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We develop a family of fourth-order iterative methods using the weighted harmonic mean of two derivative functions to compute
approximatemultiple roots of nonlinear equations.They are proved to be optimally convergent in the sense of Kung-Traub’s optimal
order. Numerical experiments for various test equations confirm well the validity of convergence and asymptotic error constants
for the developed methods.

1. Introduction

A development of new iterative methods locating multiple
roots for a given nonlinear equation deserves special atten-
tion on both theoretical and numerical interest, although
prior knowledge about the multiplicity of the sought zero is
required [1]. Traub [2] discussed the theoretical importance
of multiple-root finders, although the multiplicity is not
known a priori by stating: “since the multiplicity of a zero
is often not known a priori, the results are of limited value
as far as practical problems are concerned. The study is,
however, of considerable theoretical interest and leads to
some surprising results.” This motivates our analysis for
multiple-root finders to be shown in this paper. In case the
multiplicity is not known, interested readers should refer to
the methods suggested by Wu and Fu [3] and Yun [4, 5].

Various iterative schemes finding multiple roots of a
nonlinear equation with the known multiplicity have been
proposed and investigated by many researchers [6–12]. Neta
and Johnson [13] presented a fourth-order method extending
Jarratt’s method. Neta [14] also developed a fourth-order
method requiring one-function and three-derivative evalua-
tions per iteration grounded on a Murakami’s method [15].
Shengguo et al. [16] proposed the following fourth-order
method which needs evaluations of one function and two

derivatives per iteration for 𝑥
0
chosen in a neighborhood of

the sought zero 𝛼 of 𝑓(𝑥) with known multiplicity 𝑚 ≥ 1 as
follows:
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Based on Jarratt [17] scheme for simple roots, J. R. Sharma
and R. Sharma [18] developed the following fourth order of
convergent scheme:
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where 𝐴 = (1/8)𝑚(𝑚
3
− 4𝑚 + 8), 𝐵 = −(1/4)𝑚(𝑚 − 1)(𝑚 +
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The above error equation can be expressed in terms of
𝜃
𝑗
(𝑗 = 1, 2, 3) as follows:
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We now proceed to develop a new iterative method
finding an approximate root 𝛼 of a nonlinear equation𝑓(𝑥) =

0, assuming the multiplicity of 𝛼 is known. To do so, we
first suppose that a function 𝑓 : C → C has a multiple
root 𝛼 with integer multiplicity 𝑚 ≥ 1 and is analytic in a
small neighborhood of 𝛼. Then we propose a new iterative
method free of second derivatives below with an initial guess
𝑥
0
sufficiently close to 𝛼 as follows:
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with 𝑎, 𝑏, 𝑐, 𝛾, 𝜆, and𝜌 as parameters to be chosen formaximal
order of convergence [2, 19]. One should note that 𝐹(𝑦

𝑛
)

is obtained from Taylor expansion of 𝑓(𝑦
𝑛
) about 𝑥

𝑛
up to

the first-order terms with weighted harmonic mean [20] of
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Theorem 1 shows that proposed method (6) possesses 2
free parameters 𝜆 and 𝜌. A variety of free parameters 𝜆 and
𝜌 give us an advantage that iterative scheme (6) can develop
various numerical methods. One can often have a freedom
to select best suited parameters 𝜆 and 𝜌 for a sought zero 𝛼.
Several interesting choices of 𝜆 and 𝜌 further motivate our
current analysis. As seen in Table 1, we consider five kinds of
methodsY1, Y2, Y3, Y4, andY5 list selected parameters (𝜆, 𝜌),
and the corresponding values (𝑎, 𝑏, 𝑐), respectively.

If 𝜆 = −(𝑚((𝑚+2)/𝑚)
𝑚+2

/(𝑚
2
+2𝑚+4)) and 𝜌 = −((𝑚+

2)/𝑚)
𝑚 are selected, then we obtain 𝑎 = 0, 𝑏 = −(𝑚(𝑚

2
+

2𝑚 + 4)/2(𝑚 + 2)), and 𝑐 = 0, in which case iterative scheme
(6) becomes method Y5 mentioned above and blackuces to
iterative scheme (1) developed by Shengguo et al. [16].

In this paper, we investigate the optimal convergence
of the fourth-order methods for multiple-root finders with
known multiplicity in the sense of optimal order claimed by
Kung-Traub [21] and derive the error equation. We find that
our proposed schemes require one evaluation of the function
and two evaluations of first derivative and satisfy the optimal
order. In addition, through a variety of numerical experi-
ments we wish to confirm that the proposed methods show
well the convergence behavior predicted by the developed
theory.

2. Convergence Analysis

In this section, we describe a choice of parameters 𝑎, 𝑏, and 𝑐

in terms of 𝜆 and 𝜌 to get fourth-order convergence for our
proposed scheme (6).

Theorem 1. Let 𝑓 : C → C have a zero 𝛼 with integer
multiplicity 𝑚 ≥ 1 and be analytic in a small neighborhood of
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be two free constant parameters. Then iterative method (6) is
of order four and defines a two-parameter family of iterative
methods with the following error equation:
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Expressing 𝛾 = 𝑚(1− 𝑡) in terms of a new parameter 𝑡 for
algebraic simplicity, we get
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With the aid of symbolic computation of Mathematica [22],
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(1 + 𝑚 (𝑡 − 1) + 𝑡)

3
. (19)

Substituting 𝑡 = 𝑚/(𝑚 + 2) into (16) and (19) with 𝜅 =

(𝑚/(𝑚 + 2))
𝑚, we can rearrange these expressions to obtain

𝑎 =
𝑚

𝑚 + 2
{𝑚 −

𝑚(𝑚 + 2)
3
(1 + 𝜅𝜌)

8

−
(𝑚 + 2)

2
(𝑚 (−1 + 2𝜅𝜆) − (𝑚 + 2) 𝜅𝜌) (𝑚 + (𝑚 + 2) 𝜅𝜌)

2

16𝑚𝜅𝜆
} ,

(20)

𝑏 = −

(𝑚 + 2) (𝑚 + (𝑚 + 2) 𝜅𝜌)
3

16𝜅𝜆

,
(21)

𝑐 =

1

8

𝑚(𝑚 + 2)
3
𝜅 (1 + 𝜅𝜌) . (22)

Calculating by the aid of symbolic computation of Mathe-
matica [22], we arrive at the error equation below:

𝑒
𝑛+1

= 𝜓
4
𝑒
4

𝑛
+ 𝑂 (𝑒

5

𝑛
) , (23)

where 𝜓
4
= ((8 + 2𝑚 + 6𝑚

2
+ 4𝑚

3
+ 𝑚

4
− (24𝜅𝜌/(𝑚 + (𝑚 +

2)𝜅𝜌))/3𝑚
4
(𝑚 + 1)

3
(𝑚 + 2))𝜃

3

1
− (1/𝑚(𝑚 + 1)

2
(𝑚 + 2))𝜃

1
𝜃
2

+(𝑚/(𝑚 + 2)
3
(𝑚 + 1)(𝑚 + 3))𝜃

3
with 𝜅 = (𝑚/(𝑚 + 2))

𝑚.

It is interesting to observe that error equation (23) has
only one free parameter 𝜌, being independent of 𝜆. Table 1
shows typically chosen parameters 𝜆 and 𝜌 and defines
various methods 𝑌

𝑘
, (𝑘 = 1, 2, . . . , 5) derived from (6).

Method Y5 results in the iterative scheme (1) that Shengguo
et al. [16] suggested.
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Table 1: Various methods with typical choice of parameters (𝜆, 𝜌, 𝑎, 𝑏, and𝑐).

Method Parameter (𝜆, 𝜌) (𝑎, 𝑏, 𝑐)

𝑎 =

𝑚

𝑚 + 2

{𝑚 +

1

8

𝑚(𝑚 + 2)
3
(5𝜅 − 1) −

(𝑚 + 2)
2

16𝑚𝜅

𝜙
1
},

Y1 (1, −5) 𝜙
1
= (𝑚 − 5(𝑚 + 2)𝜅)

2
(10𝜅 + 𝑚(7𝜅 − 1)),

𝑏 = −

(𝑚 + 2)(𝑚 − 5(𝑚 + 2)𝜅)
3

16𝜅

,

𝑐 =

1

8

𝑚(𝑚 + 2)
3
𝜅(1 − 5𝜅)

𝑎 =

𝑚

𝑚 + 2

{𝑚 +

1

8

𝑚(𝑚 + 2)
3
(3𝜅 − 1) −

(𝑚 + 2)
2

16𝑚𝜅

𝜙
2
},

Y2 (1, −3) 𝜙
2
= (𝑚 − 3(𝑚 + 2)𝜅)

2
(6𝜅 + 𝑚(5𝜅 − 1)),

𝑏 = −

(𝑚 + 2)(𝑚 − 3(𝑚 + 2)𝜅)
3

16𝜅

,

𝑐 =

1

8

𝑚(𝑚 + 2)
3
𝜅(1 − 3𝜅)

𝑎 =

𝑚

𝑚 + 2

{𝑚 −

1

8

𝑚(𝑚 + 2)
3
(10𝜅 + 1) −

(𝑚 + 2)
2

16𝑚𝜅

𝜙
3
},

Y3 (1, 10) 𝜙
3
= (𝑚 + 20𝜅 + 8𝑚𝜅)(𝑚 + 10(𝑚 + 2)𝜅)

2,

𝑏 = −

(𝑚 + 2)(𝑚 + 10(𝑚 + 2)𝜅)
3

16𝜅

,

𝑐 =

1

8

𝑚(𝑚 + 2)
3
𝜅(1 + 10𝜅)

Y4 (

(𝑚 + 2)
2

4 (8 + 𝑚 (5 + 𝑚)) 𝜅

, 0) (0, −

𝑚
3
(8 + 𝑚(5 + 𝑚))

4(𝑚 + 2)

,

1

8

𝑚(𝑚 + 2)
3
𝜅)

Y5 (−

(𝑚 + 2)
2

𝑚(𝑚
2
+ 2𝑚 + 4) 𝜅

, −

1

𝜅

) (0, −

𝑚 (𝑚
2
+ 2𝑚 + 4)

2 (𝑚 + 2)

, 0)

3. Numerical Examples and Conclusion

In this section, we have performed numerical experiments
using Mathematica Version 5 program to convince that
the optimal order of convergence is four and the com-
puted asymptotic error constant |𝑒

𝑛+1
/𝑒

4

𝑛
| agrees well with

the theoretical value 𝜂. To achieve the specified sufficient
accuracy and to handle small number divisions appearing
in asymptotic error constants, we have assigned 300 as the
minimum number of digits of precision by the command
$𝑀𝑖𝑛𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 300 and set the error bound 𝜖 to 10

−250

for |𝑥
𝑛
− 𝛼| < 𝜖. We have chosen the initial values 𝑥

0
close to

the sought zero 𝛼 to get fourth-order convergence. Although
computed values of 𝑥

𝑛
are truncated to be accurate up to 250

significant digits and the inexact value of 𝛼 is approximated
to be accurate enough about up to 400 significant digits (with

the command 𝐹𝑖𝑛𝑑𝑅𝑜𝑜𝑡[𝑓[𝑥], {𝑥, 𝑥
0
}], 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐺𝑜𝑎𝑙 →

400, and 𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 → 600), we list them up to 15
significant digits because of the limited space.

As a first example with a double zero 𝛼 = √3 and an
initial guess 𝑥

0
= 1.58, we select a test function 𝑓(𝑥) =

cos(𝜋𝑥2
/6) log(𝑥2

− √3𝑥 + 1). As a second experiment, we
take another test function 𝑓(𝑥) = (16 + 𝑥

2
)
3
(log(𝑥2

+ 17))
4

with a root 𝛼 = −4𝑖 of multiplicity 𝑚 = 7 and with an initial
value 𝑥

0
= −3.94𝑖.

Taking another test function 𝑓(𝑥) = (1 − sin(𝑥2
))

(log(2𝑥2
− 𝜋 + 1))

4 with a root 𝛼 = −√𝜋/2 of multiplicity
𝑚 = 6, we select 𝑥

0
= −1.18 as an initial value.

Throughout these examples, we confirm that the order
of convergence is four and the computed asymptotic error
constant |𝑒

𝑛+1
/𝑒

4

𝑛
| approaches well the theoretical value 𝜂.The
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Table 2: Convergence behavior with 𝑓(𝑥) = cos(𝜋𝑥2
/6) log(𝑥2

− √3𝑥 + 1), (𝑚, 𝜆, 𝜌) = (2, 5, 5), 𝛼 = √3.

𝑛 𝑥
𝑛

|𝑓(𝑥
𝑛
)| |𝑥

𝑛
− 𝛼| |𝑒

𝑛+1
/𝑒

4

𝑛
| 𝜂

0 1.58 0.0716114 0.152051 0.02152876768
1 1.73207355929649 1.62622 × 10

−9
0.0000227517 0.04256566818

2 1.73205080756888 1.04639 × 10
−40

5.77127 × 10
−21 0.02153842658

3 1.73205080756888 1.79209 × 10
−165

2.38839 × 10
−83 0.02152876768

4 1.73205080756888 0.0 × 10
−599

0.0 × 10
−299

Table 3: Convergence behavior with 𝑓(𝑥) = (16 + 𝑥
2
)
3
(log(𝑥2

+ 17))
4, (𝑚, 𝜆, 𝜌) = (7, 1, −1), 𝛼 = −4𝑖.

𝑛 𝑥
𝑛

|𝑓(𝑥
𝑛
)| |𝑥

𝑛
− 𝛼| |𝑒

𝑛+1
/𝑒

4

𝑛
| 𝜂

0 −3.94𝑖 0.00249127 0.0600000 0.2398240851
1 −4.00000168928648𝑖 8.23314 × 10

−35
1.68929 × 10

−6 0.1303461794
2 −4.00000000000000𝑖 2.27416 × 10

−160
1.95318 × 10

−24 0.2398437513
3 −4.00000000000000𝑖 1.32326 × 10

−662
3.49027 × 10

−96 0.2398240851
4 −4.00000000000000𝑖 0.0 × 10

−2096
0.0 × 10

−299

order of convergence and the asymptotic error constant are
clearly shown in Tables 2, 3, and 4 reaching a good agreement
with the theory developed in Section 2.

The additional test functions 𝑓
1
, 𝑓

2
, . . . , 𝑓

7
listed below

further confirm the convergence behavior of our proposed
method (6).

𝑓
1
(𝑥) =

𝑥
7
− 𝑥

2
− 7

𝑥
5
+ sin𝑥

, 𝛼 = 1.3657, 𝑚 = 1,

𝑥
0
= 1.32,

𝑓
2 (

𝑥) = (𝑒
𝑥
5
−𝑥
2
−7

−1) (7+𝑥
2
−𝑥

5
) , 𝛼 =−1.16−0.95𝑖,

𝑚 = 2, 𝑥
0
= −1.14 − 0.92𝑖,

𝑓
3
(𝑥) = (𝑥

6
−8)

2

log (𝑥
6
−7) , 𝛼 = √2, 𝑚 = 3,

𝑥
0
= 1.39,

𝑓
4
(𝑥) = (3 − 𝑥 + 𝑥

2
)

4

cot (𝑥2
+ 1) , 𝛼 =

1 − √11𝑖

2

,

𝑚 = 4, 𝑥
0
= 0.47 − 1.79𝑖,

𝑓
5 (

𝑥) = (𝑥
4
− 9𝑥

3
+ 4𝑥

2
− 33𝑥 − 27) (log (𝑥 − 8))

3
,

𝛼 = 9, 𝑚 = 5, 𝑥
0
= 8.79,

𝑓
6
(𝑥) = (log (1 − 𝜋 + 𝑥))

6
, 𝛼 = 𝜋, 𝑚 = 6,

𝑥
0
= 3.09,

𝑓
7 (

𝑥) = (𝑒
3𝑥+𝑥
2

− 1) cos3 (𝜋𝑥
2

18

) (log (𝑥
3
− 𝑥

2
+ 37))

3

,

𝛼 = −3, 𝑚 = 7, 𝑥
0
= −2.88.

(24)

Table 5 shows the convergence behavior of |𝑥
𝑛
−𝛼| among

methods S, J, Y1, Y2, Y3, and Y4, where S denotes the method

proposed by Shengguo et al. [16], J the method proposed by
J. R. Sharma and R. Sharma [18], the methods Y1 to Y4 are
described in Table 1. It is certain that proposed method (6)
needs one evaluation of the function 𝑓 and two evaluations
of the first derivative 𝑓

󸀠 per iteration. Consequently, the
corresponding efficiency index [2] is found to be 41/3 ≈ 1.587,
which is optimally consistent with the conjecture of Kung-
Traub [21]. For the particularly chosen test functions in these
numerical experiments, methods Y1 to Y4 have shown better
accuracy than methods S and J.

Nevertheless, the favorable performance of proposed
scheme (6) is not always expected since no iterative method
always shows best accuracy for all the test functions. If we
look at the asymptotic error equation 𝜂 = 𝜂(𝑓, 𝛼, 𝑝) =

lim
𝑛→∞

|(𝑥
𝑛+1

− 𝛼)/(𝑥
𝑛
− 𝛼)

𝑝
| closely, we should note that

the computational accuracy is sensitively dependent on the
structures of the iterative methods, the sought zeros, conver-
gence orders, the test functions, and good initial values.

It is important to properly choose enough number of
precision digits. If 𝑒

𝑘
is small, 𝑒

𝑝

𝑘
gets much smaller, as 𝑘

increases. If the number of precision is small and error bound
𝜖 is not small enough, the term 𝑒

𝑝

𝑘
causes a great loss of

significant digits due to magnified round-off errors. This
hinders us from verifying 𝑝 and 𝜂 more accurately.

Bold-face numbers in Table 5 refer to the least error
until the prescribed error bound is met. This paper has
confirmed optimal fourth-order convergence proved the
correct error equation for proposed iterative methods (6),
using the weighted harmonic mean of two derivatives to
find approximate multiple zeros of nonlinear equations. We
remark that the error equation of (6) contains only one free
parameter 𝜌, being independent of 𝜆.

We still further need to discuss some aspects of root
finding for ill-conditioned problems as well as sensitive
dependence of zeros on initial values for iterative methods.
As is well known, a high-degree (say, degree higher than 20,
taking the multiplicity of a zero into account) polynomial is
very likely to be ill conditioned. In this case, small changes
in the coefficients can greatly alter the zeros. The small
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Table 4: Convergence behavior with 𝑓(𝑥) = (1 − sin(𝑥2
))(log(2𝑥2

− 𝜋 + 1))
4, (𝑚, 𝜆, 𝜌) = (6, 1, −1), 𝛼 = −√𝜋/2.

𝑛 𝑥
𝑛

|𝑓(𝑥
𝑛
)| |𝑥

𝑛
− 𝛼| |𝑒

𝑛+1
/𝑒

4

𝑛
| 𝜂

0 −1.18 0.000601837 0.0733141 0.3470127318
1 −1.25334379618481 1.35039 × 10

−24
0.0000296589 1.026605711

2 −1.25331413731550 7.41245 × 10
−109

2.68363 × 10
−19 0.3468196331

3 −1.25331413731550 6.74576 × 10
−446

1.79984 × 10
−75 0.3470127318

4 −1.25331413731550 4.62631 × 10
−1794

3.64139 × 10
−300

Table 5: Comparison of |𝑥
𝑛
− 𝛼| for high-order iterative methods.

𝑓(𝑥) 𝑥
0

|𝑥
𝑛
− 𝛼| S J Y1 Y2 Y3 Y4

|𝑥
1
− 𝛼| 5.37𝑒 − 7

†
4.00𝑒 − 7 6.26𝑒 − 8 5.37𝑒 − 7 1.96𝑒 − 7 2.14𝑒 − 6

𝑓
1

1.32

|𝑥
2
− 𝛼| 1.20𝑒 − 26 1.27𝑒 − 27 7.31𝑒 − 31 1.2𝑒 − 26 9.24𝑒 − 30 9.29𝑒 − 24

|𝑥
3
− 𝛼| 3.02𝑒 − 105 1.27𝑒 − 109 1.36e − 122 3.02𝑒 − 104 4.53𝑒 − 119 3.24𝑒 − 93

|𝑥
4
− 𝛼| 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299

|𝑥
1
− 𝛼| 0.001168 0.00144 0.00124 0.00097 0.00136 0.0018

|𝑥
2
− 𝛼| 4.99𝑒 − 10 1.60𝑒 − 9 7.38𝑒 − 10 1.45𝑒 − 10 1.19𝑒 − 9 5.18𝑒 − 9

𝑓
2

−1.14 − 0.92𝑖 |𝑥
3
− 𝛼| 1.65𝑒 − 35 2.46𝑒 − 33 8.97𝑒 − 35 7.24𝑒 − 38 7.15𝑒 − 34 3.46𝑒 − 31

|𝑥
4
− 𝛼| 2.02𝑒 − 137 1.37𝑒 − 128 1.95𝑒 − 134 4.44e − 147 9.06𝑒 − 131 6.89𝑒 − 120

|𝑥
5
− 𝛼| 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299

|𝑥
1
− 𝛼| 0.000428741 0.0002722 0.000399 0.00492273 0.0003078 0.000191074

|𝑥
2
− 𝛼| 1.77𝑒 − 12 3.38𝑒 − 13 1.37𝑒 − 12 5.14𝑒 − 8 5.32𝑒 − 13 9.02𝑒 − 14

𝑓
3

1.39 |𝑥
3
− 𝛼| 5.19𝑒 − 46 8.05𝑒 − 49 1.89𝑒 − 46 1.19𝑒 − 28 4.73𝑒 − 48 4.48𝑒 − 51

|𝑥
4
− 𝛼| 3.79𝑒 − 180 2.57𝑒 − 191 6.92𝑒 − 182 3.46𝑒 − 111 2.96𝑒 − 188 2.73e − 200

|𝑥
5
− 𝛼| 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299

|𝑥
1
− 𝛼| 0.00016 0.000159 0.00016 0.000153 0.0001602 0.000159

|𝑥
2
− 𝛼| 3.55𝑒 − 16 3.39𝑒 − 16 3.55𝑒 − 16 2.81𝑒 − 16 3.43𝑒 − 16 3.32𝑒 − 16

𝑓
4

0.47 − 1.79𝑖 |𝑥
3
− 𝛼| 8.36𝑒 − 63 6.94𝑒 − 63 8.42𝑒 − 63 3.14𝑒 − 63 7.28𝑒 − 63 6.33𝑒 − 63

|𝑥
4
− 𝛼| 2.56𝑒 − 249 1.21𝑒 − 249 2.63𝑒 − 249 4.89𝑒 − 249 1.46𝑒 − 249 8.37e − 250

|𝑥
5
− 𝛼| 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299

|𝑥
1
− 𝛼| 0.0000222 0.0000184 0.000023 0.0000118 0.0000193 0.0000164

𝑓
5

8.79

|𝑥
2
− 𝛼| 1.43𝑒 − 21 5.53𝑒 − 22 1.90𝑒 − 21 5.51𝑒 − 23 7.12𝑒 − 22 3.06𝑒 − 22

|𝑥
3
− 𝛼| 2.47𝑒 − 86 4.46𝑒 − 88 8.07𝑒 − 86 2.60e − 92 1.29𝑒 − 87 3.71𝑒 − 89

|𝑥
4
− 𝛼| 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299

|𝑥
1
− 𝛼| 2.84𝑒 − 7 3.45𝑒 − 7 2.36𝑒 − 7 4.14𝑒 − 7 3.30𝑒 − 7 3.65𝑒 − 7

𝑓
6

3.09

|𝑥
2
− 𝛼| 2.51𝑒 − 28 6.55𝑒 − 28 1.00𝑒 − 28 1.62𝑒 − 27 5.28𝑒 − 28 8.68𝑒 − 28

|𝑥
3
− 𝛼| 1.52𝑒 − 112 8.50𝑒 − 111 3.24e − 114 3.86𝑒 − 109 3.44𝑒 − 111 2.76𝑒 − 110

|𝑥
4
− 𝛼| 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299

|𝑥
1
− 𝛼| 0.00109 0.001241 0.00088 0.00137 0.0012 0.00128

|𝑥
2
− 𝛼| 2.04𝑒 − 11 1.97𝑒 − 11 3.14𝑒 − 11 1.00𝑒 − 10 6.32𝑒 − 12 4.04𝑒 − 11

𝑓
7

−2.88 |𝑥
3
− 𝛼| 1.77𝑒 − 42 1.67𝑒 − 42 4.48𝑒 − 41 2.90𝑒 − 39 9.48𝑒 − 45 4.52𝑒 − 41

|𝑥
4
− 𝛼| 1.01𝑒 − 166 8.05𝑒 − 167 1.84𝑒 − 160 2.05𝑒 − 153 4.77e − 176 7.12𝑒 − 161

|𝑥
5
− 𝛼| 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299 0.𝑒 − 299

†
5.37𝑒 − 7 = 5.37 × 10

−7.

changes can occur as a result of rounding process in com-
puting coefficients. Minimal round-off errors may improve
the root finding of ill-conditioned problems. Certainly
multi-precision arithmetic should be used in conjunction
with optimized algorithms reducing round-off errors. High-
order methods with the asymptotic error constant of small
magnitude are preferred for locating zeros with relatively
good accuracy. Locating zeros for ill-conditioned problems
is generally believed to be a difficult task.

It is also important to properly choose close initial
values near the root for guaranteed convergence of the
proposedmethod. Indeed, initial values are chaotic [23] to the
convergence of the root 𝛼. The following statement quoted
from [24] is not too much to emphasize the importance
of selected initial values: “A point that belongs to the
non-convergent region for a particular value of the parameter
can be in the convergent region for another parameter
value, even though the former might have a higher order
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of convergence than the second. This then indicates that
showingwhether amethod is better than the other should not
be done through solving a function from a randomly chosen
initial point and comparing the number of iterations needed
to converge to a root.”

Since our current analysis aims on the convergence of
the proposed method, initial values [25–27] are selected
in a small neighborhood of 𝛼 for guaranteed convergence.
Thus the chaotic behavior of 𝑥

0
on the convergence should

be separately treated under the different subject in future
analysis. On the one hand, future research may be more
strengthened with the graphical analysis on the convergence
including chaotic fractal basins of attractions. On the other
hand, rational approximations [1] provide rich resources
of future research on developing new high-order optimal
methods for multiple zeros.
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