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Eigenvalue problems with eigenparameter appearing in the boundary conditions usually have complicated characteristic
determinant where zeros cannot be explicitly computed. In this paper, we use the derivative sampling theorem “Hermite
interpolations” to compute approximate values of the eigenvalues of Sturm-Liouville problems with eigenvalue parameter in one
or two boundary conditions. We use recently derived estimates for the truncation and amplitude errors to compute error bounds.
Also, using computable error bounds, we obtain eigenvalue enclosures. Also numerical examples, which are given at the end of the
paper, give comparisons with the classical sinc method and explain that the Hermite interpolations method gives remarkably better
results.

1. Introduction

The mathematical modeling of many practical problems in
mechanics and other areas of mathematical physics requires
solutions of boundary value problems (see, [1–7]) and frac-
tional differential equations (see, [8–13]). It is well known that
many topics inmathematical physics require the investigation
of the eigenvalues and eigenfunctions of Sturm-Liouville
type boundary value problems. The literature on computing
eigenvalues of various types of Sturm-Liouville problems is
little and we refer to [14–17].

Let 𝜎 > 0 and let PW2
𝜎
be the Paley-Wiener space of all

𝐿
2
(R), entire functions of exponential type 𝜎. Assume that

𝑓(𝑡) ∈ PW2
𝜎
⊂ PW2

2𝜎
. Then 𝑓(𝑡) can be reconstructed via the

Hermite-type sampling series as

𝑓 (𝑡) =

∞

∑

𝑛=−∞

[𝑓(

𝑛𝜋

𝜎

) 𝑆
2

𝑛
(𝑡)

+𝑓

(

𝑛𝜋

𝜎

)

sin (𝜎𝑡 − 𝑛𝜋)
𝜎

𝑆
𝑛
(𝑡)] ,

(1)

where 𝑆
𝑛
(𝑡) is the sequences of sinc functions as follows:

𝑆
𝑛
(𝑡) :=

{
{
{

{
{
{

{

sin (𝜎𝑡 − 𝑛𝜋)
(𝜎𝑡 − 𝑛𝜋)

, 𝑡 ̸=

𝑛𝜋

𝜎

,

1, 𝑡 =

𝑛𝜋

𝜎

.

(2)

Series (1) converges absolutely and uniformly on R, cf.
[18–21]. Sometimes, series (1) is called the derivative sampling
theorem. Our task is to use (1) to compute eigenvalues
of Sturm-Liouville problems with eigenvalue parameter in
boundary conditions numerically. This approach is a fully
new technique that uses the recently obtained estimates for
the truncation and amplitude errors associated with (1), cf.
[22]. Both types of errors normally appear in numerical tech-
niques that use interpolation procedures. In the following we
summarize these estimates. The truncation error associated
with (1) is defined to be

𝑅
𝑁
(𝑓) (𝑡) := 𝑓 (𝑡) − 𝑓

𝑁
(𝑡) , 𝑁 ∈ Z

+
, 𝑡 ∈ R, (3)
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where 𝑓
𝑁
(𝑡) is the truncated series as follows:

𝑓
𝑁
(𝑡) = ∑

|𝑛|≤𝑁

[𝑓(

𝑛𝜋

𝜎

) 𝑆
2

𝑛
(𝑡)

+𝑓

(

𝑛𝜋

𝜎

)

sin (𝜎𝑡 − 𝑛𝜋)
𝜎

𝑆
𝑛
(𝑡)] .

(4)

It is proved in [22] that if 𝑓(𝑡) ∈ PW2
𝜎
and 𝑓(𝑡) is sufficiently

smooth in the sense that there exists 𝑘 ∈ Z+ such that 𝑡𝑘𝑓(𝑡) ∈
𝐿
2
(R), then for 𝑡 ∈ R, |𝑡| < 𝑁𝜋/𝜎, we have





𝑅
𝑁
(𝑓) (𝑡)






≤ 𝑇
𝑁,𝑘,𝜎

(𝑡)

:=

𝜉
𝑘,𝜎
𝐸
𝑘 |sin𝜎𝑡|

2

√3(𝑁 + 1)
𝑘
(

1

(𝑁𝜋 − 𝜎𝑡)
3/2

+

1

(𝑁𝜋 + 𝜎𝑡)
3/2
)

+

𝜉
𝑘,𝜎
(𝜎𝐸
𝑘
+ 𝑘𝐸
𝑘−1
) |sin 𝜎𝑡|2

𝜎(𝑁 + 1)
𝑘

× (

1

√𝑁𝜋 − 𝜎𝑡

+

1

√𝑁𝜋 + 𝜎𝑡

) ,

(5)

where the constants 𝐸
𝑘
and 𝜉
𝑘,𝜎

are given by

𝐸
𝑘
:= √∫

∞

−∞





𝑡
𝑘
𝑓 (𝑡)






2

𝑑𝑡, 𝜉
𝑘,𝜎
:=

𝜎
𝑘+1/2

𝜋
𝑘+1√1 − 4

−𝑘

. (6)

The amplitude error occurs when approximate samples are
used instead of the exact ones, which we cannot compute. It
is defined to be

A (𝜀, 𝑓) (𝑡)

=

∞

∑

𝑛=−∞

[{𝑓(

𝑛𝜋

𝜎

) −
̃
𝑓(

𝑛𝜋

𝜎

)} 𝑆
2

𝑛
(𝑡)

+ {𝑓

(

𝑛𝜋

𝜎

) −
̃
𝑓

(

𝑛𝜋

𝜎

)}

sin (𝜎𝑡 − 𝑛𝜋)
𝜎

𝑆
𝑛
(𝑡)] ,

𝑡 ∈ R,

(7)

where ̃
𝑓(𝑛𝜋/𝜎) and ̃

𝑓

(𝑛𝜋/𝜎) are approximate samples of

𝑓(𝑛𝜋/𝜎) and 𝑓(𝑛𝜋/𝜎), respectively. Let us assume that the
differences 𝜀

𝑛
:= 𝑓(𝑛𝜋/𝜎) −

̃
𝑓(𝑛𝜋/𝜎), 𝜀

𝑛
:= 𝑓

(𝑛𝜋/𝜎) −

̃
𝑓

(𝑛𝜋/𝜎), and 𝑛 ∈ Z are bounded by a positive number 𝜀,

that is, |𝜀
𝑛
|, |𝜀


𝑛
| ≤ 𝜀. If 𝑓(𝑡) ∈ PW2

𝜎
satisfies the natural decay

conditions





𝜀
𝑛





≤









𝑓 (

𝑛𝜋

𝜎

)









,






𝜀


𝑛






≤









𝑓

(

𝑛𝜋

𝜎

)









, (8)





𝑓 (𝑡)





≤

𝑀
𝑓

|𝑡|
]+1 , 𝑡 ∈ R − {0} , (9)

0 < ] ≤ 1, then for 0 < 𝜀 ≤ min{𝜋/𝜎, 𝜎/𝜋, 1/√𝑒}, we have,
[22],




A (𝜀, 𝑓)




∞

≤

4𝑒
1/4

𝜎 (] + 1)
{√3𝑒 (1 + 𝜎) + ((

𝜋

𝜎

)𝐴 +𝑀
𝑓
) 𝜌 (𝜀)

+ (𝜎 + 2 + log (2))𝑀
𝑓
} 𝜀 log(1

𝜀

) ,

(10)

where

𝐴 :=

3𝜎

𝜋

(




𝑓 (0)





+ 𝑀
𝑓
(

𝜎

𝜋

)

]

) ,

𝜌 (𝜀) := 𝛾 + 10 log(1
𝜀

) ,

(11)

and 𝛾 := lim
𝑛→∞

[∑
𝑛

𝑘=1
1/𝑘 − log 𝑛] ≅ 0.577216 is the Euler-

Mascheroni constant.
The classical [23] sampling theorem of Whittaker, Kotel-

nikov, and Shannon (WKS) for 𝑓 ∈ PW2
𝜎
is the series

representation as follows:

𝑓 (𝑡) =

∞

∑

𝑛=−∞

𝑓(

𝑛𝜋

𝜎

) 𝑆
𝑛
(𝑡) , 𝑡 ∈ R, (12)

where the convergence is absolute and uniform on R and
it is uniform on compact sets of C cf. [23–25]. Series (12),
which is of Lagrange interpolation type, has been used to
compute eigenvalues of second-order eigenvalue problems,
see for example, [17, 26–29]. The use of (12) in numerical
analysis is known as the sinc method established by Stenger
et al., cf. [30–32]. The aim of this paper is to investigate
the possibilities of using Hermite interpolations rather than
Lagrange interpolations, to compute the eigenvalues numer-
ically. Notice that, due to Paley-Wiener’s theorem [33] 𝑓 ∈

PW2
𝜎
if and only if there is 𝑔(⋅) ∈ 𝐿2(−𝜎, 𝜎) such that

𝑓 (𝑡) =

1

√2𝜋

∫

𝜎

−𝜎

𝑔 (𝑥) 𝑒
𝑖𝑥𝑡
𝑑𝑥. (13)

Therefore,𝑓(𝑡) ∈ PW2
𝜎
, that is,𝑓(𝑡) also has an expansion of

the form (12). However, 𝑓(𝑡) can also be obtained by term-
by-term differentiation formula of (12) as follows:

𝑓

(𝑡) =

∞

∑

𝑛=−∞

𝑓(

𝑛𝜋

𝜎

) 𝑆


𝑛
(𝑡) , (14)

see [23, page 52] for convergence. Thus, the use of Hermite
interpolations will not cost any additional computational
efforts since the samples 𝑓(𝑛𝜋/𝜎) will be used to compute
both 𝑓(𝑡) and 𝑓(𝑡) according to (12) and (14), respectively.

Now, we consider the following differential equations:

ℓ (𝑦) := −𝑦

(𝑥, 𝜇) + 𝑞 (𝑥) 𝑦 (𝑥, 𝜇) = 𝜇

2
𝑦 (𝑥, 𝜇) ,

𝑥 ∈ [0, 1] ,

(15)
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with the following boundary conditions:

𝑎
1
𝑦 (0, 𝜇) + 𝑎

2
𝑦

(0, 𝜇) = 𝜇

2
(𝑎


1
𝑦 (0, 𝜇) + 𝑎



2
𝑦

(0, 𝜇)) , (16)

𝑏
1
𝑦 (1, 𝜇) + 𝑏

2
𝑦

(1, 𝜇) = 𝜇

2
(𝑏


1
𝑦 (1, 𝜇) + 𝑏



2
𝑦

(1, 𝜇)) , (17)

where 𝜇 is a complex spectral parameter, 𝑞(⋅) is assumed to
be real valued and continuous on [0, 1], and 𝑎

𝑖
, 𝑏
𝑖
, 𝑎


𝑖
, 𝑏


𝑖
∈ R,

𝑖 = 0, 1 satisfying

((𝑎


1
, 𝑎


2
) = (0, 0) or 𝑎

1
𝑎


2
− 𝑎


1
𝑎
2
> 0) ,

((𝑏


1
, 𝑏


2
) = (0, 0) or 𝑏

1
𝑏
2
− 𝑏
1
𝑏


2
> 0) .

(18)

The eigenvalue problem (15)–(17) will be denoted by
Π(𝑞, 𝑎, 𝑏, 𝑎


, 𝑏

) when (𝑎

1
, 𝑎


2
) ̸= (0, 0) ̸= (𝑏



1
, 𝑏


2
). It is a Sturm-

Liouville problem when the eigenparameter 𝜇 appears lin-
early in both boundary conditions. The classical problem
when 𝑎

1
= 𝑎


2
= 𝑏


1
= 𝑏


2
= 0, which we denote by Π(𝑞, 𝑎, 𝑏, 0,

0) has a countable set of real and simple eigenvalues with∞
as the only possible limit point, [34, 35]. In [14], the authors
used Hermite-type sampling series (1) to compute the eigen-
values of problem Π(𝑞, 𝑎, 𝑏, 0, 0) numerically. In [36], see
also [37], Annaby and Tharwat proved that Π(𝑞, 𝑎, 𝑏, 𝑎, 𝑏)
has a denumerable set of real and simple eigenvalues with
∞ as the limit point using techniques similar of those
established in [38–40], where also sampling theorems have
been established. Similar results are established in [38] for the
problem when the eigenparameter appears in one condition,
that is, when 𝑎

1
= 𝑎


2
= 0, (𝑏

1
, 𝑏


2
) ̸= (0, 0) or equivalently

when (𝑎
1
, 𝑎


2
) ̸= (0, 0) and 𝑏

1
= 𝑏


2
= 0. These problems will

be denoted by Π(𝑞, 𝑎, 𝑏, 0, 𝑏), Π(𝑞, 𝑎, 𝑏, 𝑎, 0), respectively.
The aim of the present work is to compute the eigenval-
ues of Π(𝑞, 𝑎, 𝑏, 𝑎, 𝑏), Π(𝑞, 𝑎, 𝑏, 0, 𝑏), and Π(𝑞, 𝑎, 𝑏, 𝑎


, 0)

numerically by the Hermite interpolations with an error
analysis.Thismethod is based on sampling theorem,Hermite
interpolations, but applied to regularized functions. Hence,
avoiding any (multiple) integration and keeping the number
of terms in the Cardinal series manageable. It has been
demonstrated that the method is capable of delivering higher
order estimates of the eigenvalues at a very low cost, see [41–
43]. In Sections 2 and 3 we derive the Hermite interpolation
technique to compute the eigenvalues of Π(𝑞, 𝑎, 𝑏, 𝑎, 𝑏) and
Π(𝑞, 𝑎, 𝑏, 0, 𝑏


) with error estimates, respectively. The last

section involves some illustrative examples.

2. Treatment of Π(𝑞, 𝑎, 𝑏, 𝑎, 𝑏)

In this section, we derive approximate values of the eigenval-
ues of Π(𝑞, 𝑎, 𝑏, 𝑎, 𝑏). Let 𝑦(⋅, 𝜇) denote the solution of (15)
satisfying the following initial conditions:

𝑦 (0, 𝜇) = 𝑎
2
− 𝑎


2
𝜇
2
, 𝑦


(0, 𝜇) = 𝑎



1
𝜇
2
− 𝑎
1
. (19)

Thus, 𝑦(⋅, 𝜇) satisfies the boundary condition (16).The eigen-
values of the problem Π(𝑞, 𝑎, 𝑏, 𝑎


, 𝑏

) are the zeros of the

function as follows:

Δ (𝜇) := (𝑏


1
𝜇
2
− 𝑏
1
) 𝑦 (1, 𝜇) + (𝑏



2
𝜇
2
− 𝑏
2
) 𝑦

(1, 𝜇) . (20)

These zeros are real and simple. The function Δ(𝜇) is an
entire function of 𝜇. We aim to approximate Δ(𝜇) and hence
its zeros, that is, the eigenvalues by the use of the Hermite
Interpolation. The idea is to split Δ(𝜇) into two parts, one
is known and the other is unknown, but lies in a Paley-
Wiener space. Then we approximate the unknown part to
get the approximate Δ(𝜇) and then compute the approximate
zeros.Using themethod of variation of constants, the solution
𝑦(𝑥, 𝜇) satisfies Volterra integral equation as follows:

𝑦 (𝑥, 𝜇) = (𝑎
2
− 𝑎


2
𝜇
2
) cos 𝜇𝑥

− (𝑎
1
− 𝑎


1
𝜇
2
)

sin 𝜇𝑥
𝜇

+ 𝑇 [𝑦] (𝑥, 𝜇) ,

(21)

where 𝑇 is the Volterra operator defined by

𝑇 [𝑦] (𝑥, 𝜇) = ∫

𝑥

0

sin 𝜇 (𝑥 − 𝑡)
𝜇

𝑞 (𝑡) 𝑦 (𝑡, 𝜇) 𝑑𝑡. (22)

Differentiating (21), we get

𝑦

(𝑥, 𝜇) = (𝑎



2
𝜇
2
− 𝑎
2
) 𝜇 sin 𝜇𝑥

+ (𝑎


1
𝜇
2
− 𝑎
1
) cos 𝜇𝑥 + ̃𝑇 [𝑦] (𝑥, 𝜇) ,

(23)

where ̃𝑇 is the Volterra operator

̃
𝑇 [𝑦] (𝑥, 𝜇) = ∫

𝑥

0

cos 𝜇 (𝑥 − 𝑡) 𝑞 (𝑡) 𝑦 (𝑡, 𝜇) 𝑑𝑡. (24)

Define 𝑓(⋅, 𝜇) and 𝑔(⋅, 𝜇) to be

𝑓 (𝑥, 𝜇) := 𝑇 [𝑦] (𝑥, 𝜇) , 𝑔 (𝑥, 𝜇) :=
̃
𝑇 [𝑦] (𝑥, 𝜇) . (25)

In the following, we will make use of the estimates [44] as
follows:

|cos 𝑧| ≤ 𝑒|I𝑧|,








sin 𝑧
𝑧









≤

𝑐
0

1 + |𝑧|

𝑒
|I𝑧|
, (26)

where 𝑐
0
is some constant (we may take 𝑐

0
≃ 1.72). For

convenience, we define the constants by

𝜏 := ∫

1

0





𝑞 (𝑡)





𝑑𝑡, 𝑐

1
:=




𝑎
2





+ 𝑐
0





𝑎
1





,

𝑐
2
:=






𝑎


2






+ 𝑐
0






𝑎


1






, 𝑐

3
:= 𝑐
0
𝜏,

𝑐
4
:= exp 𝑐

3
, 𝑐

5
:= max {𝑐

1
, 𝑐
2
,




𝑏
1





+




𝑏
2





𝜏,






𝑏


1






+






𝑏


2






𝜏} .

(27)

From (21) and (25), we get

𝑓 (𝑥, 𝜇)

= ∫

𝑥

0

sin 𝜇 (𝑥 − 𝑡)
𝜇

𝑞 (𝑡) [ (𝑎
2
− 𝑎


2
𝜇
2
) cos 𝜇𝑡

− (𝑎
1
− 𝑎


1
𝜇
2
)

sin 𝜇𝑡
𝜇

] 𝑑𝑡

+ ∫

𝑥

0

sin 𝜇 (𝑥 − 𝑡)
𝜇

𝑞 (𝑡) 𝑓 (𝑡, 𝜇) 𝑑𝑡.

(28)
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Lemma 1. For 0 ≤ 𝑥 ≤ 1, 𝜇 ∈ C, the following estimates hold:

𝑓 (𝑥, 𝜇) ≤

𝑐
3
𝑐
4
(𝑐
1
+ 𝑐
2





𝜇





2

)

1 +




𝜇





𝑒
|I𝜇|𝑥

, (29)

𝑔 (𝑥, 𝜇) ≤

𝜏𝑐
3
𝑐
4
(𝑐
1
+ 𝑐
2





𝜇





2

)

1 +




𝜇





𝑒
|I𝜇|𝑥

. (30)

Proof. Wedivide𝑓(⋅, 𝜇) into two parts𝑓
1
(⋅, 𝜇) and𝑓

2
(⋅, 𝜇) and

estimate each of them. Indeed, for 𝑥 ∈ [0, 1] and 𝜇 ∈ C we
have





𝑓
1
(𝑥, 𝜇)






=










∫

𝑥

0

sin 𝜇 (𝑥 − 𝑡)
𝜇

𝑞 (𝑡) [ (𝑎
2
− 𝑎


2
𝜇
2
) cos 𝜇𝑡

− (𝑎
1
− 𝑎


1
𝜇
2
)

sin 𝜇𝑡
𝜇

] 𝑑𝑡










≤ 𝑒
|I𝜇|𝑥

∫

𝑥

0





𝑞 (𝑡)






𝑐
0
(𝑥 − 𝑡)

1 +




𝜇




(𝑥 − 𝑡)

× [




𝑎
2





+






𝑎


2











𝜇





2

+ (




𝑎
1





+






𝑎


1











𝜇





2

)

×

𝑐
0
𝑡

1 +




𝜇




𝑡

] 𝑑𝑡

≤ 𝑒
|I𝜇|𝑥 𝑐

0
𝑥

1 +




𝜇




𝑥

∫

𝑥

0





𝑞 (𝑡)





[




𝑎
2





+






𝑎


2











𝜇





2

+ (




𝑎
1





+






𝑎


1











𝜇





2

) 𝑐
0
𝑡] 𝑑𝑡

≤ 𝑒
|I𝜇|𝑥 𝑐

0

1 +




𝜇





∫

1

0





𝑞 (𝑡)





[




𝑎
2





+






𝑎


2











𝜇





2

+ (




𝑎
1





+






𝑎


1











𝜇





2

) 𝑐
0
𝑡] 𝑑𝑡.

(31)

Moreover, 0 ≤ 𝑥 ≤ 1, 𝜇 ∈ C,





𝑓
2
(𝑥, 𝜇)





=










∫

𝑥

0

sin 𝜇 (𝑥 − 𝑡)
𝜇

𝑞 (𝑡) 𝑓 (𝑡, 𝜇) 𝑑𝑡










≤ ∫

𝑥

0

𝑐
0
(𝑥 − 𝑡)

1 +




𝜇




(𝑥 − 𝑡)

𝑒
|I𝜇|(𝑥−𝑡)

×




𝑞 (𝑡)










𝑓 (𝑡, 𝜇)





𝑑𝑡

≤ 𝑐
0
𝑒
|I𝜇|𝑥

∫

𝑥

0

𝑒
−|I𝜇|𝑡 




𝑞 (𝑡)










𝑓 (𝑡, 𝜇)





𝑑𝑡. (32)

Combining (31) and (32), we obtain 0 ≤ 𝑥 ≤ 1, 𝜇 ∈ C,




𝑓 (𝑥, 𝜇)






≤ 𝑒
|I𝜇|𝑥 𝑐

0

1 +




𝜇





∫

1

0





𝑞 (𝑡)





[




𝑎
2





+






𝑎


2











𝜇





2

+ (




𝑎
1





+






𝑎


1











𝜇





2

) 𝑐
0
𝑡] 𝑑𝑡

+ 𝑐
0
𝑒
|I𝜇|𝑥

∫

𝑥

0

𝑒
−|I𝜇|𝑡 




𝑞 (𝑡)










𝑓 (𝑡, 𝜇)





𝑑𝑡.

(33)

Applying Gronwall’s inequality, cf. for example, [34, page 51],
yields 𝜇 ∈ C,

𝑒
−|I𝜇|𝑥 




𝑓 (𝑥, 𝜇)






≤ [

𝑐
0

1 +




𝜇





∫

1

0





𝑞 (𝑡)





[




𝑎
2





+






𝑎


2











𝜇





2

+ (




𝑎
1





+






𝑎


1











𝜇





2

) 𝑐
0
𝑡] 𝑑𝑡]

× exp(𝑐
0
∫

𝑥

0





𝑞 (𝑡)





𝑑𝑡)

≤ [

𝑐
0

1 +




𝜇





∫

1

0





𝑞 (𝑡)





[




𝑎
2





+






𝑎


2











𝜇





2

+ (




𝑎
1





+






𝑎


1











𝜇





2

) 𝑐
0
𝑡] 𝑑𝑡]

× exp(𝑐
0
∫

1

0





𝑞 (𝑡)





𝑑𝑡) ,

(34)

from which we get




𝑓 (𝑥, 𝜇)






≤ 𝑒
|I𝜇|𝑥 [

[

[

𝑐
0
[




𝑎
2





+






𝑎


2











𝜇





2

+ (




𝑎
1





+






𝑎


1











𝜇





2

) 𝑐
0
]

1 +




𝜇





× ∫

1

0





𝑞 (𝑡)





𝑑𝑡
]
]

]

exp(𝑐
0
∫

1

0





𝑞 (𝑡)





𝑑𝑡)

=

𝑐
3
𝑐
4
(𝑐
1
+ 𝑐
2





𝜇





2

)

1 +




𝜇





𝑒
|I𝜇|𝑥

.

(35)

Then from (25) and (29), we obtain the estimate (30).

Now we split Δ(𝜇) into two parts via
Δ (𝜇) = G (𝜇) + S (𝜇) , (36)

whereG(𝜇) is known part

G (𝜇)

= (𝑏


1
𝜇
2
− 𝑏
1
) [(𝑎
2
− 𝑎


2
𝜇
2
) cos 𝜇 − (𝑎

1
− 𝑎


1
𝜇
2
)

sin 𝜇
𝜇

]

+(𝑏


2
𝜇
2
− 𝑏
2
)[(𝑎


2
𝜇
2
− 𝑎
2
)𝜇 sin 𝜇+(𝑎

1
𝜇
2
− 𝑎
1
) cos 𝜇] ,

(37)
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and S(𝜇) is unknown part

S (𝜇) = (𝑏


1
𝜇
2
− 𝑏
1
) 𝑓 (1, 𝜇) + (𝑏



2
𝜇
2
− 𝑏
2
) 𝑔 (1, 𝜇) . (38)

Then, from Lemma 1, we have the following lemma.

Lemma 2. The function S(𝜇) is entire in 𝜇 and the following
estimate holds:





S (𝜇)





≤

𝑐
3
𝑐
4
𝑐
5
(1 +





𝜇





2

)

2

1 +




𝜇





𝑒
|I𝜇|

.
(39)

Proof. Since

S (𝜇)

≤ (






𝑏


1











𝜇





2

+




𝑏
1





)




𝑓 (1, 𝜇)





+ (






𝑏


2











𝜇





2

+




𝑏
2





)




𝑔 (1, 𝜇)





,

(40)

then from (29) and (30) we get (39).

The analyticity ofS(𝜇) and estimate (39) are not adequate
to prove that S(𝜇) lies in a Paley-Wiener space. To solve this
problem, we will multiplyS(𝜇) by a regularization factor. Let
𝜃 ∈ (0, 1) and let𝑚 ∈ Z+,𝑚 > 4 be fixed. LetF

𝜃,𝑚
(𝜇) be the

function

F
𝜃,𝑚
(𝜇) := (

sin 𝜃𝜇
𝜃𝜇

)

𝑚

S (𝜇) , 𝜇 ∈ C. (41)

More specifications on 𝑚, 𝜃 will be given later on. Then we
have the next lemma.

Lemma 3. F
𝜃,𝑚
(𝜇) is an entire function of 𝜇 which satisfies

the estimates





F
𝜃,𝑚
(𝜇)




≤

𝑐
3
𝑐
4
𝑐
5
𝑐
𝑚

0
(1 +





𝜇





2

)

2

(1 + 𝜃




𝜇




)
𝑚+1

𝑒
|I𝜇|(1+𝑚𝜃)

. (42)

Moreover, 𝜇𝑚−4F
𝜃,𝑚
(𝜇) ∈ 𝐿

2
(R) and

𝐸
𝑚−4

(F
𝜃,𝑚
) = √∫

∞

−∞





𝜇
𝑚−4F

𝜃,𝑚
(𝜇)





2

𝑑𝜇 ≤ √2𝑐
3
𝑐
4
𝑐
5
𝑐
𝑚

0
]
0
,

(43)

where

]
0

:= ( ((𝑚 (2𝑚 − 1) + 4𝜃
2
) Γ [2𝑚 + 2] + 144𝑚 (4𝑚

2
− 1) 𝜃

4

× (280𝜃
4
Γ [2𝑚 − 7] + 20𝜃

2
Γ [2𝑚 − 5] + Γ [2𝑚 − 3]))

× (𝑚 (4𝑚
2
− 1) Γ [2𝑚 + 2] 𝜃

2𝑚+1
)

−1

)

1/2

.

(44)

Proof. Since S(𝜇) is entire, then also F
𝜃,𝑚
(𝜇) is entire in 𝜇.

Combining the estimates | sin 𝑧/𝑧| ≤ (𝑐
0
/(1 + |𝑧|))𝑒

|I𝑧| and
(39), we obtain





F
𝜃,𝑚
(𝜇)




≤ (

𝑐
0

1 + 𝜃




𝜇





)

𝑚

𝑒
|I𝜇|𝑚𝜃

⋅

𝑐
3
𝑐
4
𝑐
5
(1 +





𝜇





2

)

2

1 +




𝜇





𝑒
|I𝜇|

, 𝜇 ∈ C,

(45)

leading to (42). Therefore, we get






𝜇
𝑚−4

F
𝜃,𝑚
(𝜇)






≤

𝑐
3
𝑐
4
𝑐
5
𝑐
𝑚

0





𝜇





𝑚−4

(1 +




𝜇





2

)

2

(1 + 𝜃




𝜇




)
𝑚+1

, 𝜇 ∈ R.

(46)

That is, 𝜇𝑚−4F
𝜃,𝑚
(𝜇) ∈ 𝐿

2
(R). Moreover, we get

∫

∞

−∞






𝜇
𝑚−4

F
𝜃,𝑚
(𝜇)







2

𝑑𝜇

≤ 𝑐
2

3
𝑐
2

4
𝑐
2

5
𝑐
2𝑚

0

× ∫

∞

−∞





𝜇





2𝑚−8

(1 +




𝜇





2

)

4

(1 + 𝜃




𝜇




)
2𝑚+2

𝑑𝜇 = 2𝑐
2

3
𝑐
2

4
𝑐
2

5
𝑐
2𝑚

0
]2
0
.

(47)

What we have just proved is that F
𝜃,𝑚
(𝜇) belongs to the

Paley-Wiener space PW2
𝜎
with 𝜎 = 1 + 𝑚𝜃. Since F

𝜃,𝑚
(𝜇) ∈

PW2
𝜎
⊂ PW2

2𝜎
, thenwe can reconstruct the functionsF

𝜃,𝑚
(𝜇)

via the following sampling formula:

F
𝜃,𝑚
(𝜇) =

∞

∑

𝑛=−∞

[F
𝜃,𝑚
(

𝑛𝜋

𝜎

) 𝑆
2

𝑛
(𝜇)

+F


𝜃,𝑚
(

𝑛𝜋

𝜎

)

sin (𝜎𝜇 − 𝑛𝜋)
𝜎

𝑆
𝑛
(𝜇)] .

(48)

Let 𝑁 ∈ Z+, 𝑁 > 𝑚 and approximate F
𝜃,𝑚
(𝜇) by its

truncated seriesF
𝜃,𝑚,𝑁

(𝜇), where

F
𝜃,𝑚,𝑁

(𝜇) :=

𝑁

∑

𝑛=−𝑁

[F
𝜃,𝑚
(

𝑛𝜋

𝜎

) 𝑆
2

𝑛
(𝜇)

+F


𝜃,𝑚
(

𝑛𝜋

𝜎

)

sin (𝜎𝜇 − 𝑛𝜋)
𝜎

𝑆
𝑛
(𝜇)] .

(49)

Since all eigenvalues are real, then from now on we restrict
ourselves to 𝜇 ∈ R. Since 𝜇𝑚−4F

𝜃,𝑚
(𝜇) ∈ 𝐿

2
(R), the

truncation error, cf. (5), is given for |𝜇| < 𝑁𝜋/𝜎 by





F
𝜃,𝑚
(𝜇) −F

𝜃,𝑚,𝑁
(𝜇)




≤ 𝑇
𝑁,𝑚−4,𝜎

(𝜇) , (50)
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where
𝑇
𝑁,𝑚−4,𝜎

(𝜇)

:=

𝜉
𝑚−4,𝜎

𝐸
𝑚−4





sin𝜎𝜇



2

√3(𝑁 + 1)
𝑚−4

(

1

(𝑁𝜋 − 𝜎𝜇)
3/2

+

1

(𝑁𝜋 + 𝜎𝜇)
3/2
)

+

𝜉
𝑚−4,𝜎

(𝜎𝐸
𝑚−4

+ (𝑚 − 4) 𝐸
𝑚−5

)




sin𝜎𝜇



2

𝜎(𝑁 + 1)
𝑚−4

× (

1

√𝑁𝜋 − 𝜎𝜇

+

1

√𝑁𝜋 + 𝜎𝜇

) .

(51)

The samples {F
𝜃,𝑚
(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
and {F

𝜃,𝑚
(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
, in

general, are not known explicitly. So we approximate them
by solving numerically 8𝑁 + 4 initial value problems
at the nodes {𝑛𝜋/𝜎}𝑁

𝑛=−𝑁
. Let {̃F

𝜃,𝑚
(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
and let

{
̃F
𝜃,𝑚
(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
be the approximations of the samples of

{F
𝜃,𝑚
(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
and {F

𝜃,𝑚
(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
, respectively. Now

we define ̃F
𝜃,𝑚,𝑁

(𝜇), which approximatesF
𝜃,𝑚,𝑁

(𝜇) as

̃F
𝜃,𝑚,𝑁

(𝜇) :=

𝑁

∑

𝑛=−𝑁

[
̃F
𝜃,𝑚
(

𝑛𝜋

𝜎

) 𝑆
2

𝑛
(𝜇)

+
̃F


𝜃,𝑚
(

𝑛𝜋

𝜎

)

sin (𝜎𝜇 − 𝑛𝜋)
𝜎

𝑆
𝑛
(𝜇)] ,

𝑁 > 𝑚.

(52)

Using standard methods for solving initial problems, we may
assume that for |𝑛| < 𝑁,









F
𝜃,𝑚
(

𝑛𝜋

𝜎

) −
̃F
𝜃,𝑚
(

𝑛𝜋

𝜎

)









< 𝜀,









F


𝜃,𝑚
(

𝑛𝜋

𝜎

) −
̃F


𝜃,𝑚
(

𝑛𝜋

𝜎

)









< 𝜀,

(53)

for a sufficiently small 𝜀. From (42) we can see that F
𝜃,𝑚
(𝜇)

satisfies the condition (9) when 𝑚 > 4 and therefore
whenever 0 < 𝜀 ≤ min{𝜋/𝜎, 𝜎/𝜋, 1/√𝑒} we have






F
𝜃,𝑚,𝑁

(𝜇) −
̃F
𝜃,𝑚,𝑁

(𝜇)






≤ A (𝜀) , 𝜇 ∈ R, (54)

where there is a positive constant𝑀F𝜃,𝑚
for which, cf. (10),

A (𝜀) :=

2𝑒
1/4

𝜎

{√3𝑒 (1 + 𝜎) + (

𝜋

𝜎

𝐴 +𝑀F𝜃,𝑚
) 𝜌 (𝜀)

+ (𝜎 + 2 + log (2))𝑀F𝜃,𝑚
} 𝜀 log(1

𝜀

) .

(55)

Here

𝐴 :=

3𝜎

𝜋

(




F
𝜃,𝑚
(0)




+

𝜎

𝜋

𝑀F𝜃,𝑚
) ,

𝜌 (𝜀) := 𝛾 + 10 log(1
𝜀

) .

(56)

In the following we use the technique of [26], where only
truncation error analysis is considered to determine enclo-
sure intervals for the eigenvalues, see also [41]. Let 𝜇∗2 be an
eigenvalue; that is,

Δ (𝜇
∗
) = G (𝜇

∗
) + (

sin 𝜃𝜇∗

𝜃𝜇
∗
)

−𝑚

F
𝜃,𝑚
(𝜇
∗
) = 0. (57)

Then it follows that

G (𝜇
∗
) + (

sin 𝜃𝜇∗

𝜃𝜇
∗
)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇
∗
)

= (

sin 𝜃𝜇∗

𝜃𝜇
∗
)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇
∗
) − (

sin 𝜃𝜇∗

𝜃𝜇
∗
)

−𝑚

F
𝜃,𝑚
(𝜇
∗
)

= [(

sin 𝜃𝜇∗

𝜃𝜇
∗
)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇
∗
) − (

sin 𝜃𝜇∗

𝜃𝜇
∗
)

−𝑚

F
𝜃,𝑚,𝑁

(𝜇
∗
)]

+ [(

sin 𝜃𝜇∗

𝜃𝜇
∗
)

−𝑚

F
𝜃,𝑚,𝑁

(𝜇
∗
) − (

sin 𝜃𝜇∗

𝜃𝜇
∗
)

−𝑚

F
𝜃,𝑚
(𝜇
∗
)]

(58)

and so










G (𝜇
∗
) + (

sin 𝜃𝜇∗

𝜃𝜇
∗
)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇
∗
)











≤










sin 𝜃𝜇∗

𝜃𝜇
∗










−𝑚

(𝑇
𝑁,𝑚−4,𝜎

(𝜇
∗
) +A (𝜀)) .

(59)

Since G(𝜇∗) + (sin 𝜃𝜇
∗
/𝜃𝜇
∗
)
−𝑚
̃F
𝜃,𝑚,𝑁

(𝜇
∗
) is given and

| sin 𝜃𝜇
∗
/𝜃𝜇
∗
|
−𝑚
(𝑇
𝑁,𝑚−4,𝜎

(𝜇
∗
) + A(𝜀)) has computable

upper bound, we can define an enclosure for 𝜇∗ by solving
the following system of inequalities:

−










sin 𝜃𝜇∗

𝜃𝜇
∗










−𝑚

(𝑇
𝑁,𝑚−4,𝜎

(𝜇
∗
) +A (𝜀))

≤ G (𝜇
∗
) + (

sin 𝜃𝜇∗

𝜃𝜇
∗
)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇
∗
)

≤










sin 𝜃𝜇∗

𝜃𝜇
∗










−𝑚

(𝑇
𝑁,𝑚−4,𝜎

(𝜇
∗
) +A (𝜀)) .

(60)

Its solution is an interval containing 𝜇∗, and over which
the graph G(𝜇∗) + (sin 𝜃𝜇

∗
/𝜃𝜇
∗
)
−𝑚
̃F
𝜃,𝑚,𝑁

(𝜇
∗
) is squeezed

between the graphs as follows:

−










sin 𝜃𝜇∗

𝜃𝜇
∗










−𝑚

(𝑇
𝑁,𝑚−4,𝜎

(𝜇
∗
) +A (𝜀)) ,










sin 𝜃𝜇∗

𝜃𝜇
∗










−𝑚

(𝑇
𝑁,𝑚−4,𝜎

(𝜇
∗
) +A (𝜀)) .

(61)

Using the fact that

̃F
𝜃,𝑚,𝑁

(𝜇) → F
𝜃,𝑚
(𝜇) (62)
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uniformly over any compact set and since 𝜇∗ is a simple root,
we obtain the following for large𝑁 and sufficiently small 𝜀:

𝜕

𝜕𝜇

(G (𝜇) + (
sin 𝜃𝜇
𝜃𝜇

)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇)) ̸= 0 (63)

in a neighborhood of 𝜇
∗. Hence, the graph of

G(𝜇) + (sin 𝜃𝜇/𝜃𝜇)−𝑚̃F
𝜃,𝑚,𝑁

(𝜇) intersects the graphs
−| sin 𝜃𝜇/𝜃𝜇|−𝑚(𝑇

𝑁,𝑚−4,𝜎
(𝜇) + A(𝜀)) and | sin 𝜃𝜇/𝜃𝜇|−𝑚

(𝑇
𝑁,𝑚−4,𝜎

(𝜇) + A(𝜀)) at two points with abscissae
𝑎
−
(𝜇
∗
, 𝑁, 𝜀) ≤ 𝑎

+
(𝜇
∗
, 𝑁, 𝜀) and the solution of the system of

inequalities (60) is the interval

𝐼
𝜀,𝑁

:= [𝑎
−
(𝜇
∗
, 𝑁, 𝜀) , 𝑎

+
(𝜇
∗
, 𝑁, 𝜀)] (64)

and in particular 𝜇∗ ∈ 𝐼
𝜀,𝑁

. Summarizing the above
discussion, we arrive at the following lemma which is similar
to that of [26].

Lemma 4. For any eigenvalue 𝜇∗2, we can find𝑁
0
∈ Z+ and

sufficiently small 𝜀 such that 𝜇∗ ∈ 𝐼
𝜀,𝑁

for𝑁 > 𝑁
0
. Moreover,

we get

[𝑎
−
(𝜇
∗
, 𝑁, 𝜀) , 𝑎

+
(𝜇
∗
, 𝑁, 𝜀)] → {𝜇

∗
}

as 𝑁 →∞, 𝜀 → 0.

(65)

Proof. Since all eigenvalues of Π(𝑞, 𝑎, 𝑏, 𝑎, 𝑏) are sim-
ple, then for large 𝑁 and sufficiently small 𝜀 we have
(𝜕/𝜕𝜇)(G(𝜇) + (sin 𝜃𝜇/𝜃𝜇)−𝑚̃F

𝜃,𝑚,𝑁
(𝜇)) > 0, in a neighbor-

hood of 𝜇∗. Choose𝑁
0
such that

G (𝜇) + (
sin 𝜃𝜇
𝜃𝜇

)

−𝑚

̃F
𝜃,𝑚,𝑁0

(𝜇)

= ±










sin 𝜃𝜇
𝜃𝜇










−𝑚

(𝑇
𝑁0 ,𝑚−4,𝜎

(𝜇) +A (𝜀))

(66)

has two distinct solutions which we denote by 𝑎
−
(𝜇
∗
, 𝑁
0
, 𝜀) ≤

𝑎
+
(𝜇
∗
, 𝑁
0
, 𝜀). The decay of 𝑇

𝑁,𝑚−4,𝜎
(𝜇) → 0 as𝑁 → ∞ and

A(𝜀) → 0 as 𝜀 → 0will ensure the existence of the solutions
𝑎
−
(𝜇
∗
, 𝑁, 𝜀) and 𝑎

+
(𝜇
∗
, 𝑁, 𝜀) as𝑁 → ∞ and 𝜀 → 0. For the

second point we recall that ̃F
𝜃,𝑚,𝑁

(𝜇) → F
𝜃,𝑚
(𝜇) as 𝑁 →

∞ and as 𝜀 → 0. Hence, by taking the limit we obtain

G (𝑎
+
(𝜇
∗
,∞, 0)) + (

sin 𝜃𝜇∗

𝜃𝜇
∗
)

−𝑚

F
𝜃,𝑚
(𝑎
+
(𝜇
∗
,∞, 0)) = 0,

G (𝑎
−
(𝜇
∗
,∞, 0)) + (

sin 𝜃𝜇∗

𝜃𝜇
∗
)

−𝑚

F
𝜃,𝑚
(𝑎
−
(𝜇
∗
,∞, 0)) = 0.

(67)

That is, Δ(𝑎
+
) = Δ(𝑎

−
) = 0. This leads us to conclude that

𝑎
+
= 𝑎
−
= 𝜇
∗, since 𝜇∗ is a simple root.

Let Δ̃
𝑁
(𝜇) := G(𝜇) + (sin 𝜃𝜇/𝜃𝜇)−𝑚̃F

𝜃,𝑚,𝑁
(𝜇). Then (50)

and (54) imply






Δ (𝜇) − Δ̃

𝑁
(𝜇)






≤










sin 𝜃𝜇
𝜃𝜇










−𝑚

(𝑇
𝑁,𝑚−4,𝜎

(𝜇) +A (𝜀)) ,





𝜇




<

𝑁𝜋

𝜎

(68)

and 𝜃 is chosen sufficiently small for which |𝜃𝜇| < 𝜋.
Therefore, 𝜃,𝑚must be chosen so that for |𝜇| < 𝑁𝜋/𝜎

𝑚 > 4, 𝜃 ∈ (0, 1) ,




𝜃𝜇




< 𝜋. (69)

Let 𝜇∗ be an eigenvalue and let 𝜇
𝑁
be its approximation.Thus,

Δ(𝜇
∗
) = 0 and Δ̃

𝑁
(𝜇
𝑁
) = 0. From (68) we have |Δ̃

𝑁
(𝜇
∗
)| ≤

| sin 𝜃𝜇∗/𝜃𝜇∗|−𝑚(𝑇
𝑁,𝑚−4,𝜎

(𝜇
∗
) + A(𝜀)). Now we estimate the

error |𝜇∗ − 𝜇
𝑁
| for an eigenvalue 𝜇∗.

Theorem 5. Let 𝜇∗2 be an eigenvalue of Π(𝑞, 𝑎, 𝑏, 𝑎, 𝑏). For
sufficient large𝑁 we have the following estimate:





𝜇
∗
− 𝜇
𝑁





<










sin 𝜃𝜇
𝑁

𝜃𝜇
𝑁










−𝑚
𝑇
𝑁,𝑚−4,𝜎

(𝜇
𝑁
) +A (𝜀)

inf
𝜁∈𝐼𝜀,𝑁





Δ

(𝜁)





. (70)

Proof. Since Δ(𝜇
𝑁
) − Δ̃

𝑁
(𝜇
𝑁
) = Δ(𝜇

𝑁
) − Δ(𝜇

∗
), then from

(68) and after replacing 𝜇 by 𝜇
𝑁
, we obtain





Δ (𝜇
𝑁
) − Δ (𝜇

∗
)




≤










sin 𝜃𝜇
𝑁

𝜃𝜇
𝑁










−𝑚

(𝑇
𝑁,𝑚−4,𝜎

(𝜇
𝑁
) +A (𝜀)) .

(71)

Using themean value theorem yields that for some 𝜁 ∈ 𝐽
𝜀,𝑁

:=

[min(𝜇∗, 𝜇
𝑁
),max(𝜇∗, 𝜇

𝑁
)],






(𝜇
∗
− 𝜇
𝑁
) Δ

(𝜁)







≤










sin 𝜃𝜇
𝑁

𝜃𝜇
𝑁










−𝑚

(𝑇
𝑁,𝑚−4,𝜎

(𝜇
𝑁
) +A (𝜀)) , 𝜁 ∈ 𝐽

𝜀,𝑁
⊂ 𝐼
𝜀,𝑁
.

(72)

Since the eigenvalues are simple, then for sufficiently large
𝑁inf
𝜁∈𝐼𝜀,𝑁

|Δ

(𝜁)| > 0 and we get (70).

3. The Case of Π(𝑞, 𝑎, 𝑏, 0, 𝑏)

This section includes briefly a treatment similarly to
that of the previous section for the eigenvalue problem
Π(𝑞, 𝑎, 𝑏, 0, 𝑏


) introduced in Section 1. Notice that condition

(18) implies that the analysis of problem Π(𝑞, 𝑎, 𝑏, 0, 𝑏

) is

not included in that of Π(𝑞, 𝑎, 𝑏, 𝑎, 𝑏). Let 𝜓(⋅, 𝜇) denote the
solution of (15) satisfying the following initial conditions:

𝜓 (0, 𝜇) = 𝑎
2
, 𝜓


(0, 𝜇) = −𝑎

1
. (73)

Thus, 𝜓(⋅, 𝜇) satisfies the boundary condition (16). The
eigenvalues of the problemΠ(𝑞, 𝑎, 𝑏, 0, 𝑏


) are the zeros of the

function as follows:

Ω(𝜇) := (𝑏


1
𝜇
2
− 𝑏
1
) 𝜓 (1, 𝜇) + (𝑏



2
𝜇
2
− 𝑏
2
) 𝜓

(1, 𝜇) . (74)

Recall that Π(𝑞, 𝑎, 𝑏, 𝑎, 𝑏) has denumerable set of real and
simple eigenvalues, cf. [38]. Using the method of variation
of constants, the solution 𝜓(𝑥, 𝜇) satisfies Volterra integral
equation as follows:

𝜓 (𝑥, 𝜇) = 𝑎
2
cos 𝜇𝑥 − 𝑎

1

sin 𝜇𝑥
𝜇

+ 𝑇 [𝜓] (𝑥, 𝜇) , (75)
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where 𝑇 is the Volterra operator defined in (22). Differentiat-
ing (75), we get

𝜓

(𝑥, 𝜇) = −𝑎

2
𝜇 sin 𝜇𝑥 − 𝑎

1
cos 𝜇𝑥 + ̃𝑇 [𝜓] (𝑥, 𝜇) , (76)

where ̃
𝑇 is the Volterra operator defined in (24). Define

ℎ
1
(⋅, 𝜇) and ℎ

2
(⋅, 𝜇) to be

ℎ
1
(𝑥, 𝜇) := 𝑇 [𝜓] (𝑥, 𝜇) , ℎ

2
(𝑥, 𝜇) :=

̃
𝑇 [𝜓] (𝑥, 𝜇) .

(77)

As in the preceding section we split Ω(𝜇) into

Ω(𝜇) :=K (𝜇) +U (𝜇) , (78)

whereK(𝜇) is the known part

K (𝜇) = (𝑏


1
𝜇
2
− 𝑏
1
) [𝑎
2
cos 𝜇 − 𝑎

1

sin 𝜇
𝜇

]

+ (𝑏


2
𝜇
2
− 𝑏
2
) [−𝑎
2
𝜇 sin 𝜇 − 𝑎

1
cos 𝜇] ,

(79)

andU(𝜇) is the unknown one

U (𝜇) := (𝑏


1
𝜇
2
− 𝑏
1
) ℎ
1
(1, 𝜇) + (𝑏



2
𝜇
2
− 𝑏
2
) ℎ
2
(1, 𝜇) . (80)

Then, as in the previous section, U(𝜇) is entire in 𝜇 for each
𝑥 ∈ [0, 1] for which





U (𝜇)





≤

𝑐
1
𝑐
3
𝑐
4
𝑐
6
(1 +





𝜇





2

)

1 +




𝜇





𝑒
|I𝜇|

, 𝜇 ∈ C, (81)

where 𝑐
6
:= max{|𝑏

1
| + |𝑏
2
|𝜏, |𝑏


1
| + |𝑏


2
|𝜏}.

Let 𝜃 ∈ (0, 1) and let 𝑚 be as in the previous section, but
𝑚 > 2. DefineR

𝑚,𝜃
(𝜇) to be

R
𝑚,𝜃
(𝜇) = (

sin 𝜃𝜇
𝜃𝜇

)

𝑚

U (𝜇) , 𝜇 ∈ C. (82)

Hence,





R
𝑚,𝜃
(𝜇)




≤

𝑐
𝑚

0
𝑐
1
𝑐
3
𝑐
4
𝑐
6
(1 +





𝜇





2

)

(1 + 𝜃




𝜇




)
𝑚+1

𝑒
|I𝜇|(1+𝑚𝜃)

, 𝜇 ∈ C,

(83)

and 𝜇𝑚−2R
𝑚,𝜃
(𝜇) ∈ 𝐿

2
(R) with

𝐸
𝑚−2

(R
𝑚,𝜃
) = √∫

∞

−∞





𝜇
𝑚−2R

𝑚,𝜃
(𝜇)





2

𝑑𝜇

≤ √2𝑐
𝑚

0
𝑐
1
𝑐
3
𝑐
4
𝑐
6
𝜔
0
,

(84)

where

𝜔
0
:= √

12𝜃
2
Γ [2𝑚 − 3] + Γ [2𝑚 − 1]

𝜃
2𝑚−1

Γ [2 (𝑚 + 1)]

. (85)

Thus, R
𝑚,𝜃
(𝜇) belongs to the Paley-Wiener space PW2

𝜎
with

𝜎 = 1 + 𝑚𝜃. Since R
𝜃,𝑚
(𝜇) ∈ PW2

𝜎
⊂ PW2

2𝜎
, then we can

reconstruct the functionsR
𝜃,𝑚
(𝜇) via the following sampling

formula:
R
𝜃,𝑚
(𝜇)

=

∞

∑

𝑛=−∞

[R
𝜃,𝑚
(

𝑛𝜋

𝜎

) 𝑆
2

𝑛
(𝜇)

+R


𝜃,𝑚
(

𝑛𝜋

𝜎

)

sin (𝜎𝜇 − 𝑛𝜋)
𝜎

𝑆
𝑛
(𝜇)] .

(86)

Let 𝑁 ∈ Z+, 𝑁 > 𝑚, and approximate R
𝜃,𝑚
(𝜇) by its

truncated seriesR
𝜃,𝑚,𝑁

(𝜇), where

R
𝜃,𝑚,𝑁

(𝜇)

:=

𝑁

∑

𝑛=−𝑁

[R
𝜃,𝑚
(

𝑛𝜋

𝜎

) 𝑆
2

𝑛
(𝜇)

+R


𝜃,𝑚
(

𝑛𝜋

𝜎

)

sin (𝜎𝜇 − 𝑛𝜋)
𝜎

𝑆
𝑛
(𝜇)] .

(87)

Since all eigenvalues are real, then from now on we restrict
ourselves to 𝜇 ∈ R. Since 𝜇𝑚−2R

𝜃,𝑚
(𝜇) ∈ 𝐿

2
(R), the

truncation error, cf. (5), is given for |𝜇| < 𝑁𝜋/𝜎 by




R
𝜃,𝑚
(𝜇) −R

𝜃,𝑚,𝑁
(𝜇)




≤ 𝑇
𝑁,𝑚−2,𝜎

(𝜇) , (88)

where
𝑇
𝑁,𝑚−2,𝜎

(𝜇)

:=

𝜉
𝑚−2,𝜎

𝐸
𝑚−2





sin𝜎𝜇



2

√3(𝑁 + 1)
𝑚−2

(

1

(𝑁𝜋 − 𝜎𝜇)
3/2

+

1

(𝑁𝜋 + 𝜎𝜇)
3/2
)

+

𝜉
𝑚−2,𝜎

(𝜎𝐸
𝑚−2

+ (𝑚 − 2) 𝐸
𝑚−3

)




sin𝜎𝜇



2

𝜎(𝑁 + 1)
𝑚−2

× (

1

√𝑁𝜋 − 𝜎𝜇

+

1

√𝑁𝜋 + 𝜎𝜇

) .

(89)

The samples {R
𝜃,𝑚
(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
and {R

𝜃,𝑚
(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
, in

general, are not known explicitly. So we approximate them
by solving numerically 4𝑁 + 2 initial value problems
at the nodes {𝑛𝜋/𝜎}𝑁

𝑛=−𝑁
. Let {̃R

𝜃,𝑚
(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
and let

{
̃R
𝜃,𝑚
(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
be the approximations of the samples of

{R
𝜃,𝑚
(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
and {R

𝜃,𝑚
(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
, respectively. Now

we define ̃R
𝜃,𝑚,𝑁

(𝜇), which approximatesR
𝜃,𝑚,𝑁

(𝜇)

̃R
𝜃,𝑚,𝑁

(𝜇)

:=

𝑁

∑

𝑛=−𝑁

[
̃R
𝜃,𝑚
(

𝑛𝜋

𝜎

) 𝑆
2

𝑛
(𝜇)

+
̃R


𝜃,𝑚
(

𝑛𝜋

𝜎

)

sin (𝜎𝜇 − 𝑛𝜋)
𝜎

𝑆
𝑛
(𝜇)] ,

𝑁 > 𝑚.

(90)
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Using standard methods for solving initial problems, we
may assume that for |𝑛| < 𝑁









R
𝜃,𝑚
(

𝑛𝜋

𝜎

) −
̃R
𝜃,𝑚
(

𝑛𝜋

𝜎

)









< 𝜀,









R


𝜃,𝑚
(

𝑛𝜋

𝜎

) −
̃R


𝜃,𝑚
(

𝑛𝜋

𝜎

)









< 𝜀,

(91)

for a sufficiently small 𝜀. From (83) we can see that R
𝜃,𝑚
(𝜇)

satisfies the condition (9) when 𝑚 > 2 and therefore
whenever 0 < 𝜀 ≤ min{𝜋/𝜎, 𝜎/𝜋, 1/√𝑒} we have






R
𝜃,𝑚,𝑁

(𝜇) −
̃R
𝜃,𝑚,𝑁

(𝜇)






≤ A (𝜀) , 𝜇 ∈ R, (92)

where there is a positive constant 𝑀R𝜃,𝑚
for which, cf. (10),

and

A (𝜀) :=

2𝑒
1/4

𝜎

{√3𝑒 (1 + 𝜎) + (

𝜋

𝜎

𝐴 +𝑀R𝜃,𝑚
) 𝜌 (𝜀)

+ (𝜎 + 2 + log (2))𝑀R𝜃,𝑚
} 𝜀 log(1

𝜀

) .

(93)

Here

𝐴 :=

3𝜎

𝜋

(




R
𝜃,𝑚
(0)




+

𝜎

𝜋

𝑀R𝜃,𝑚
) ,

𝜌 (𝜀) := 𝛾 + 10 log(1
𝜀

) .

(94)

As in the above section, we have the following lemma.

Lemma 6. For any eigenvalue 𝜇
∗2 of the problem

Π(𝑞, 𝑎, 𝑏, 0, 𝑏

), we can find 𝑁

0
∈ Z+ and sufficiently

small 𝜀 such that 𝜇∗ ∈ I
𝜀,𝑁

for𝑁 > 𝑁
0
, where

I
𝜀,𝑁

:= [𝑏
−
(𝜇
∗
, 𝑁, 𝜀) , 𝑎𝑏

+
(𝜇
∗
, 𝑁, 𝜀)] , (95)

𝑏
−
, 𝑏
+
are the solutions of the inequalities

−










sin 𝜃𝜇
𝜃𝜇










−𝑚

(𝑇
𝑁,𝑚−2,𝜎

(𝜇) +A (𝜀))

≤ Ω̃
𝑁
(𝜇) ≤










sin 𝜃𝜇
𝜃𝜇










−𝑚

(𝑇
𝑁,𝑚−2,𝜎

(𝜇) +A (𝜀)) .

(96)

Moreover, we get

[𝑏
−
(𝜇
∗
, 𝑁, 𝜀) , 𝑏

+
(𝜇
∗
, 𝑁, 𝜀)] → {𝜇

∗
}

as 𝑁 →∞, 𝜀 → 0.

(97)

Let Ω̃
𝑁
(𝜇) :=K(𝜇) + (sin 𝜃𝜇/𝜃𝜇)−𝑚̃R

𝜃,𝑚,𝑁
(𝜇). Then (88)

and (92) imply





Ω (𝜇) − Ω̃

𝑁
(𝜇)







≤










sin 𝜃𝜇
𝜃𝜇










−𝑚

(𝑇
𝑁,𝑚−2,𝜎

(𝜇) +A (𝜀)) ,




𝜇




<

𝑁𝜋

𝜎

(98)

and 𝜃 is chosen sufficiently small for which |𝜃𝜇| < 𝜋.
Therefore, 𝜃,𝑚must be chosen so that for |𝜇| < 𝑁𝜋/𝜎

𝑚 > 2, 𝜃 ∈ (0, 1) ,




𝜃𝜇




< 𝜋. (99)

Let 𝜇∗ be an eigenvalue and 𝜇
𝑁
be its approximation. Thus

Ω(𝜇
∗
) = 0 and Ω̃

𝑁
(𝜇
𝑁
) = 0. From (98) we have |Ω̃

𝑁
(𝜇
∗
)| ≤

| sin 𝜃𝜇∗/𝜃𝜇∗|−𝑚(𝑇
𝑁,𝑚−2,𝜎

(𝜇
∗
) + A(𝜀)). Now we estimate the

error |𝜇∗ − 𝜇
𝑁
| for an eigenvalue 𝜇∗. Finally we have the

following estimate.

Theorem 7. Let 𝜇
∗2 be an eigenvalue of the problem

Π(𝑞, 𝑎, 𝑏, 0, 𝑏

). For sufficient large 𝑁 we have the following

estimate





𝜇
∗
− 𝜇
𝑁





<










sin 𝜃𝜇
𝑁

𝜃𝜇
𝑁










−𝑚
𝑇
𝑁,𝑚−2,𝜎

(𝜇
𝑁
) +A (𝜀)

inf
𝜁∈I𝜀,𝑁





Ω

(𝜁)





. (100)

4. Numerical Examples

This section includes two detailed worked examples illus-
trating the above technique. Examples 1 and 2 computed in
[27, 45] with the classical sincmethod, where only truncation
error analysis is considered, respectively. It is clearly seen that
our new method (Hermite interpolations) gives remarkably
better results than in [27, 45], see also [41–43]. We indicate in
these examples the effect of the amplitude error in themethod
by determining enclosure intervals for different values of
𝜀. We also indicate the effect of the parameters 𝑚 and 𝜃
by several choices. Each example is exhibited via figures
that accurately illustrate the procedure near to some of
the approximated eigenvalues. More explanations are given
below. Recall that 𝑎

±
(𝜇) and 𝑏

±
(𝜇) are defined by

𝑎
±
(𝜇) = Δ̃

𝑁
(𝜇) ±










sin 𝜃𝜇
𝜃𝜇










−𝑚

(𝑇
𝑁,𝑚−3,𝜎

(𝜇) +A (𝜀)) ,





𝜇




<

𝑁𝜋

𝜎

,

(101)

𝑏
±
(𝜇) = Ω̃

𝑁
(𝜇) ±










sin 𝜃𝜇
𝜃𝜇










−𝑚

(𝑇
𝑁,𝑚−2,𝜎

(𝜇) +A (𝜀)) ,





𝜇




<

𝑁𝜋

𝜎

,

(102)

respectively. Recall also that the enclosure intervals 𝐼
𝜀,𝑁

:=

[𝑎
−
, 𝑎
+
] andI

𝜀,𝑁
:= [𝑏
−
, 𝑏
+
] are determined by solving

𝑎
±
(𝜇) = 0,





𝜇




<

𝑁𝜋

𝜎

, (103)

𝑏
±
(𝜇) = 0,





𝜇




<

𝑁𝜋

𝜎

. (104)

respectively. We would like to mention that Mathematica
has been used to obtain the exact values for the three
examples where eigenvalues cannot be computed concretely.
Mathematica is also used in rounding the exact eigenvalues,
which are square roots.
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Figure 1:The enclosure interval dominating 𝜇
1
for𝑚 = 10,𝑁 = 15,

𝜃 = 1/5, and 𝜀 = 10−5.

Example 1. The boundary value problem [27]

−𝑦

(𝑥, 𝜇) − 𝑦 (𝑥, 𝜇) = 𝜇

2
𝑦 (𝑥, 𝜇) , 0 ≤ 𝑥 ≤ 1,

𝑦

(0, 𝜇) = 0,

𝑦 (1, 𝜇) + 𝑦

(1, 𝜇) = 𝜇

2
(2𝑦 (1, 𝜇) + 𝑦


(1, 𝜇)) ,

(105)

is a special case of the problem treated in the previous section
with 𝑎

1
= 0, 𝑎

2
= 𝑏
1
= 𝑏
2
= 𝑏


2
= 1, 𝑏
1
= 2 and 𝑞(𝑥) = −1. The

characteristic function is

Ω(𝜇) = (−1 + 2𝜇
2
) cos [√1 + 𝜇2]

− (−1 + 𝜇
2
)√1 + 𝜇

2 sin [√1 + 𝜇2] .
(106)

The functionK(𝜇) will be

K (𝜇) = (−1 + 2𝜇
2
) cos [𝜇] − 𝜇 (−1 + 𝜇2) sin [𝜇] . (107)

As is clearly seen, the eigenvalues cannot be computed
explicitly. Tables 1, 2, and 3 indicate the application of our
technique to this problemand the effect of𝑚, 𝜃 and 𝜀. By exact
we mean the zeros ofΩ(𝜇) computed by Mathematica.

Figures 1 and 2 illustrate the enclosure intervals dom-
inating 𝜇

1
for 𝑁 = 15, 𝑚 = 10, 𝜃 = 1/5, and

𝜀 = 10
−5 and 𝜀 = 10

−10 respectively. The middle curve
represents Ω(𝜇), while the upper and lower curves represent
the curves of 𝑏

+
(𝜇), 𝑏

−
(𝜇), respectively. We notice that when

𝜀 = 10
−10, the two curves are almost identical. Similarly,

Figures 3 and 4 illustrate the enclosure intervals dominating
𝜇
2
for𝑁 = 15,𝑚 = 10, 𝜃 = 1/5, and 𝜀 = 10−5 and 𝜀 = 10

−10

respectively.

Example 2. The boundary value problem [45]

−𝑦

(𝑥, 𝜇) − 𝑦 (𝑥, 𝜇) = 𝜇

2
𝑦 (𝑥, 𝜇) 0 ≤ 𝑥 ≤ 1,

𝑦 (0, 𝜇) = 𝜇
2
𝑦

(0, 𝜇) , 𝑦


(1, 𝜇) = 𝜇

2
𝑦 (1, 𝜇) ,

(108)
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Figure 2:The enclosure interval dominating 𝜇
1
for𝑚 = 10,𝑁 = 15,

𝜃 = 1/5, and 𝜀 = 10−10.
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Figure 3:The enclosure interval dominating 𝜇
2
for𝑚 = 10,𝑁 = 15,

𝜃 = 1/5, and 𝜀 = 10−5.

is a special case of problem Π(𝑞, 𝑎, 𝑏, 𝑎

, 𝑏

), when 𝑞(𝑥) = −1,

𝑎
2
= 𝑎


1
= 𝑏
1
= 𝑏


2
= 0, and 𝑎

1
= 𝑎


2
= 𝑏


1
= 𝑏
2
= 1. Here the

characteristic function is

Δ (𝜇) = (1 − 𝜇
4
) cos√𝜇2 + 1 − (2𝜇2 + 𝜇4)

sin√𝜇2 + 1

√𝜇
2
+ 1

.

(109)

After computingG(𝜇), we obtain

G (𝜇) = (1 + 𝜇
2
) ((1 − 𝜇

2
) cos 𝜇 − 𝜇 sin 𝜇) . (110)

As is clearly seen, the eigenvalues cannot be computed
explicitly. As in the previous example, Figures 5, 6, 7, and 8
illustrate the results of Tables 4, 5, 6, and 7.
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Table 1: With𝑁 = 15, the approximation 𝜇
𝑘,𝑁

and the exact solution 𝜇
𝑘
for different choices of𝑚 and 𝜃.

𝜇
𝑘

𝜇
1

𝜇
2

𝜇
3

𝜇
4

Exact 𝜇
𝑘

1.0493258679653497 3.5207214555369464 6.505146961583527 9.578576417519093
𝜇
𝑘,𝑁

𝑚 = 6

𝜃 = 1/9 1.0493258487568435 3.5207214557864277 6.5051469611825405 9.578576417536349
𝜃 = 1/12 1.0493291624256957 3.5207212860735546 6.5051469673141336 9.578576393056661

𝑚 = 10

𝜃 = 1/5 1.0493258679653554 3.5207214555369624 6.505146961583516 9.57857641751921
𝜃 = 1/8 1.049325865990155 3.520721455899672 6.505146961464727 9.578576417559768

Table 2: Absolute error |𝜇
𝑘
− 𝜇
𝑘,𝑁
|.

𝜇
𝑘

𝜇
1

𝜇
2

𝜇
3

𝜇
4

𝑚 = 6

𝜃 = 1/9 1.92085 × 10−8 2.49481 × 10−10 4.00987 × 10−10 1.72555 × 10−11

𝜃 = 1/12 3.29446 × 10−6 1.69463 × 10−7 5.73061 × 10−9 2.44624 × 10−8

𝑚 = 10

𝜃 = 1/5 5.77316 × 10−15 1.59872 × 10−14 1.15463 × 10−14 1.1724 × 10−13

𝜃 = 1/8 1.97519 × 10−9 3.62725 × 10−10 1.188 × 10−10 4.0675 × 10−11

Table 3: For𝑁 = 15,𝑚 = 10, and 𝜃 = 1/5, the exact solution 𝜇
𝑘
are all inside the interval [𝑏

−
, 𝑏
+
] for different values of 𝜀.

𝜇
𝑘

𝜇
1

𝜇
2

𝜇
3

𝜇
4

Exact 𝜇
𝑘

1.0493258679653497 3.5207214555369464 6.505146961583527 9.578576417519093
I
𝜀,𝑁

, 𝜀 = 10−5 [1.04294069, 1.05557896] [3.51981844, 3.52162396] [6.50375768, 6.50653831] [9.55222305, 9.60712093]
I
𝜀,𝑁

, 𝜀 = 10−10 [1.04932561, 1.049326118] [3.52072141, 3.52072149] [6.50514690, 6.50514702] [9.57857529, 9.57857754]
𝐸8(R𝜃,𝑚) = 4.51845 × 10

8, 𝐸7(R𝜃,𝑚) = 2.29709 × 10
5, ] = 1,𝑀R𝜃,𝑚

= 4.55609 × 10
4.

Table 4: With𝑁 = 40, the approximation 𝜇
𝑘,𝑁

and the exact solution 𝜇
𝑘
for different choices of 𝜃.

𝜇
𝑘

𝜇
1

𝜇
2

𝜇
3

𝜇
4

Exact 𝜇
𝑘

0.4828692021748484 1.966318052350425 4.827089429919572 7.919684444168381
𝜇
𝑘,𝑁

𝑚 = 8

𝜃 = 1/32 0.48286920221045176 1.96631805234574 4.827089429919605 7.919684444168366
𝜃 = 1/35 0.4828692337692527 1.966318047624416 4.8270894299720776 7.91968444416245

Table 5: Absolute error |𝜇
𝑘
− 𝜇
𝑘,𝑁
|.

𝜇
𝑘

𝜇
1

𝜇
2

𝜇
3

𝜇
4

𝑚 = 8

𝜃 = 1/32 3.56034 × 10−11 4.68492 × 10−12 3.28626 × 10−14 1.5099 × 10−14
𝜃 = 1/35 3.15944 × 10−8 4.72601 × 10−9 5.25047 × 10−11 5.93126 × 10−12

Table 6: The approximation 𝜇
𝑘,𝑁

and the exact solution 𝜇
𝑘
for𝑁 = 40,𝑚 = 14 and 𝜃 = 1/26.

𝜇
𝑘

exact 𝜇
𝑘

𝜇
𝑘,𝑁

|𝜇
𝑘
− 𝜇
𝑘,𝑁
|

𝜇
1

0.4828692021748484698568637 0.4828692021748484678442680 2.012596 × 10−18
𝜇
2

1.966318052350424642326091 1.9663180523504246423320204 5.93 × 10−21
𝜇
3

4.8270894299195722717631337 4.8270894299195722717463715 1.6762 × 10−20
𝜇
4

7.9196844441683813942255769 7.9196844441683813942260057 4.29 × 10−22

Table 7: For𝑁 = 40,𝑚 = 14 and 𝜃 = 1/26, the exact solution 𝜇
𝑘
are all inside the interval [𝑎

−
, 𝑎
+
] for different values of 𝜀.

𝜇
𝑘

𝜇
1

𝜇
2

𝜇
3

𝜇
4

Exact 𝜇
𝑘

0.4828692021748484 1.966318052350425 4.827089429919572 7.919684444168381
I
𝜀,𝑁

,, 𝜀 = 10−5 [0.47918888, 0.48651557] [1.96592879, 1.96670680] [4.82707252, 4.82710633] [7.91968171, 7.919687175]
I
𝜀,𝑁

, 𝜀 = 10−10 [0.48284084, 0.48289756] [1.96631794, 1.96631815] [4.82708919, 4.82708966] [7.919684437, 7.919684450]
𝐸10(F𝜃,𝑚) = 2.83057 × 10

18, 𝐸9(F𝜃,𝑚) = 1.12829 × 10
14, ] = 1,𝑀F𝜃,𝑚

= 1.57716 × 10
7.
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Figure 4:The enclosure interval dominating 𝜇
2
for𝑚 = 10,𝑁 = 15,

𝜃 = 1/5, and 𝜀 = 10−10.
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Figure 5:The enclosure interval dominating 𝜇
1
for𝑚 = 14,𝑁 = 40,

𝜃 = 1/26, and 𝜀 = 10−5.
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Figure 6:The enclosure interval dominating 𝜇
1
for𝑚 = 14,𝑁 = 40,

𝜃 = 1/26, and 𝜀 = 10−10.
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for𝑚 = 14,𝑁 = 40,

𝜃 = 1/26, and 𝜀 = 10−5.
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Figure 8:The enclosure interval dominating 𝜇
4
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