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One of the fields of applied mathematics is related to model analysis. Biomedical systems are suitable candidates for this field
because of their importance in life sciences including therapeutics. Here we deal with the analysis of a model recently proposed
by Espinoza-Valdez et al. (2010) for the kidney vasculature developed via angiogenesis. The graph theory allows one to model
quantitatively a vascular arterial tree of the kidney in sense that (1) the vertex represents a vessels bifurcation, whereas (2) each edge
stands for a vessel including physiological parameters.The analytical model is based on the two processes of sprouting and splitting
angiogeneses, the concentration of the vascular endothelial growth factor (VEGF), and the experimental data measurements of the
rat kidneys.The fractal dimension depends on the probability of sprouting angiogenesis in the development of the arterial vascular
tree of the kidney, that is, of the distribution of blood vessels in the morphology generated by the analytical model. The fractal
dimension might determine whether a suitable renal vascular structure is capable of performing physiological functions under
appropriate conditions. The analysis can describe the complex structures of the development vasculature in kidney.

1. Introduction

The arterial structure of organs has been the subject of many
studies [1–5]. However, not all systems have similar func-
tions; for the organs the purpose of arterial structure is to
provide the blood required in themetabolic process and other
specific functions.The arterial structure is highly nonuniform
because it is determined by reasons of anatomy and local
flow requirements [4]. The kidney is one of the most com-
plicated organs in terms of structure and physiology because
it is highly vascularized and constitutes the main organ for
maintaining chemical balance in blood [6]. The kidney
consists of three trees: arterial, venous, and ureter.The arterial

vascular tree of the kidney is structured by the renal artery
branches into interlobar arteries, arcuate arteries, and inter-
lobular arteries, which are formed by bifurcation [6]. The
development of the arterial vascular tree of the kidney can be
formed mainly by angiogenesis [1]. The process of angiogen-
esis is the formation of new blood vessels from preexisting
vessels and consists of two different processes: sprouting
and splitting. Sprouting refers to the case in which the new
branch literally sprouts to some existing branch. In splitting
a branch is divided into two new branches [7]. The factors
involved at the vascular development are VEGF, renin-
expression, ephrins A and B, platelet-derived growth factor-B
(PDGF-B), Ets family (as Ets-1 and TEL), and angiopoietins
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1-2. The VEGF is an essential regulatory factor for both
processes of angiogenesis in the development of renal arterial
vascularization [1].Then,we only considerVEGF, because the
other factors increase the complexity of the analytical model.

Zamir and Phipps in [8] studied the morphological
characteristics of the rat kidney and found that the branching
rules of these vessels are determined by considerations of
the angiological function. Subsequently, Zamir generated a
model based on L-systems (Lindenmayer System) and incor-
porated some physiological laws, that is, random parameters
[4]. Zamir’s results suggest that the arterial structure of the
tree is determined mainly by the growth rules of arterial tree
branching [4]. The structural morphologic reconstruction of
renal vasculature from microcomputed tomography (micro-
CT) images was presented by Nordsletten et. al. The arterial
and venous trees of the rat kidneywere generated numerically
using micro-TC [3]. These morphological data provide a
statistical basis from which renal vascular topology can be
generated [5]. Graph theory generates branching tree struc-
tures incorporating the physiological laws of the renal artery
branching through the process of angiogenesis [5]. Many
pathological conditions, such as cancers, arteriovenous mal-
formations, and diabetes, induce changes to vessel’s mor-
phology or spatial organization.The fractal analysis has been
applied to a large variety of healthy or pathological vascular
networks [9–14]. Sabo et al. concluded in [15] that the micro-
vessel fractal dimension as a marker of tumor microvascular
complexity might provide important pronostic information
as well as shed light on the complex interactions between
tumor angiogenesis and growth. Moreover, Cross et al.
analyzed the fractal dimension of renal angiograms: a normal
kidney, a congenitally dysplastic kidney, a kidney with renal
artery stenosis, and a kidney with recurrent thromboem-
bolism lesions (see Figure 3 in [16]). The analysis of fractal
dimension may allow for characterization of the vascular
morphology.

In this paper we extend the results of [5] by analysing
mathematically the structure of the arterial vascular tree of
the kidney and by incorporating physiological parameters
generated from a computational model. In the implementa-
tion of the proposed model the branches are represented by
the edges of the graph and the ramification point is repre-
sented by the nodes [5]. We expect that this representation
implemented in computer methodology will help to under-
stand the mechanism involved in biological systems, specif-
ically the development of the renal arterial bifurcation. The
analysis provides themean of the length in each level, and the
average width of the arterial vascular tree of the rat kidney is
in the range of what is observed in previous experimental and
computationalmodels.The fractal dimension depends on the
sprouting angiogenesis that appears in the development of the
arterial vascular tree of the kidney. The complex structures
of the renal arterial tree are consistent with previous fractal
analysis of vascular structures [9, 11–14]. These study opens
the possibility of a new taxonomy for normal kidneys and for
the pathological injuries related to the vascular morphology
of the kidneys.

2. Theoretical Basis

The representation of the renal arterial vascularization in the
computational model is as follows: (1) the arterial vascular
tree of the kidney is defined by labeled and oriented graphs;
we can identify two objects: the branches (edges) and the
branching point (nodes). That is, the edge represents a blood
vessel and the vertex is where the angiological stimulus
appears. (2)The length and diameter of the new branches are
smaller than their parent branches [5, 6].

The arterial vascular tree of the kidney down to the inter-
lobular arteries can be structured as follows: renal artery, level
0: interlobar arteries, levels 1-2: arcuate arteries, levels 3-4:
interlobular arteries, and levels 5–9. We based in the exper-
iments of Tomanek [3] for the morphological structure of
the renal arterial tree. In the model, we develop the arterial
vascular tree of the rat kidney.Therefore, the model based on
the graph theory for the arterial tree is a binary tree of ten
levels and has a total of vessels equal to 1023.Thephysiological
parameters, and rules are based on parent vessel branch level,
the parameters, and the morphological structure of their
child branches, and this process deploys the structure of the
model. The parameters included in the edges of the binary
tree model are 𝑠, 𝐶𝑔𝑓, 𝑙, 𝑑, and 𝜃 as follows (for details see
[5]).

(i) The Type of Angiogenesis: Sprouting or Splitting (𝑠).
Angiogenesis is identified by the variable 𝑠 which can
take the values in the set {𝑎𝑏, 𝑎𝑝}, where 𝑎𝑏 denotes
sprouting angiogenesis and 𝑎𝑝 denotes splitting
angiogenesis. Both sprouting and splitting angioge-
neeis generate branching tree structures, which can be
represented using graph theory. It is conjectured that
the sprouting and splitting processes occur with dif-
ferent probability in the renal arterial tree for themor-
phology of the kidney. In the proposed computational
model this assumption is controlled probabilistically.
Sprouting angiogenesis is more probably than split-
ting angiogenesis because it requires only reorganiza-
tion of existing endothelial cells (not migration), that
is, having less energy requirements [1].

(ii) Concentration of the VEGF in the Vessel (𝐶𝑔𝑓). Both
processes, sprouting and splitting angiogeneses, de-
pend on the regulation of 𝐶𝑔𝑓 in the pre-existing
vessel [1].While in sprouting angiogenesis it is known
that endothelial cells promotes the differentiation,
migration, proliferation, and assembly, the effect on
splitting angiogenesis is still in research. In the model
𝐶𝑔𝑓 is generated randomly in a uniform way within
the range [0, 35] ng/mL reported in [5, 17].

(iii) Length of the Vessel (𝑙). Here, we focus on determining
the value of the lengths in the arterial bifurca-
tions depending of the concentration of the VEGF.
Although the effect of𝐶𝑔𝑓 over length for the splitting
angiogenesis is unknown, in the sprouting angiogen-
esis we consider that the length of the new vessels
depends of the 𝐶𝑔𝑓. We obtain the value of the
dimensionless length 𝑙𝑒 : [𝐶𝑔𝑓, 𝐶𝑔𝑓] → [𝑙𝑒, 𝑙𝑒] from
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experimental data; the function which can be approx-
imated for VEGF121 is [5] 𝑙𝑒 = 0.00878𝐶3

𝑔𝑓
−

0.51326𝐶2
𝑔𝑓
+8.52128𝐶𝑔𝑓+81.12064.The 𝑙𝑒 is applied

in this model; the length of the vessel 𝑙 depends on 𝑙𝑒
and is compared with the length ranges reported in
the literature according to the level [3, 5].The 𝑙 formed
by splitting is defined by a contraction factor. In the
case that 𝑙 is out of these ranges, the process is repeated
finite number of times. If 𝑙 is still out of range, then it
is adjusted to the length of its parent branch.

(iv) Diameter of the Vessel (𝑑). In this work, we do not
discuss the value of the diameters in the blood vessels.
This is due to the fact that we do not have sufficient
information of 𝐶𝑔𝑓 in 𝑑 for sprouting and splitting
angiogeneses. Then, in sprouting angiogenesis, the
diameter of the sprout is adjusted to a factor of the
diameter of its parent branch. In splitting angiogene-
sis the diameter of every new vessel is adjusted to one-
half of the diameter of its parent branch.

(v) Angle of Bifurcation (𝜃). In sprouting angiogenesis
the angle of bifurcation is adjusted within the range
±[60
∘, 80∘] with respect to its parent branch [1, 18].

In splitting angiogenesis, one branch is adjusted to
+32.5

∘ and the other branch to −32.5∘ [18].

The physiological parameters are included in the label
of the edge and have the form (𝑠, 𝐶𝑔𝑓, 𝑙, 𝑑, 𝜃). The arterial
vascular tree of the kidney has vertices with oriented edges
in such a way that from each vertex one edge arrives and
two edges leave (the orientation symbolizes the circulation of
blood flow in arteries of the kidney). The renal arterial vas-
cular tree of the kidney has 10 levels, because we based in the
experiments of Tomanek.Therefore, the arterial vascular tree
of the kidney has 210 nodes.The set of integers to name every
node is [0, . . . , 210 − 1].

An algorithm generates step by step the physiological
characteristics of every branch and saves it as labeled edges
with the format {𝑠, 𝐶𝑔𝑓, 𝑙, 𝑑, 𝜃}. Just as the tree is generated, the
other structure is constructed in which we save the position
of every node in R2. The algorithm calculates the position
of every node in function of the physiological characteristics
of the branches and the position of nodes of its parent
branch. The physiological parameters of the root (the initial
condition) are determined: 𝑠 = 𝑎𝑏 with probability 𝑃𝑎𝑏 =
{0.1, 0.2, 0.3, 0.4, 0.5} and 𝑠 = 𝑎𝑝, where 𝑃𝑎𝑝 = 1 − 𝑃𝑎𝑏,
𝐶𝑔𝑓 ∈ [0, 35] ng/mL, 𝑙 = 5, 𝑑 = 1, 𝜃 = 0, and they continue
in numerical order with the other branches using the infor-
mation of parent branches. Some characteristics such as 𝑠
and 𝐶𝑔𝑓 are generated probabilistically in every step, and the
others depend on these parameters, their parent branch, and
the rules that were enumerated in the previous section.

3. Main Results

3.1. Length and Width. The length of each level into the
kidney depends on 𝑎𝑏 and 𝑎𝑝; that is, the length for each level

𝑗 denoted by 𝑙𝑗 in the arterial vascular tree of the kidney is
analytically determined as follows:

𝑙𝑗 = 𝑙00(𝑃𝑎𝑏𝜆𝑏 + 𝑃𝑎𝑝𝜆𝑝)
𝑗

, (1)

where the parameters are defined as in the previous section.
Then, the mean length for each segment 𝑗 is

𝑙0 = 5mm, 𝑙1 = 3.095mm,

𝑙2 = 1.919mm, 𝑙3 = 1.191mm,

𝑙4 = 0.741mm, 𝑙5 = 0.462mm,

𝑙6 = 0.287mm, 𝑙7 = 0.179mm,

𝑙8 = 0.112mm, 𝑙9 = 0.070mm.

(2)

These data are within the range of rat trees reported in [3];
we compare the results with Nordsletten from depth 𝑗 = 0 to
𝑗 = 9.

Moreover, the analytical average width denoted by𝐴𝐺𝑅 is
the root length (renal artery, 𝑗 = 0) to the leaves of the tree
(interlobular arteries, 𝑗 = 9), and then

𝐴𝐺𝑅 = 𝑙00

9

∑
𝑗=0

(𝑃𝑎𝑏𝜆𝑏 + 𝑃𝑎𝑝𝜆𝑝)
𝑗

, (3)

where 0 ≤ 𝑗 ≤ 9; 𝑙00 = 5mm is the length of the renal artery
[5]; 𝑃𝑎𝑏 is defined in the set {0.1, 0.2, 0.3, 0.4, 0.5} and 𝑃𝑎𝑝 =
1 − 𝑃𝑎𝑏; 𝜆𝑏 = 0.5 is the average of the contraction factor for
𝑎𝑏; and 𝜆𝑝 = 0.67 is the contraction factor for 𝑎𝑝. Then,

𝑃𝑎𝑏 = 0.1, 𝑃𝑎𝑝 = 0.9, 𝐴𝐺𝑅 = 14.20mm,

𝑃𝑎𝑏 = 0.2, 𝑃𝑎𝑝 = 0.8, 𝐴𝐺𝑅 = 13.59mm,

𝑃𝑎𝑏 = 0.3, 𝑃𝑎𝑝 = 0.7, 𝐴𝐺𝑅 = 13.01mm,

𝑃𝑎𝑏 = 0.4, 𝑃𝑎𝑝 = 0.6, 𝐴𝐺𝑅 = 12.48mm,

𝑃𝑎𝑏 = 0.5, 𝑃𝑎𝑝 = 0.5, 𝐴𝐺𝑅 = 11.99mm.

(4)

These data are within the range of rat trees reported in
[3]; while we consider 10 levels [1, 5], Nordsletten considers 11
levels.

However, if 𝜆𝑏 ∈ [0.3, 0.7], the average with respect to 𝜆𝑏
is as follows:

𝐸𝑏 ((𝑃𝑎𝑏𝜆𝑏 + 𝑃𝑎𝑝𝜆𝑝)
𝑗

)

=
5

2𝑃𝑎𝑏
∫
.7

.3

(𝑃𝑎𝑏𝜆𝑏 + 𝑃𝑎𝑝𝜆𝑝)
𝑗

𝑃𝑎𝑏𝑑𝜆𝑏

=
5

2𝑃𝑎𝑏 (𝑗 + 1)
[(.7𝑃𝑎𝑏 + 𝑃𝑎𝑝𝜆𝑝)

𝑗+1

− (.3𝑃𝑎𝑏+𝑃𝑎𝑝𝜆𝑝)
𝑗+1

] .

(5)
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Let 𝑎 = (.7𝑃𝑎𝑏 + 𝑃𝑎𝑝𝜆𝑝)
𝑗+1 and 𝑏 = (.3𝑃𝑎𝑏 + 𝑃𝑎𝑝𝜆𝑝)

𝑗+1,
and then

𝐴𝐺𝑅 =
5𝑙00

2𝑃𝑎𝑏

9

∑
𝑗=0

(
𝑎𝑗+1

𝑗 + 1
−
𝑏
𝑗+1

𝑗 + 1
)

≃
5𝑙00

2𝑃𝑎𝑏

∞

∑
𝑗=0

(
𝑎𝑗+1

𝑗 + 1
−
𝑏
𝑗+1

𝑗 + 1
) ,

(6)

where
∞

∑
𝑗=0

𝑎𝑗+1

𝑗 + 1
=

∞

∑
𝑗=0

(∫
𝑎

0

𝑥
𝑗
𝑑𝑥)

= ∫
𝑎

0

(

∞

∑
𝑗=0

𝑥
𝑗
)𝑑𝑥 (by uniform convergence)

= ∫
𝑎

0

𝑑𝑥

1 − 𝑥
= − ln (1 − 𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎

0

= ln( 1

1 − 𝑎
) .

(7)

Similarly, ∑∞
𝑗=0
(𝑏𝑗+1/𝑗 + 1) = ln(1/1 − 𝑏), and then

𝐴𝐺𝑅 =
5𝑙00

2𝑃𝑎𝑏
ln(1 − 𝑏

1 − 𝑎
)

=
5𝑙00

2𝑃𝑎𝑏
ln(

1 − (.3𝑃𝑎𝑏 + 𝑃𝑎𝑝𝜆𝑝)

1 − (.7𝑃𝑎𝑏 + 𝑃𝑎𝑝𝜆𝑝)
) ± .7

11
,

(8)

where ± .711mm is the error.
Substituting the values 𝑙00, 𝑃𝑎𝑏, 𝑃𝑎𝑝, and 𝜆𝑝 = 0.67,

𝑃𝑎𝑏 = 0.1, 𝑃𝑎𝑝 = 0.9, 𝐴𝐺𝑅 = 14.42 ± .7
11mm,

𝑃𝑎𝑏 = 0.2, 𝑃𝑎𝑝 = 0.8, 𝐴𝐺𝑅 = 13.79 ± .7
11mm,

𝑃𝑎𝑏 = 0.3, 𝑃𝑎𝑝 = 0.7, 𝐴𝐺𝑅 = 13.23 ± .7
11mm,

𝑃𝑎𝑏 = 0.4, 𝑃𝑎𝑝 = 0.6, 𝐴𝐺𝑅 = 12.73 ± .7
11mm,

𝑃𝑎𝑏 = 0.5, 𝑃𝑎𝑝 = 0.5, 𝐴𝐺𝑅 = 12.28 ± .7
11mm.

(9)

We generate 5000 trees of renal arterial vasculature for
different probabilities in 𝑎𝑏 and 𝑎𝑝. In Figure 1 the mean ± SD
(standard deviation) width of the kidney has an intersection
with these data and previous result where the mean width is
17.454 ± 6.165mm [3].

Therefore, the 𝐴𝐺𝑅 depends on the process of angiogene-
sis; that is, 𝐴𝐺𝑅 is inversely proportional to the probability of
the 𝑎𝑏.

3.2. Fractal Dimension of Kidney Vascular Tree. The fractal
dimension (𝐷) quantifies through dimension the ability of
an object to occupy a space. Different methods exist and are
based on the different definitions of fractal dimension [9, 11–
14, 19].

The analytical fractal dimension can be derived using the
following result [19]. Let {R𝑚; 𝑤1, 𝑤2, . . . , 𝑤𝑁} be a hyperbolic
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has the probability 𝑃

𝑎𝑝
= 1 − 𝑃

𝑎𝑏
.

iterative function system (IFS), and let 𝐴 denote its attractor.
Suppose that 𝑤𝑛 is a similitude of scaling factor 𝑠𝑛 for each
𝑛 ∈ {1, 2, 3, . . . , 𝑁}. If the IFS is totally disconnected or just
touching, the attractor has fractal dimension 𝐷(𝐴), which is
given by the unique solution of

𝑁

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑠𝑛
󵄨󵄨󵄨󵄨
𝐷(𝐴)

= 1, 𝐷 (𝐴) ∈ [0,𝑚] . (10)

If the IFS is overlapping, then 𝐷 ≥ 𝐷(𝐴), where 𝐷 is the
solution of

𝑁

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑠𝑛
󵄨󵄨󵄨󵄨
𝐷
= 1, 𝐷 ∈ [0,∞) . (11)

The morphology of arterial vascular tree of the kidney,
produced by an IFS, is composed of 𝑛 applications of contrac-
tion with a factor 𝑠𝑛. Thus, from the subsection of length and
width, the contraction factor for the splitting angiogenesis
is 𝜆𝑝 = 0.67 while for sprouting angiogenesis the average
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Figure 3: Trees generated with different probabilities in 𝑎
𝑏
and 𝑎

𝑝
(where 𝑃

𝑎𝑝
= 1 − 𝑃

𝑎𝑏
), mean width 𝐴

𝐺𝑅
and fractal dimension 𝐷 of the

kidney.

contraction factor is 𝜆𝑏 = 0.5. Since we have 𝑃𝑎𝑏𝜆
𝐷

𝑏
+𝑃𝑎𝑝𝜆

𝐷

𝑝
=

1, the analytical fractal dimension of the renal arterial tree is

𝐷 =
ln (𝑃𝑎𝑝) − ln ((1/2) − 𝑃𝑎𝑏𝜆

𝐷

𝑏
)

− ln (𝜆𝑝)
, (12)

where 𝜆𝑏 is generated randomly within the range defined by
𝜆𝑏 ∈ [0.3, 0.7]. In other words, the fractal dimension depends
on the number of vessels, the spatial relationships between the
vascular components, and the surrounding environment.

3.2.1. Box Counting 𝐷 of the Arterial Vascular Tree of the
Kidney. Additionally, the box counting theorem by Barnsley
[19] states that, denoting with𝑁𝑛(𝐺𝑅) as the number of boxes
of side 1/2𝑛,

𝐷 = lim
𝑛→∞

ln (𝑁𝑛 (𝐺𝑅))
ln (2𝑛)

, (13)

where the arterial vascular tree of the kidney has fractal
dimension𝐷. The box counting results allow one to compute
the rate of change in complexity with scale as well as a meas-
ure of hetreogeneity.

Here, we used the box counting theorem for determining
the fractal dimension. Figure 2 shows the average of the
fractal dimension in each probability for the arterial vascular
tree of the kidney. The fractal dimension decreases with the
increase in the probability of sprouting in the development
of the arterial vascular tree of the kidney, whereas the mean
width of the kidney decreases. Then, the fractal dimension
of the arterial vascular tree of the kidney depends on the
probability of 𝑎𝑏 and 𝑎𝑝, that is, the distribution of blood
vessels in the morphology generated by graph theory model.

The results suggest that the fractal dimension is inversely
proportional to 𝑃𝑎𝑏. This behavior is congruent in the sense
that, by symmetry structure, the arterial vascular tree is
bigger for small values of𝑃𝑎𝑏; that is, the renal space is covered
more efficiently. The complex structures of the vasculature in
kidney are consistent with previous studies of vascular struc-
tures about their fractal nature [9–16].

Examples derived fromgraphmodel using different prob-
abilities in 𝑎𝑏 and 𝑎𝑝, mean width and fractal dimension, are
shown in Figure 3. The analysis of these responses may
allow for characterization of the vascular morphology on the
arterial vascular tree of the kidney.
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4. Conclusions

Thearterial vascular tree of kidney developmentwas analyzed
through angiogenesis. The renal arterial vascular tree of
the kidney goes down into the interlobular arteries. We
generate 5000 trees of renal arterial vasculature for different
probabilities on 𝑎𝑏 and 𝑎𝑝.The analytical mean length in each
level and the average width of the arterial vascular tree of the
kidney have an intersection with previous studies. Then,
the graph theory allows the vascular tree to model the
vascular growth; that is, it generates the ramification of struc-
tures arborescent incorporating physiological laws of arterial
branching.

In conclusion, the analytical expression of the fractal
dimension depends on the number of vessels, the spatial
relationships between the vascular components, and the sur-
rounding environment. The arterial vascular arterial tree of
the kidney has a fractal dimension which is inversely propor-
tional to the probability of the occurring sprouting angiogen-
esis. The fractal dimensions determined for the development
of the arterial vascular tree of the kidney by box countingmay
allow for characterization of the vascular morphology. As a
conjecture, the fractal dimension might determine whether
a suitable renal vascular structure is capable of performing
physiological functions under appropriate conditions (hemo-
dynamics).These studies could be expanded to include those
pathologies originating from arterial alterations.

References

[1] R. J. Tomake, Assembly of the Vasculature and Its Regulation,
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