(𝑡)) denotes the closed ball in 𝐶

𝑉
centered at

zero with radius 𝑟D(𝑡).
Denote by 𝑅(𝑡) the nonnegative number given for each

𝑡 ∈ R by

(𝑅 (𝑡))
2
= (𝐶𝑒

𝛼𝑡
+ 𝐶∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟)

× exp(𝐶𝑒−𝛼𝑡 ∫
𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟

+𝐶𝑒
−2𝛼𝑡

(∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟)

2

) ,

(53)

and consider the family of closed balls Q = {𝑄(𝑡)}
𝑡∈R in 𝐶

𝑉

defined by

𝑄 (𝑡) = {𝜓 ∈ 𝐶
𝑉
:
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐶
𝑉

⩽ 𝑅 (𝑡)} . (54)

It is straightforward to check thatQ ∈ D
𝐶
𝑉

, andmoreover, by
(51) and (52), the family of Q is pullbackD-absorbing for the
multivalued process {𝑈(𝑡, 𝜏)} on 𝐶

𝑉
.

The proof of Theorem 11 is completed.

4. Existence of the Pullback Attractors in 𝐶
𝑉

Theorem 12. Suppose in addition to the hypotheses in
Theorem 11 that 𝑔 ∈ 𝐶(R; 𝐻). Then there exists a unique
pullback D-attractor {𝐴

𝐶
𝑉

(𝑡)}
𝑡∈𝑅

for the multivalued process
{𝑈(𝑡, 𝜏)} in 𝐶

𝑉
.

Proof. Since 𝐴−1 is a continuous compact operator in 𝐻, by
the classical spectral theory, there exist a sequence {𝜆

𝑗
}
∞

𝑗=1
,

0 < 𝜆
1
⩽ 𝜆

2
⩽ ⋅ ⋅ ⋅ ⩽ 𝜆

𝑗
⩽ ⋅ ⋅ ⋅ , 𝜆

𝑗
󳨀→ +∞, as 𝑗 󳨀→ +∞,

(55)

and a family of elements {𝑤
𝑗
}
∞

𝑗=1
of𝐷(𝐴)which are orthonor-

mal in𝐻 such that

𝐴𝑤
𝑗
= 𝜆

𝑗
𝑤
𝑗
∀𝑗 ∈ N. (56)

Let 𝑉
𝑚
= span{𝑤

1
, . . . , 𝑤

𝑚
} in 𝑉 and 𝑃

𝑚
: 𝑉 → 𝑉

𝑚
be an

orthogonal projector.
Let 𝑢 = 𝑢

1
+ 𝑢

2
, where 𝑢

1
= 𝑃

𝑚
𝑢 and 𝑢

2
= (𝐼 − 𝑃

𝑚
)𝑢. We

decompose (9) as follows:

𝜕𝑢
2
(𝑡)

𝜕𝑡
+ ]𝐴𝑢

2
(𝑡) + 𝐵 (𝑢 (𝑡) , 𝑢 (𝑡)) − 𝑃

𝑚
𝐵 (𝑢

1
(𝑡) , 𝑢

1
(𝑡))

= 𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡)))

− 𝑃
𝑚
𝑓 (𝑡, 𝑢

1
(𝑡 − 𝜌 (𝑡))) + (𝐼 − 𝑃

𝑚
) 𝑔 (𝑡) ,

𝑢
2
(𝜏 + 𝑡) = (𝐼 − 𝑃

𝑚
) 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(57)

𝜕𝑢
1
(𝑡)

𝜕𝑡
+ ]𝐴𝑢

1
(𝑡) + 𝑃

𝑚
𝐵 (𝑢

1
(𝑡) , 𝑢

1
(𝑡))

= 𝑃
𝑚
𝑓 (𝑡, 𝑢

1
(𝑡 − 𝜌 (𝑡))) + 𝑃

𝑚
𝑔 (𝑡) ,

𝑢
1
(𝜏 + 𝑡) = 𝑃

𝑚
𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] .

(58)

We divide the proof into three steps.
(1) For every fixed 𝑡 ∈ R, any B = {𝐵(𝑡)}

𝑡∈R ∈ D
𝐶
𝑉

and
𝜀 > 0, we observe that for any 𝑇 ⩾ 𝑡 − 𝑠 with 𝑠 ⩾ 0,

𝑈 (𝑇, 𝑡 − 𝑠) (𝜙)

= {𝑢
𝑇
(⋅; 𝑡 − 𝑠, 𝜙) | 𝑢 (⋅) is a strong solution

of (9) with 𝜙 ∈ 𝐵 (𝑡 − 𝑠) } .

(59)

Taking the inner product in𝐻 of (57) with𝐴𝑢
2
= 𝐴(𝐼−𝑃

𝑚
)𝑢,

we get

1

2

𝑑

𝑑𝑇

󵄩󵄩󵄩󵄩𝑢2(𝑇)
󵄩󵄩󵄩󵄩
2

+ ]
󵄨󵄨󵄨󵄨𝐴𝑢2 (𝑇)

󵄨󵄨󵄨󵄨
2

⩽
󵄨󵄨󵄨󵄨(𝑓 (𝑇, 𝑢 (𝑇 − 𝜌 (𝑇))) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(𝑃𝑚𝑓 (𝑇, 𝑢1 (𝑇 − 𝜌 (𝑇))) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(𝐵 (𝑢 (𝑇) , 𝑢 (𝑇)) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(𝑃𝑚𝐵 (𝑢1 (𝑇) , 𝑢1 (𝑇)) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨((𝐼 − 𝑃𝑚) 𝑔 (𝑇) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨 .

(60)

By (H3) and Young’s inequality, we have
󵄨󵄨󵄨󵄨(𝑓 (𝑇, 𝑢 (𝑇 − 𝜌 (𝑇))) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨(𝑔 (𝑇) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

⩽
]

8

󵄨󵄨󵄨󵄨𝐴𝑢2 (𝑇)
󵄨󵄨󵄨󵄨
2

+ 𝐶 + 𝐶
󵄩󵄩󵄩󵄩𝑢𝑇

󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+ 𝐶
󵄨󵄨󵄨󵄨𝑔 (𝑇)

󵄨󵄨󵄨󵄨
2

.

(61)
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To estimate (𝐵(𝑢(𝑇), 𝑢(𝑇)), 𝐴𝑢
2
(𝑇)), we recall some inequal-

ities [19]:

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨(𝐿∞(Ω))2 ⩽ 𝐶3

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩(1 + log

󵄨󵄨󵄨󵄨𝐴𝜑
󵄨󵄨󵄨󵄨
2

𝜆
1

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2
)

1/2

∀𝜑 ∈ 𝐷 (𝐴) ,

(62)

and thus

|𝐵 (𝑢, V)| ⩽ 𝐶
4 |(𝑢 ⋅ ∇) V| ⩽ 𝐶4|𝑢|𝐿∞(Ω) ‖V‖

⩽ 𝐶
4
𝐶
3 ‖𝑢‖ ‖V‖ (1 + log |𝐴𝑢|

2

𝜆
1‖𝑢‖

2
)

1/2

.

(63)

Note that |𝐴𝑢
1
|
2
⩽ 𝜆

𝑚
‖𝑢

1
‖
2, and set 𝐿 = 1 + log(𝜆

𝑚+1
/𝜆

1
).

Then by Young’s inequality, we can deduce that

󵄨󵄨󵄨󵄨(𝐵 (𝑢 (𝑇) , 𝑢 (𝑇)) , 𝐴𝑢2 (𝑇))
󵄨󵄨󵄨󵄨

⩽
󵄨󵄨󵄨󵄨(𝐵 (𝑢2 (𝑇) , 𝑢1 (𝑇) + 𝑢2 (𝑇)) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(𝐵 (𝑢1 (𝑇) , 𝑢1 (𝑇) + 𝑢2 (𝑇)) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

⩽ 𝐶
1

󵄨󵄨󵄨󵄨𝑢2 (𝑇)
󵄨󵄨󵄨󵄨
1/2󵄨󵄨󵄨󵄨𝐴𝑢2 (𝑇)

󵄨󵄨󵄨󵄨
3/2

× (
󵄩󵄩󵄩󵄩𝑢1 (𝑇)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢2 (𝑇)

󵄩󵄩󵄩󵄩)

+ 𝐶
3
𝐶
4
𝐿
1/2 󵄩󵄩󵄩󵄩𝑢1 (𝑇)

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐴𝑢2 (𝑇)

󵄨󵄨󵄨󵄨

× (
󵄩󵄩󵄩󵄩𝑢1 (𝑇)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢2 (𝑇)

󵄩󵄩󵄩󵄩)

⩽
]

8

󵄨󵄨󵄨󵄨𝐴𝑢2 (𝑇)
󵄨󵄨󵄨󵄨
2

+ 𝐶|𝑢 (𝑇)|
2
‖𝑢(𝑇)‖

4
+ 𝐶‖𝑢(𝑇)‖

4
.

(64)

By (60)–(64) and Poincaré inequality, we obtain

𝑑

𝑑𝑇

󵄩󵄩󵄩󵄩𝑢2(𝑇)
󵄩󵄩󵄩󵄩
2

+ ]𝜆
𝑚+1

󵄩󵄩󵄩󵄩𝑢2(𝑇)
󵄩󵄩󵄩󵄩
2

⩽ 𝐶 + 𝐶
󵄩󵄩󵄩󵄩𝑢𝑇

󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+ 𝐶
󵄨󵄨󵄨󵄨𝑔 (𝑇)

󵄨󵄨󵄨󵄨
2

+ 𝐶|𝑢 (𝑇)|
2
‖𝑢(𝑇)‖

4
+ 𝐶‖𝑢(𝑇)‖

4
.

(65)

Applying the Gronwall’s lemma in the interval [𝑡 − 𝑠, 𝑡 + 𝜃], it
yields

󵄩󵄩󵄩󵄩𝑢2(𝑡 + 𝜃)
󵄩󵄩󵄩󵄩
2

⩽
󵄩󵄩󵄩󵄩𝑢2(𝑡 − 𝑠)

󵄩󵄩󵄩󵄩
2

𝑒
−]𝜆
𝑚+1

(𝜃+𝑠)

+ 𝐶∫

𝑡+𝜃

𝑡−𝑠

𝑒
−]𝜆
𝑚+1

(𝑡+𝜃−𝑟)

× (1 +
󵄩󵄩󵄩󵄩𝑢𝑟
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+
󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

+ |𝑢 (𝑟)|
2
‖𝑢(𝑟)‖

4
+ ‖𝑢(𝑟)‖

4
) 𝑑𝑟.

(66)

Let 𝜀 > 0 be given arbitrarily. Note that 𝑔 ∈ 𝐶(R; 𝐻), then we
can take𝑚 + 1 large enough such that for any fixed 𝜂 > 0,

𝐶∫

𝑡+𝜃

𝑡−ℎ−𝜂

𝑒
−]𝜆
𝑚+1

(𝑡+𝜃−𝑟)󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨
2

𝑑𝑟 ⩽
𝐶

]𝜆
𝑚+1

<
𝜀

4
, (67)

sup
𝜃∈[−ℎ,0]

𝐶∫

𝑡−ℎ−𝜂

−∞

𝑒
−]𝜆
𝑚+1

(𝑡+𝜃−𝑟)󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨
2

𝑑𝑟

⩽ 𝐶∫

𝑡−ℎ−𝜂

−∞

𝑒
−]𝜆
𝑚+1

(𝑡−ℎ−𝑟)󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨
2

𝑑𝑟

⩽ 𝐶𝑒
−]𝜆
𝑚+1

(𝑡−ℎ)

× (∫

𝑡−ℎ−𝜂

𝑡−ℎ−𝜂−1

𝑒
]𝜆
𝑚+1

𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨
2

𝑑𝑟

+∫

𝑡−ℎ−𝜂−1

𝑡−ℎ−𝜂−2

𝑒
]𝜆
𝑚+1

𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨
2

𝑑𝑟 + ⋅ ⋅ ⋅ )

⩽ 𝐶𝑒
−]𝜆
𝑚+1

(𝑡−ℎ)

× (𝑒
(]𝜆
𝑚+1

−𝛼)(𝑡−ℎ−𝜂)
+ 𝑒

(]𝜆
𝑚+1

−𝛼)(𝑡−ℎ−𝜂−1)
+ ⋅ ⋅ ⋅ )

× ∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟

⩽
𝐶𝑒

−]𝜆
𝑚+1

𝜂
𝑒
−𝛼(𝑡−ℎ−𝜂)

1 − 𝑒−(]𝜆𝑚+1−𝛼)
∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟

<
𝜀

4
.

(68)

Combining (67) and (68) together, we can get for𝑚+ 1 large
enough,

sup
𝜃∈[−ℎ,0]

𝐶∫

𝑡+𝜃

−∞

𝑒
−]𝜆
𝑚+1

(𝑡+𝜃−𝑟)󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨
2

𝑑𝑟 <
𝜀

2
. (69)

On the other hand, thanks to Lemma 9 and Theorem 11, we
can deduce that when𝑚 + 1 and 𝑠 are large enough,

sup
𝜃∈[−ℎ,0]

󵄩󵄩󵄩󵄩𝑢2(𝑡 − 𝑠)
󵄩󵄩󵄩󵄩
2

𝑒
−]𝜆
𝑚+1

(𝜃+𝑠)

⩽
󵄩󵄩󵄩󵄩𝑢2(𝑡 − 𝑠)

󵄩󵄩󵄩󵄩
2

𝑒
−]𝜆
𝑚+1

(𝑠−ℎ)
<
𝜀

4
,

sup
𝜃∈[−ℎ,0]

𝐶∫

𝑡+𝜃

𝑡−𝑠

𝑒
−]𝜆
𝑚+1

(𝑡+𝜃−𝑟)

× (𝐶 +
󵄩󵄩󵄩󵄩𝑢𝑟
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+ |𝑢 (𝑟)|
2
‖𝑢(𝑟)‖

4
+ ‖𝑢(𝑟)‖

4
) 𝑑𝑟

<
𝜀

4
.

(70)
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Thanks to (69) and (70), it follows from (66) that when𝑚+1
and 𝑠 are large enough,

󵄩󵄩󵄩󵄩𝑢2𝑡
󵄩󵄩󵄩󵄩
2

𝐶
𝑉

= sup
𝜃∈[−ℎ,0]

󵄩󵄩󵄩󵄩𝑢2(𝑡 + 𝜃)
󵄩󵄩󵄩󵄩
2

⩽ sup
𝜃∈[−ℎ,0]

󵄩󵄩󵄩󵄩𝑢2(𝑡 − 𝑠)
󵄩󵄩󵄩󵄩
2

𝑒
−]𝜆
𝑚+1

(𝜃+𝑠)

+ sup
𝜃∈[−ℎ,0]

𝐶∫

𝑡+𝜃

𝑡−𝑠

𝑒
−]𝜆
𝑚+1

(𝑡+𝜃−𝑟)

× (𝐶 +
󵄩󵄩󵄩󵄩𝑢𝑟
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+
󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

+ |𝑢 (𝑟)|
2
‖𝑢(𝑟)‖

4

+‖𝑢(𝑟)‖
4
) 𝑑𝑟

< 𝜀.

(71)

(2) Now we consider the ordinary functional differential
system (58) and check the condition (2) in Theorem 7. Note
that |𝐴𝑢

1
|
2
⩽ 𝜆

𝑚
‖ 𝑢

1
‖
2
⩽ 𝜆

2

𝑚
|𝑢

1
|
2. Without generality, we

assume that 𝜃
1
, 𝜃

2
∈ [−ℎ, 0] with 0 < 𝜃

1
− 𝜃

2
< 1. Hence

󵄩󵄩󵄩󵄩𝑢1 (𝑡 + 𝜃1) − 𝑢1 (𝑡 + 𝜃2)
󵄩󵄩󵄩󵄩

⩽ √𝜆
𝑚

󵄨󵄨󵄨󵄨𝑢1 (𝑡 + 𝜃1) − 𝑢1 (𝑡 + 𝜃2)
󵄨󵄨󵄨󵄨

⩽ √𝜆
𝑚
∫

𝑡+𝜃
1

𝑡+𝜃
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑢
1
(𝑇)

𝑑𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑇

⩽ √𝜆
𝑚
∫

𝑡+𝜃
1

𝑡+𝜃
2

(]
󵄨󵄨󵄨󵄨𝐴𝑢1 (𝑇)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐵 (𝑢1 (𝑇) , 𝑢1 (𝑇))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓 (𝑇, 𝑢1 (𝑇 − 𝜌 (𝑇)))

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑃𝑚𝑔 (𝑇)

󵄨󵄨󵄨󵄨) 𝑑𝑇.

(72)

Notice that

󵄨󵄨󵄨󵄨𝐵 (𝑢1, 𝑢1)
󵄨󵄨󵄨󵄨 ⩽ 𝐶

󵄨󵄨󵄨󵄨𝐴𝑢1
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩 ⩽ 𝐶

√𝜆
𝑚

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩
2

⩽ 𝐶𝜆
3/2

𝑚

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨
2

.

(73)

Then, it follows from (H3), (H4), and (24) that

∫

𝑡+𝜃
1

𝑡+𝜃
2

(
󵄨󵄨󵄨󵄨𝐴𝑢1 (𝑇)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐵 (𝑢1 (𝑇) , 𝑢1 (𝑇))

󵄨󵄨󵄨󵄨) 𝑑𝑇

⩽ 𝐶∫

𝑡+𝜃
1

𝑡+𝜃
2

󵄨󵄨󵄨󵄨𝑢1 (𝑇)
󵄨󵄨󵄨󵄨 𝑑𝑇 + 𝐶∫

𝑡+𝜃
1

𝑡+𝜃
2

󵄨󵄨󵄨󵄨𝑢1 (𝑇)
󵄨󵄨󵄨󵄨
2

𝑑𝑇

⩽ 𝐶∫

𝑡+𝜃
1

𝑡+𝜃
2

󵄨󵄨󵄨󵄨𝑢1 (𝑇)
󵄨󵄨󵄨󵄨
2

𝑑𝑇 + 𝐶 (𝜃
1
− 𝜃

2
)

⩽ 𝐶 (𝑒
−𝛼𝜃
2 − 𝑒

−𝛼𝜃
1) + 𝐶 (𝜃

1
− 𝜃

2
)

+ 𝐶 (𝑒
−𝛼𝜃
2 − 𝑒

−𝛼𝜃
1) 𝑒

−𝛼𝑡
∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟,

∫

𝑡+𝜃
1

𝑡+𝜃
2

󵄨󵄨󵄨󵄨𝑓 (𝑇, 𝑢1 (𝑇 − 𝜌 (𝑇)))
󵄨󵄨󵄨󵄨 𝑑𝑇

⩽ ∫

𝑡+𝜃
1

𝑡+𝜃
2

(
󵄨󵄨󵄨󵄨𝑓 (𝑇, 𝑢1 (𝑇 − 𝜌 (𝑇)))

󵄨󵄨󵄨󵄨
2

+ 𝐶) 𝑑𝑇

⩽ ∫

𝑡+𝜃
1

𝑡+𝜃
2

(𝑘
2

2

󵄩󵄩󵄩󵄩𝑢1𝑇
󵄩󵄩󵄩󵄩
2

𝐶
𝐻

+ 𝐶) 𝑑𝑇

⩽ 𝐶 (𝑒
−𝛼𝜃
2 − 𝑒

−𝛼𝜃
1) + 𝐶 (𝜃

1
− 𝜃

2
)

+ 𝐶 (𝑒
−𝛼𝜃
2 − 𝑒

−𝛼𝜃
1) 𝑒

−𝛼𝑡
∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨
2

𝑑𝑟.

(74)

Since 𝑔 ∈ 𝐶(R; 𝐻) and 𝑡 is fixed,

∫

𝑡+𝜃
1

𝑡+𝜃
2

󵄨󵄨󵄨󵄨𝑃𝑚𝑔 (𝑇)
󵄨󵄨󵄨󵄨 𝑑𝑇 ⩽ 𝐶 (𝜃1 − 𝜃2) . (75)

Equations (74)–(75) imply that the condition (2) in
Theorem 7 is proved.

(3) Invoking Theorem 7, in view of the previous argu-
ments and Theorem 11, we can see that the multivalued pro-
cess {𝑈(𝑡, 𝜏)} is pullback D-limit-set compact and pullback
D-dissipative in 𝐶

𝑉
.

In order to get the existence of pullbackD-attractors, by
the proof of Theorem 3.2 in [21], now we only need to show
the negative invariance of {𝐴

𝐶
𝑉

(𝑡)}
𝑡∈R, where

𝐴
𝐶
𝑉
(𝑡) = 𝜔

𝑡
(Q)

= ⋂

𝑇∈R+

⋃

𝑠⩾𝑇

𝑈(𝑡, 𝑡 − 𝑠)𝑄(𝑡 − 𝑠), ∀𝑡 ∈ R,
(76)

and Q = {𝑄(𝑡)}
𝑡∈R ∈ D

𝐶
𝑉

is a pullback D-absorbing set of
{𝑈(𝑡, 𝜏)} in 𝐶

𝑉
.

Let𝑦 ∈ 𝐴
𝐶
𝑉

(𝑡).Then there exist sequences 𝑠
𝑛
∈ R+, 𝑠

𝑛
→

+∞ (𝑛 → ∞), 𝑥
𝑛
∈ 𝑄(𝑡 − 𝑠

𝑛
), and 𝑦

𝑛
∈ 𝑈(𝑡, 𝑡 − 𝑠

𝑛
)𝑥

𝑛
such

that
𝑦
𝑛
󳨀→ 𝑦 in 𝐶

𝑉
as 𝑛 󳨀→ ∞. (77)

On the other hand, for 𝑛 sufficiently large,

𝑦
𝑛
∈ 𝑈 (𝑡, 𝑡 − 𝑠

𝑛
) 𝑥

𝑛
= 𝑈 (𝑡, 𝜏) 𝑈 (𝜏, 𝑡 − 𝑠

𝑛
) 𝑥

𝑛
. (78)

Then by the pullback D-limit-set compactness of the mul-
tivalued process {𝑈(𝑡, 𝜏)}, there is a subsequence of 𝑥

𝑛
∈

𝑈(𝜏, 𝑡 − 𝑠
𝑛
)𝑥

𝑛
= 𝑈(𝜏, 𝜏 − (𝜏 + 𝑠

𝑛
− 𝑡))𝑥

𝑛
, which we still relabel

as 𝑥
𝑛
such that 𝑦

𝑛
∈ 𝑈(𝑡, 𝜏)𝑥

𝑛
and

𝑥
𝑛
󳨀→ 𝑥 in 𝐶

𝑉
as 𝑛 󳨀→ ∞. (79)

Clearly, 𝑥 ∈ 𝐴
𝐶
𝑉

(𝜏).
We observe that 𝑦

𝑛
is bounded in 𝐶

𝑉
for 𝑛 sufficiently

large. Then by slightly modifying the proof of the existence
of solutions (see [16] for details), in view of Theorem 2.11 in
[21], we can see that

𝑦
𝑛
(⋅) ⇀ 𝑢 (⋅ + 𝑡, 𝜏, 𝑥) in 𝐿2 ([−ℎ, 0] ; 𝑉) . (80)

This together with (77)–(79), we can deduce that 𝑦 ∈

𝑈(𝑡, 𝜏)𝑥 ⊂ 𝑈(𝑡, 𝜏)𝐴
𝐶
𝑉

(𝜏), and thus the proof of Theorem 12
is finished.
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[7] T. Caraballo, P. Maŕın-Rubio, and J. Valero, “Attractors for
differential equations with unbounded delays,” Journal of Dif-
ferential Equations, vol. 239, no. 2, pp. 311–342, 2007.

[8] J. K. Hale and S. M. Verduyn-Lunel, Introduction to Functional
Differential Equations, Springer, Berlin, Germany, 1993.

[9] J. Mallet-Paret and G. R. Sell, “Systems of differential delay
equations: floquetmultipliers and discrete Lyapunov functions,”
Journal of Differential Equations, vol. 125, no. 2, pp. 385–440,
1996.

[10] J. Mallet-Paret and G. R. Sell, “The Poincaré-Bendixson theo-
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