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Eigenvalue problems with eigenparameter appearing in the boundary conditions usually have complicated characteristic
determinant where zeros cannot be explicitly computed. In this paper, we use the derivative sampling theorem “Hermite
interpolations” to compute approximate values of the eigenvalues of Sturm-Liouville problems with eigenvalue parameter in one
or two boundary conditions. We use recently derived estimates for the truncation and amplitude errors to compute error bounds.
Also, using computable error bounds, we obtain eigenvalue enclosures. Also numerical examples, which are given at the end of the
paper, give comparisons with the classical sinc method and explain that the Hermite interpolations method gives remarkably better

results.

1. Introduction

The mathematical modeling of many practical problems in
mechanics and other areas of mathematical physics requires
solutions of boundary value problems (see, [1-7]) and frac-
tional differential equations (see, [8-13]). It is well known that
many topics in mathematical physics require the investigation
of the eigenvalues and eigenfunctions of Sturm-Liouville
type boundary value problems. The literature on computing
eigenvalues of various types of Sturm-Liouville problems is
little and we refer to [14-17].

Let o > 0 and let PW? be the Paley-Wiener space of all
L*(R), entire functions of exponential type o. Assume that
f(t) € PW2 c PW5 . Then f(t) can be reconstructed via the
Hermite-type sampling series as

fo=3 [1(Z)so
T M

y (n sin (ot — nm)
of (5) =),

where S,,(t) is the sequences of sinc functions as follows:

sin (ot — nm) nm
sn=1 @m0 @
1, t="
g

Series (1) converges absolutely and uniformly on R, cf.
[18-21]. Sometimes, series (1) is called the derivative sampling
theorem. Our task is to use (1) to compute eigenvalues
of Sturm-Liouville problems with eigenvalue parameter in
boundary conditions numerically. This approach is a fully
new technique that uses the recently obtained estimates for
the truncation and amplitude errors associated with (1), cf.
[22]. Both types of errors normally appear in numerical tech-
niques that use interpolation procedures. In the following we
summarize these estimates. The truncation error associated
with (1) is defined to be

Ry(f)h=ft)-fn(), NeZ', teR, (3)



where fy(t) is the truncated series as follows:

=3 [1(F)50 §
+f/<ﬂ> sin(o;—nn)sn(t) .

o
It is proved in [22] that if f(t) € PW2 and f(t) is sufficiently

smooth in the sense that there exists k € Z* such that t* f(t) €
L*(R), then for t € R, |t| < N7/o, we have

|Ry (f) )]
< TN,k,a (t)
By Isinotf? ( 1 N 1 )
VBN +DF \(Nm-0t)? (N7 +0t)*?
N &y (0O + kE;_;) |sin ot/

(N + 1)

X( ot )
\/N7l \/N”‘l'()t

where the constants E; and &, , are given by

o,k+1/2

E, = JJ [t OF e G = =
—00 T B

The amplitude error occurs when approximate samples are
used instead of the exact ones, which we cannot compute. It
is defined to be

5 () r (s

N {f,(nn>_~,<ﬂ>} sin(a;—nn)sn(t) ’

o

teR,
(7)

where f (nrr/o) and T’(nn/a) are approximate samples of
f(nm/o) and f "(nr/o), respectively. Let us assume that the

differences ¢, = f(nm/o) - f(nn/a), e:l = f'(nn/cr) -
f'(nr/o), and n € Z are bounded by a positive number ¢,

that is, ||, |5:1| <elIf f(t) e PWf, satisfies the natural decay
conditions
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0 < v < 1, then for 0 < ¢ < min{n/o,o/m, 1/+/e}, we have,
[22],

I (& Moo
e Do (F)ara)po
+(o+2+ log(2))Mf} slog(l>,
" (o)
where
e o)),
(11)

p(e):=y+ 1010g<1>,
&

and y := lim,,_, ,[Y}_, 1/k — logn] = 0.577216 is the Euler-
Mascheroni constant.

The classical [23] sampling theorem of Whittaker, Kotel-
nikov, and Shannon (WKS) for f € PW?, is the series
representation as follows:

fo=Y 7(T)s0. ter )

where the convergence is absolute and uniform on R and
it is uniform on compact sets of C cf. [23-25]. Series (12),
which is of Lagrange interpolation type, has been used to
compute eigenvalues of second-order eigenvalue problems,
see for example, [17, 26-29]. The use of (12) in numerical
analysis is known as the sinc method established by Stenger
et al, cf. [30-32]. The aim of this paper is to investigate
the possibilities of using Hermite interpolations rather than
Lagrange interpolations, to compute the eigenvalues numer-
ically. Notice that, due to Paley-Wiener’s theorem [33] f €
PW(ZT if and only if there is g(-) € L?(~0,0) such that

1 g ixt
0= = | gtoe ax (13)

Therefore, f'(t) € PW?,, that is, f'(t) also has an expansion of

the form (12). However, f '(¢) can also be obtained by term-
by-term differentiation formula of (12) as follows:

fo=3 F(%)s @, (14)

n
n=—00 g

see [23, page 52] for convergence. Thus, the use of Hermite
interpolations will not cost any additional computational
efforts since the samples f(nr/o) will be used to compute
both f(¢) and f ") according to (12) and (14), respectively.
Now, we consider the following differential equations:

e(y)=—y" (o u) +q(x) y (o pu) =i’y (x.u),
x €[0,1],

(15)
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with the following boundary conditions:
! 2 ! I
ary (0.41) + @y (0.41) = * (a1y (0. 1) + a3y’ (0, 12)), (16)

by (L) + by (L) = (bly (L) + by (L)), (17)

where p is a complex spectral parameter, g(-) is assumed to
be real valued and continuous on [0, 1], and a;, b;, ai', bi' € R,
i = 0,1 satisfying

((a{,a;) =(0,0) or ala; - a{az > 0) ,
(18)
((b1,b;) = (0,0) or bib, —byby > 0).

The eigenvalue problem (15)-(17) will be denoted by
(g, a,b,a’,b") when (a{, a;) #(0,0) # (bl',bz'). It is a Sturm-
Liouville problem when the eigenparameter y appears lin-
early in both boundary conditions. The classical problem
when a{ = aé = bll = bz' = 0, which we denote by I1(g, a, b, 0,
0) has a countable set of real and simple eigenvalues with co
as the only possible limit point, [34, 35]. In [14], the authors
used Hermite-type sampling series (1) to compute the eigen-
values of problem II(g,a,b,0,0) numerically. In [36], see
also [37], Annaby and Tharwat proved that I1(q, a,b,a’,b’)
has a denumerable set of real and simple eigenvalues with
0o as the limit point using techniques similar of those
established in [38-40], where also sampling theorems have
been established. Similar results are established in [38] for the
problem when the eigenparameter appears in one condition,
that is, when a{ = ag =0, (b{,bz') #(0,0) or equivalently
when (a],a})#(0,0) and b} = b, = 0. These problems will
be denoted by I1(g,a,b,0,b"), T1(g,a,b,a’,0), respectively.
The aim of the present work is to compute the eigenval-
ues of Il(g,a,b, a,b), (g, a,b,0, b'), and (g, a, b, a,0)
numerically by the Hermite interpolations with an error
analysis. This method is based on sampling theorem, Hermite
interpolations, but applied to regularized functions. Hence,
avoiding any (multiple) integration and keeping the number
of terms in the Cardinal series manageable. It has been
demonstrated that the method is capable of delivering higher
order estimates of the eigenvalues at a very low cost, see [41-
43]. In Sections 2 and 3 we derive the Hermite interpolation
technique to compute the eigenvalues of I1(g, a, b,a’,b") and
I1(g, a, b, 0, b') with error estimates, respectively. The last
section involves some illustrative examples.

2. Treatment of [1(q,a,b,a’,b")

In this section, we derive approximate values of the eigenval-
ues of I1(g, a, b,a’,b'). Let (-, ) denote the solution of (15)
satisfying the following initial conditions:

y(O,u) =a,-ay’, Y (Op)=ay’-a. (19

Thus, y(-, p) satisfies the boundary condition (16). The eigen-
values of the problem Il(g,a,b, a',b') are the zeros of the
function as follows:

Au) = (b’ -by) y (L) + (b’ = by) y' (L) (20)

These zeros are real and simple. The function A(y) is an
entire function of y. We aim to approximate A(y) and hence
its zeros, that is, the eigenvalues by the use of the Hermite
Interpolation. The idea is to split A(y) into two parts, one
is known and the other is unknown, but lies in a Paley-
Wiener space. Then we approximate the unknown part to
get the approximate A(u) and then compute the approximate
zeros. Using the method of variation of constants, the solution
y(x, y) satisfies Volterra integral equation as follows:

y (x, 1) = (@, — ayp®) cos px

; (21)
~(a, -~ aly?) Smlj‘" FT[y] (x ),

where T is the Volterra operator defined by

T [y] (x,p) = j

0

TIEED @y @)

Differentiating (21), we get
¥ (xp) = (ap - ay) psin px
, (23)
, _
+ (aly - al)cosyx +T[y] (x,u),

where T is the Volterra operator
Ty (xu) = L cosp(x —t)q(t) y(t,u)dt. (24)
Define f(-, u) and g(:, 4) to be

flow) =Tyl (xu),  glop) =Tyl (xp). (25

In the following, we will make use of the estimates [44] as
follows:

|cos z| < €37 sin 2 oIz (26)
- z |17 1+zl
where ¢, is some constant (we may take ¢, = 1.72). For

convenience, we define the constants by
1
T = L lq )] dt, ¢ = |ay| + ¢ |ay ],
G = |a;|+c0'a{|, G = GTs

5 := max {cl,oz, |bl| + |b2| T, |b1'| + 'b2'| T}.
(27)

C; 1= eXp s,

From (21) and (25), we get

f(xu)

= Jox W q(t) [ (a2 — a;yz)cosut

in ut (28)
- (al - a{yz) M] dt

+ r sinp (x ~ 1) q@) f(t,u) dt.
0
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Lemma 1. For 0 < x <1, u € C, the following estimates hold: Combining (31) and (32), we obtain 0 < x < 1, u € C,

|f ()]

: ISulx__ % Jl ¢ ' 2
fxop) < Masmx, (29) <e el lg @) [|a] +|a| |ul

1
L+l 33)

(
2

+ (o] + i) ) cot |
+ae ™ [ T g7 (6]

Applying Gronwall’s inequality, cf. for example, [34, page 51],
Proof. Wedivide f (-, u) into two parts f; (-, ) and f,(:, u) and yields p € C,

2
TC3Cy (Cl + CZ|P‘| )e|sﬂ|x

(30)
L+ |y

g(xp) <

estimate each of them. Indeed, for x € [0,1] and u € C we e ISHlx |f (2, 0)]
have G ) .
<[ ol el « o
|f1 (x, ﬂ)l
. (fa o) ]t
| sinp(x—1) ! 2
=/, Tq(t) (az—%y)cosyt i
/oy sinpt e <C° J,la dt) (34)
- (a1 —au ) T dt
o ' P
< t
< oIl r g =D ) [1 +Jul L 2Ol + sl
- 0 1+ |u|(x-1)
2
" "y +(Jau| + |ar] lul) ot dt
x| o] + |a| | + (Jau | + [af] o] )
1
.. ol o)
1+ |yt from which we get
Sulx X X X,
S LCIEEET )
' 2 < e|5ﬂ|x (%) [|a2| + |aé| |M|2 + (lall + |a{' |M|2) CO]
+(lan] + o] le]) ot ] < .
1
s | lal el + ] lof : : )
He XL lq ()] dt | exp (co L Iq(t)idt>
il + ol ) ] .
31
(1) _ GGy (C1 + Czl:“lz)emmx
L+ |u| '
Moreover,0 < x < 1, u € C, Then from (25) and (29), we obtain the estimate (30). O
Now we split A(y) into two parts via
* o - Ap) =% W)+ (1), (36)
B sinp (x —t)
/2 Com)l = Uo u q(0) f () dt where Z(p) is known part
< r ¢ (x — 1) oI SHlG) g (w)
“lo 14 |ul(x-1) sin
= (b’ -ty) [(az —a’) cosp— (a, - ayu’) M]
x|g®|1f (& p)| dt u
e (X i +(bl® - b)) [(ayp’ - ay usin u+(a,y’ —a,) cos ul,
< COel«mlx L o 1Sl |q(t)| |f (t, P‘)l dr. (32) ( 2 2)[( 2 ) ( 1 1) (;7)
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and &'(y) is unknown part

S () = (b’ =b) f (L) + (b’ =by) g (L ). (38)

Then, from Lemma 1, we have the following lemma.

Lemma 2. The function $(u) is entire in y and the following
estimate holds:

12
C354‘35(1 + |yl ) |

| ()] < oy eI, (39)
Proof. Since
S (u)
< ([el] 1 + 1) 17 )|+ (JB3] e + 1) g (1, )]
(40)
then from (29) and (30) we get (39). O

The analyticity of §'(¢) and estimate (39) are not adequate
to prove that §'(u) lies in a Paley-Wiener space. To solve this
problem, we will multiply §'(¢) by a regularization factor. Let
0 € (0,1) andletm € Z*, m > 4 be fixed. Let %, (1) be the
function

sin 6,
979,"1 (Au) = < 9[/4#

) é)(pl), ueC. (41)

More specifications on m, 0 will be given later on. Then we
have the next lemma.

Lemma 3. %y, () is an entire function of u which satisfies
the estimates

2 2
|T - %%%Cgl(l + |y ) oI SHl(L4mb)
(1+6 [u))™"

Fom (1 (42)

Moreover, /Am_497 o.m(th) € L*(R) and

(o)
_ 2 m
E, 4 (ge,m) = \“ |I"m 4g9,m (.”)| du < \/EC3C46550 Vo>
—00
(43)

where
Yo
= ( ((m(@m 1)+ 46*)T [2m + 2] + 144m (4m* — 1) 6*

x (2800'T [2m — 7] + 206°T [2m - 5] + T [2m — 3]))

x (m(4m* - 1)T [2m + 2] 92’”*1)_1)1/2.
(44)

Proof. Since & (y) is entire, then also (1) is entire in p.
Combining the estimates |sinz/z| < (¢/(1 + |z|))e|‘(~’z| and
(39), we obtain

(Fom () s( G ) iuins

1+0|y|
(45)
272
‘ c3c4c5(1 + |.“| ) oIl ueC,
L+ |ul
leading to (42). Therefore, we get
i (L2 D
0,m - (1 + 9 |M|)m+1 >
(46)
That is, " * Fg,, (1) € L*(R). Moreover, we get
o m—4 2
J " F o ()| Al
—-00
<deddn (47)
oo 1l 8(1 + |ul? 4
[T M) o agagn
T (1 +0 |."‘|) 0

What we have just proved is that %, (1) belongs to the
Paley-Wiener space PWfT with o = 1 + m0. Since F,,,(u) €

PWi C PW% > then we can reconstruct the functions % ,,, (1)
via the following sampling formula:

[ee)

ge,m ([/l) = Z

n=—00

EHCAETD

1 (nm\ sin(op —nm)
# Fp () TS, ()|

(48)

Let N € Z', N > m and approximate %, (4) by its
truncated series %, (1), where

N
nrt
Fomn 1) = Y. | Fo ()2 (0)
n=—N

S, (1) |-
(49)

b (@) sin (op — nrr)

o o

Since all eigenvalues are real, then from now on we restrict
ourselves to ¢ € R. Since ‘um_497 om(p) € L*(R), the
truncation error, cf. (5), is given for |u| < Nm/o by

Ige,m ([/l) - ge,m,N (M)' < TN,m—4,0 (‘bl) > (50)



where

TNm-a0 (.”)

_ Ensob [sinopf 1 !

- V3(N + 1) < (Nm - (7‘14)3/2 " (N7 + 0(,1)3/2 )

+ Em—4,0 (OEm—4 + (m - 4) Em—S) |SiIl oﬂlz
o(N +1)™™*

(o=t ).
VN7 —ou ~/Nm+ou
(51)

The samples {979’,"(1171/0)}71:]:_1\, and {gé)m(nn/a)}nN:_N, in

general, are not known explicitly. So we approximate them
by solving numerically 8N + 4 initial value problems

at the nodes {nﬂ/a}f:]:_N. Let {?e,m(nn/a)}N

n=—

N and let
{?é,m(nn/a)}nN:_N be the approximations of the samples of
{Fom (f’lﬂ/g)}fj:_N and {97'9,,”(?171/0)}:]:_1\], respectively. Now
we define % ,,, (1), which approximates %, n () as

— N — nrt 2
Foman )= Y | Fou ()50
n=—N
o5, (1) Sl (M)] ,
N > m.
(52)

Using standard methods for solving initial problems, we may
assume that for |n| < N,

ni — ni
[Fon ()~ Fo ()| < &
> o > o
] nrt - nrt
|9’”0,m(7) ‘%m<7>\ <6

for a sufficiently small e. From (42) we can see that (1)
satisfies the condition (9) when m > 4 and therefore
whenever 0 < & < min{r/o, 0/, 1/~/e} we have

|Fomn () = Fon W) < (@), peR, (59

where there is a positive constant Mg for which, cf. (10),

(53)

1/4
A (e) := 2e {\/ge(l +0)+ <EA+M% )p(e)

o o o

(55)
+(a+2+10g(2))Mg9’m}slog<é>.
Here
A= 3;0 <|‘G}6,m 0)] + %Mgg)m> >

(56)

p(e):=y+ 1010g<é).
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In the following we use the technique of [26], where only
truncation error analysis is considered to determine enclo-

sure intervals for the eigenvalues, see also [41]. Let ‘u*z be an
eigenvalue; that is,

sin O
ou*

86 =56+ (B8 g, ) =0 7

Then it follows that

. sin Ou* —mez N
7))+ () Fomar )

sinfp* \ "= . sin Op* >_m .
< 6[4* ) 0,m,N (:"l ) < 6[4* O,m (Au )

sinQu* \ "= . sinQu* \ ™" .
(B2 S ) - () S )|

sinQu*\" . sinQu*\ " .
() " ) (55 ")

(58)
and so
. sinfu”\ " = i
26+ () T )
(59)
sinQu* | ™" .
<o | Tmean () + @),

Since E(u*) + (sin Ou*/Ou* )7m§f:9)m,N(y*) is given and
|'sin Ou*/Ou* I_m(TN’m,4,0(pt*) + d(e)) has computable
upper bound, we can define an enclosure for y* by solving
the following system of inequalities:

-m

O o (1) + 1(©)

Ou*

sin O
Op*

o)+ (M) 5w o0

-m

sin Ou* .
< P2 (Tmao (07) + 4 ©)).

ou*

Its solution is an interval containing u*, and over which
the graph & (u") + (sin Ou” /Ou” )_mp.fozg,m’N(‘u*) is squeezed
between the graphs as follows:

: 0 * |—m
|| Tomao W)+ @),
(61)
sinQu* | .
| (Tonea (67) 4 @),
Using the fact that
Fomn (1) — Fom (1) (62)
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uniformly over any compact set and since y* is a simple root,
we obtain the following for large N and sufficiently small &:

0 sinOu\ "=
2 (500+(5%) Founw) 20 @

in a neighborhood of u*. Hence, the
G(p) + (sin Ou/Ou) " Fy,, n(u) intersects the graphs
—| sin Op/Oul ™ (Ty pm-so(p) + (e)) and |sin Ou/Oul™
(Tnm-aop) + (€)) at two points with abscissae
a_(u*,N,¢) < a,(u",N,e) and the solution of the system of
inequalities (60) is the interval

Ly =[a(u,N,€),a, (u",N,¢)] (64)

and in particular y* € I . Summarizing the above
discussion, we arrive at the following lemma which is similar
to that of [26].

graph of

Lemma 4. For any eigenvalue y*z, we can find N, € Z" and
sufficiently small € such that yu* € I, for N > N,. Moreover,
we get

o (1" Nog) o, (', N )] — i)

as N — 00,

(65)

e — 0.

Proof. Since all eigenvalues of T1(q,a,b,a’,b’) are sim-
ple, then for large N and sufficiently small ¢ we have
(0/0u)(€(u) + (sin 9[4/9[4)77";‘5:9’%1\,([4)) > 0, in a neighbor-
hood of u*. Choose N, such that

sinOu\ ™" —
?(#)+< 9u”> Fomn, (1)

l—m

(66)
sin Oy
Ou

(TNO,WI*4,D' (#) +9 (8))

has two distinct solutions which we denote by a_(u*, N, €) <
a,(u*, Ny, e). The decay of Ty;,,,_4 () — 0asN — ooand
d(e) — 0ase — 0will ensure the existence of the solutions
a_(u*,N,e)anda,(u*,N,e)asN — ocoande — 0. For the
second point we recall that ge,m,N(/’l) - Fom)as N —
oo and as ¢ — 0. Hence, by taking the limit we obtain

. 6 *
@ (o, (00,0 + (TG E

) Fom (o (" 00,0)) =0

#a (1",00.0) + (2

-m
) Fom o (671000 =0,

(67)

That is, A(a,) = A(a_) = 0. This leads us to conclude that

a, =a_=u",since yu” is a simple root. O

Let EN(/J) = G(u) + (sin GM/Oy)_mge’m,N(y). Then (50)

and (54) imply

sin Oy

Ou

|A () =By ()] < (Tnn-ao (W) +  (€))

I—m

7

and 0 is chosen sufficiently small for which |0y < 7.
Therefore, 0, m must be chosen so that for |u| < Nm/o

m > 4, 6€(0,1), |Oul<m. (69)

Let p* be an eigenvalue and let py be its approximation. Thus,
A(u*) = 0and A (py) = 0. From (68) we have |A y(u*)| <
| sin Ou™ /Ou* I_m(TN,m,4,g(y*) + & (¢)). Now we estimate the
error |u* — py| for an eigenvalue p*.

Theorem 5. Let y*z be an eigenvalue of 11(q, a, b, a',b"). For
sufficient large N we have the following estimate:

(70)

|#* _ #N| < sin Ouy ‘_m TNm-106 (;/tN) + A (&)

Oun infcelm, |A' « )|

Proof. Since A(uy) — A n(uy) = Aluy) — A(u*), then from
(68) and after replacing p by py, we obtain

sin Ouy
Oun

l—m

A (un) = A (u7)] < (Tnm-ae () + A (€)).

(71)

Using the mean value theorem yields that for some ¢ € J, 5 :=
[min(p", py), max(u”, puy)],

|(!4* —un) A (C)|
< sin Ouy

0 ‘ (TN,m—4,a ([’lN) + 'Q{ (8)) > c € ]s,N C Ia,N'
Un

(72)

Since the eigenvalues are simple, then for sufficiently large
Ninfye; |A({)] > 0 and we get (70). ]
{elen

3. The Case of I1(q, a,b,0,b")

This section includes briefly a treatment similarly to
that of the previous section for the eigenvalue problem
(g, a, b, 0, b') introduced in Section 1. Notice that condition
(18) implies that the analysis of problem I1(g,a,b,0,b") is
not included in that of I1(g, a, b, a,b). Let (-, u) denote the
solution of (15) satistying the following initial conditions:

v (0,u) = ay, v (0,p) = —ay. (73)

Thus, y(,, ) satisfies the boundary condition (16). The
eigenvalues of the problem I1(g, a, b, 0, b") are the zeros of the
function as follows:

Q) = (b =)y (L) + (b —by) v’ (Ly). (74)

Recall that I1(g, a, b, a’,b') has denumerable set of real and
simple eigenvalues, cf. [38]. Using the method of variation
of constants, the solution y(x, u) satisfies Volterra integral
equation as follows:

sin ux

Y (o) = aycos x -0 T LT[y (), (79)



where T is the Volterra operator defined in (22). Differentiat-
ing (75), we get

v' (x,4) = —ayusin px —a, cos px + T [y] (x, 1), (76)

where T is the Volterra operator defined in (24). Define
hy (-, u) and h, (-, u) to be

hy (o) =Ty (xp),  h(xp)=T[y](xu).

As in the preceding section we split Q(u) into

Q(u) = (u) + % (), (78)

where J () is the known part

500 = (60 ) [sncos -, 2
“ (79)

+ (bzlptz - bz) [~ayusin p - a, cos u],

and % (u) is the unknown one

U (u) = (b = b ) by (1, ) + (b = b)) hy (1, ). (80)

Then, as in the previous section, %(y) is entire in y for each
x € [0, 1] for which

) 2
510354%( + || )e|sy|

, eC, (81
L+ |yl #

% ()] <

where ¢, := max{|b,| + |b,|71, |b1'| + Ibz'l‘r}.
Let 0 € (0,1) and let m be as in the previous section, but
m > 2. Define R, 5(u) to be

sin Ou \"™”
Rmo (1) =( M) %), weC. (82)
Hence,
m 2
C) CCCiC | 1+ -
%00 ()] < 0 163G 6( m|+ff| ) ISpl(1+m6) wed,
(1+6u])
(83)

and y" R, (1) € L*(R) with

Em—Z (‘%m,ﬂ) = \/JO; |#m72‘%m,6 (Abt)|2 dt“

(84)
< V20 ¢ 6504650,
where
_[126°T [2m - 3]+ T [2m — 1] (85)
0 ¢: 2 71 .
0*"1T [2 (m + 1))

Thus, &,, (1) belongs to the Paley-Wiener space PW? with
o = 1+ mb. Since Ry, (1) € PW> ¢ PW;,, then we can

Abstract and Applied Analysis

reconstruct the functions %, ,,, (1) via the following sampling
formula:

‘%B,m (/’l)

[ee)

=2 [‘%9’”<%>Sﬁ(”) (86)

n=-00

. (E) sin (op — nr)

5 5 S, (1) |-

Let N € Z', N > m, and approximate Ry, (4) by its
truncated series Ry, n(¢), where

RomN ()
- i [%e,m (%) S (u) (87)

n=—N
ey <nn>sin(0p¢—nﬂ)s )
O,m o o n \U .

Since all eigenvalues are real, then from now on we restrict
ourselves to ¢ € R. Since [/”_29‘29,,%([4) e L*(R), the
truncation error, cf. (5), is given for || < Nm/o by

|Rom (1) = Romn (W] < Tnmzo (1) 5 (88)
where
Tnm-20 (1)
Em20Em2 |sin 0;4|2 1 1
T VAN + 1) < (N7 — ou)”? ' (N7 + o)™ )

Em—Z,a (aEm—Z + (m - 2) Em—S) |Sin aﬂlz

+ =)
o(N+1)"

( L, )
VN —ou ~/Nm+ou

(89)
The samples {%G)m(nn/o)}nN?N and {e%é’m(nn/o)}iiN, in

general, are not known explicitly. So we approximate them
by solving numerically 4N + 2 initial value problems

at the nodes {nﬂ/a}nNz_N. Let {ﬁg’m(nn/a)}nN:_N and let
{@ém(nﬂ/a)}i_l\, be the approximations of the samples of
N
(R m(nmjo)} | and (Ry, (nm/o)} .,
we define @e’m’N(y), which approximates R, n(1)

QG,M,N (#)

= 3 [Fan () 5200

respectively. Now

(90)
—, (nm\ sin(op —nm)
+ Rom (7) — S

N > m.
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Using standard methods for solving initial problems, we
may assume that for |n| < N

ni — ni
Hom (") = Foom (2 )| < &
l o, o 6, o €
nrit — nrit
[0 () = T ()] < &

for a sufficiently small e. From (83) we can see that R, (1)

satisfies the condition (9) when m > 2 and therefore
whenever 0 < € < min{r/o, o/, 1/+/e} we have

(o1

| R (1) = R (W) < A (), peR,  (92)

where there is a positive constant M R for which, cf. (10),

and
2et/* T
o (&) = {ﬁe(1+a)+<—A+M%m>p(s)
o o (93)
+(0+2+log(2)) M@M} elog (é) :
Here
A= 370 (|‘%9,m (0)] + %Mgzg,m>>
(94)

p(e):=y+10 log<l>.
£
As in the above section, we have the following lemma.
Lemma 6. For any eigenvalue u*> of the problem
(g, a,b,0,b"), we can find N, € Z* and sufficiently
small & such that y* € .7 for N > N, where

T = b (W N.)ab, (4N, (99)

b_, b, are the solutions of the inequalities

sin@u|™
- WM‘ (TN (1) + < (2))
(96)
~ sinQu|™
SO0 = || (Tpeaa (0 + 7).
Moreover, we get
[b_ (4", N,e),b, (4", N, )] — {u"}
(97)

as N — 00, &—0.

Let ﬁN(y) = H(p) + (sin 0;4/9[4)7”’@@%1\,(;4). Then (88)
and (92) imply

| (1) - Oy ()
sin Ou|™" Nn
<o | e 0+ @), il <=5

(98)

9

and 0 is chosen sufficiently small for which |0y < 7.
Therefore, 0, m must be chosen so that for |u| < Nm/o

m> 2, 6¢€(0,1), |0ul<m. (99)

Let 4* be an eigenvalue and py be its approximation. Thus
Q(u*) = 0 and Oy (py) = 0. From (98) we have |Qp (") <
| sin Ou* Ou™ | ™ (T pmrs (") + (). Now we estimate the
error |u* — uy| for an eigenvalue p*. Finally we have the
following estimate.

Theorem 7. Let [4*2 be an eigenvalue of the problem
11(g, a,b,0,b"). For sufficient large N we have the following
estimate

sin Ouy ‘_m Tnm-2,0 (uy) + 9 (¢)
Oun infCGJE,N |Q/ (()|

lu" - un| < (100)

4. Numerical Examples

This section includes two detailed worked examples illus-
trating the above technique. Examples 1 and 2 computed in
[27, 45] with the classical sinc method, where only truncation
error analysis is considered, respectively. It is clearly seen that
our new method (Hermite interpolations) gives remarkably
better results than in [27, 45], see also [41-43]. We indicate in
these examples the effect of the amplitude error in the method
by determining enclosure intervals for different values of
e. We also indicate the effect of the parameters m and 0
by several choices. Each example is exhibited via figures
that accurately illustrate the procedure near to some of
the approximated eigenvalues. More explanations are given
below. Recall that a, (1) and b, (¢) are defined by

— inQu|™
()= By (0 £ [TE| (Trneso () + /@),
W < X2,
o
(101)
_ inQu|™
b, (.”) =Qy (M) t = HI (TN,m—Z,a (.”) + o (3)) >
W < X2,
o
(102)

respectively. Recall also that the enclosure intervals I, ; :=
la_,a,]and 7 = [b_,b,] are determined by solving

N
a,(1)=0, |ul <=, (103)

b (=0, Jul < T, (104
respectively. We would like to mention that Mathematica
has been used to obtain the exact values for the three
examples where eigenvalues cannot be computed concretely.
Mathematica is also used in rounding the exact eigenvalues,
which are square roots.
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FIGURE 1: The enclosure interval dominating y, form = 10, N = 15,

0 =1/5ande=10".

Example 1. 'The boundary value problem [27]

" (u) -y (op) =@y (xp), 0<x<l,

y' (0u) =0,
y(Lu)+y (L) = 2y (Lu) +y (Lu),
is a special case of the problem treated in the previous section

witha; =0,a, =b, =b, =b, = 1,b] = 2 and q(x) = —1. The
characteristic function is

Q) = (-1+ 2%) cos | 1 +42]

(105)

(106)
- (—1 +y2) \/1 + y? sin [\/1 +y2] .
The function F# (u) will be
F (u) = (—1 + 2[,12) cos [u] —p (—1 + /42) sin [u]. (107)

As is clearly seen, the eigenvalues cannot be computed
explicitly. Tables 1, 2, and 3 indicate the application of our
technique to this problem and the effect of m, 0 and e. By exact
we mean the zeros of Q(y) computed by Mathematica.

Figures 1 and 2 illustrate the enclosure intervals dom-
inating 4, for N = 15, m = 10, 06 = 1/5, and
e = 107 and ¢ = 107 respectively. The middle curve
represents Q(u), while the upper and lower curves represent
the curves of b, (¢), b_(u), respectively. We notice that when
¢ = 107", the two curves are almost identical. Similarly,
Figures 3 and 4 illustrate the enclosure intervals dominating
p for N = 15,m = 10,0 = 1/5,and e = 10~ and & =10""
respectively.

Example 2. The boundary value problem [45]

" (o) -y (op) =iy (xp) 0<x<1,

(108)

y(O,u) =@y (0,p), ¥ (Lu)=py(Lu),
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FIGURE 2: The enclosure interval dominating y, form = 10, N = 15,
0 =1/5ande=10"".
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—
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FIGURE 3: The enclosure interval dominating y, for m = 10, N = 15,
0=1/5ande=10"".

is a special case of problem I1(qg, a, b, a',b'), when q(x) = -1,
a, = a{ =b = bz' =0,and g, = a, = b| = b, = 1. Here the
characteristic function is

21
A(y)z(1—y4)c05\/y2+1—(2[42+/44)&.
w+1
(109)

After computing (), we obtain

?(y)=(1+y2) ((l—yz)cos‘u—ysiny). (110)
As is clearly seen, the eigenvalues cannot be computed
explicitly. As in the previous example, Figures 5, 6, 7, and 8
illustrate the results of Tables 4, 5, 6, and 7.
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TaBLE 1: With N = 15, the approximation  y and the exact solution g, for different choices of 11 and 6.
Hie H &) U3 Hy
Exact y;, 1.0493258679653497 3.5207214555369464 6.505146961583527 9.578576417519093
HieN
m==6
60=1/9 1.0493258487568435 3.5207214557864277 6.5051469611825405 9.578576417536349
0=112 1.0493291624256957 3.5207212860735546 6.5051469673141336 9.578576393056661
m =10
6=1/5 1.0493258679653554 3.5207214555369624 6.505146961583516 9.57857641751921
0=1/8 1.049325865990155 3.520721455899672 6.505146961464727 9.578576417559768
TABLE 2: Absolute error |y — py .
Hie “ &) Ha Uy
m==6
0=1/9 1.92085 x 10°# 2.49481 x 107" 4.00987 x 107 1.72555 x 10!
0=112 3.29446 x 107° 1.69463 x 10”7 5.73061 x 10~° 244624 x107®
m =10
0=1/5 5.77316 x 107" 1.59872 x 107** 115463 x 107 11724 x 10712
0=1/8 1.97519 x 10~° 3.62725 x 107" 1.188 x 107 4.0675 x 107!
TABLE 3: For N = 15, m = 10, and 0 = 1/5, the exact solution g, are all inside the interval [b_, b, ] for different values of ¢.
Hie “ &) U3 Hy
Exact p;, 1.0493258679653497 3.5207214555369464 6.505146961583527 9.578576417519093
J&N, e=10"° [1.04294069, 1.05557896] [3.51981844, 3.52162396 | [6.50375768, 6.50653831] [9.55222305, 9.60712093]
js,N, e=10"1° [1.04932561, 1.049326118] [3.52072141, 3.52072149] [6.50514690, 6.50514702] [9.57857529, 9.57857754]

Eg(Ro,m) = 451845 X 10°, E;(Rq ) = 229709 X 10°, v = 1, Mg, = 4.55609 x 10",

TaBLE 4: With N = 40, the approximation g ; and the exact solution g for different choices of 6.

Hie “ [22) U3 Hy
Exact y. 0.4828692021748484 1.966318052350425 4.827089429919572 7.919684444168381
N

m=38

6=1/32 0.48286920221045176 1.96631805234574 4.827089429919605 7.919684444168366
0=1/35 0.4828692337692527 1.966318047624416 4.8270894299720776 7.91968444416245
TaBLE 5: Absolute error [py — py nl.

Hie “ &) U Uy
m=3_8

0=1/32 3.56034 x 107" 4.68492 x 1072 3.28626 x 107 1.5099 x 10~

6=1/35 315944 x 107° 472601 x 10~ 5.25047 x 107! 5.93126 x 10712

TABLE 6: The approximation g, and the exact solution g for N = 40,m = 14 and 6 = 1/26.
P exact y N 4 — e
H 0.4828692021748484698568637 0.4828692021748484678442680 2.012596 x 107®
Uy 1.966318052350424642326091 1.9663180523504246423320204 5.93 x 102!
Us 4.8270894299195722717631337 4.8270894299195722717463715 1.6762 x 1072°
Uy 7.9196844441683813942255769 7.9196844441683813942260057 429 x 1072
TABLE 7: For N = 40, m = 14 and 0 = 1/26, the exact solution g, are all inside the interval [a_, a,] for different values of e.

Hie & 22 U Uy
Exact p;, 0.4828692021748484 1.966318052350425 4.827089429919572 7.919684444168381
JS,N» e=10"° [0.47918888, 0.48651557] [1.96592879, 1.96670680] [4.82707252, 4.82710633] [7.91968171, 7.919687175]
J&N, e=10"1 [0.48284084, 0.48289756] [1.96631794, 1.96631815] [4.82708919, 4.82708966] [7.919684437, 7.919684450]

Eyo(Fo,m) = 2.83057 x 10'%, Eg(Fy,,) = 112829 x 10", v = 1, Mg, =157716 x 107,
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