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We introduce and study the notion of common coupled fixed points for a pair of mappings in complex valued metric space and
demonstrate the existence and uniqueness of the common coupled fixed points in a complete complex-valued metric space in view
of diverse contractive conditions. In addition, our investigations are well supported by nontrivial examples.

1. Introduction

Azam et al. [1] introduced the concept of complex-valued
metric spaces and obtained sufficient conditions for the
existence of common fixed points of a pair of contractive
type mappings involving rational expressions. Subsequently,
several authors have studied the existence and uniqueness of
the fixed points and common fixed points of self-mappings
in view of contrasting contractive conditions. Some of these
investigations are noted in [2-26].

In [27], Bhaskar and Lakshmikantham introduced the
concept of coupled fixed points for a given partially ordered
set X. Recently Samet et al. [28, 29] proved that most of
the coupled fixed point theorems (on ordered metric spaces)
are in fact immediate consequences of well-known fixed
point theorems in the literature. In this paper, we deal
with the corresponding definition of coupled fixed point
for mappings on a complex-valued metric space along with
generalized contraction involving rational expressions. Our
results extend and improve several fixed point theorems in
the literature.

2. Preliminaries

Let C be the set of complex numbers and z,, z, € C. Define a
partial order < on C as follows:

z; 2z, iff Re(z;) <Re(z,), Im(z;) <Im(z,). (1)

Note that 0 < z,, z, and z; # z,, z; < z, implies |z;| < |z,|.

Definition 1. Let X be a nonempty set. Suppose that the self-
mapping d : X x X — C satisfies the following:

(1) 0 < d(x,y), forall x,y € Xand d(x,y) = 0 if and
onlyif x = y;

(2) d(x,y) =d(y,x)forallx, y € X;

(3) d(x,y) 2d(x,z) +d(z, y), forall x, y,z € X.



Then d is called a complex valued metric on X, and
(X, d)is known as a complex valued metric space. A point
x € X is called interior point of a set A € X whenever, there
exists 0 < r € C such that

B(x,r)={yeX:d(x,y)<r} C A (2)

A point x € X is a limit point of A whenever, for every
0<reC,

B(x,r)n(A\{x}) #0. (3)

Ais called open whenever each element of A is an interior
point of A. Moreover, a subset B € X is called closed
whenever each limit point of B belongs to B. The family

F={B(x,r):xe€X,0<reC} (4)

is a subbasis for a Hausdorff topology 7 on X.

Let {x,} be a sequence in Xand x e X. If for every
c € C with 0 < cthere is n, € N such that, for all
n > ny d(x,,x) < ¢ then {x,} is said to be convergent,
{x,,} converges to x, and x is the limit point of {x,,}. We denote
this by lim,, , ,x, = x,orx, — x,asn — +oo. If for
every ¢ € C with 0 < ¢ there is n, € N such that, for all
n>ny, d(x,, X,.m) < ¢ then{x,} is called a Cauchy sequence
in (X, d). If every Cauchy sequence is convergent in (X, d),
then (X, d) is called a complete complex valued metric space.
We require the following lemmas.

Lemma 2 (see [1]). Let (X,d)be a complex valued metric
space, and let {x,} be a sequence in X. Then {x,} converges to
x if and only if |d(x,,, x)| — Oasn — +o0.

Lemma 3 (see [1]). Let (X,d)be a complex valued metric
space, and let {x,} be a sequence in X. Then {x,} is a Cauchy
sequence if and only if |d(x,, X,,,,)] = 0asn — +co.

Definition 4 (see [27]). An element (x, y) € X x X is called a
coupled fixed pointof T: X x X — X if

x=T(xy), y=T(x). ®)

Definition 5. An element (x, y) € X x X is called a coupled
coincidence point of S, T: X x X — X if

S(xy)=T(xy), S(phx)=T(px). (6

Example 6. Let X = Rand §, T : X x X — X defined as
S, y) = xzy2 and T(x, y) = (4/3)(x + y) forall x, y € X.
Then (0,0), (1,2), and (2, 1) are coupled coincidence points
of Sand T.

Example 7 Let X = Rand S, T : X x X — X defined as
S, y) = x+y+sin(x+ y)and T'(x, y) = x+ y+xy +cos(x +
y) for all x, y € X. Then (0,71/4) and (7/4,0) are coupled
coincidence points of Sand T

Definition 8. An element (x, y) € X x X is called a common
coupled fixed point of S, T : X x X — X if

x=8(xy)=T(xy), y=S(px)=T(yx). 7
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Example 9. Let X = Rand §,T : X x X — X defined as
S(x, y) = x((x+(y—1)2)/2) and T'(x, y) = x(1/x? + y* + 4-2)
for all x,y € X. Then (0,0), (1,2), and (2,1) are common
coupled fixed points of Sand T'.

In the following, we provide common coupled fixed point
theorem for a pair of mappings satisfying a rational inequality
in complex valued metric spaces.

Theorem 10. Let (X, d) be a complete complex-valued metric
space, and let the mappings S, T : X x X — X satisfy

a(d(x,u)+d(y,v))
2

+(Bd (x,S(x, y))d (u, T (u,v))
+yd (1,8 (x,9))d (x, T (u,v)))

x(1+d(x,u)+d(y, v))_1

d(S(x,y),T (uv)) <

(8)

forall x, y,u,v € X and «, B, and y are nonnegative reals with
a+ B +y <1 Then S and T have a unique common coupled
fixed point.

Proof. Let x,, and y, be arbitrary points in X. Define x,;,; =

S Yar)> Yarar = Saio X)) and x5 = T(Xpei15 Varar)>
Va2 = T(Vasr> Xpe)> fork = 0,1,
Then,

d (x2k+1> x2k+2)
=d (S (xzk’ yzk) T (x2k+1, J’zk+1))

o (d (%2 Xop01) + d (V21 Vo))
2

+ (B (x50 S (%20 ¥ar)

X d (Xope15 T (X1 Yaks1)))

IA

X (1+d (0 Xppe01) + ()’2k>)’2k+1))71
+ (yd (%015 S (%200 Y2k))

x d (%300 T (X115 Vake1)))
x (1+d (g0 Xgpey1) +d (}’2k>)’2k+1))_1

o (d (g0 Xoi1) + A (Vo> Yarr1))
2

IA

Bd (xzk’ x2k+1) d (x2k+1, x2k+2)
1+ d (X9 Xp11) + d (Voo Yaks1)

yd (x2k+1’ x2k+1) d (leo x2k+2)
1+ d (X Xo141) + A (Vogo> Yarar)
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2 (d (X9 Xk41) + A (Vago> Yars1))
- 2

Bd (xzka xzk+1) d (x2k+1, x2k+2)
1+ d (x50 %141) + d (Voo Yoks1)

€)

which implies that

o |d (%15 Xopesr) +d (y2k7y2k+1)l
2

|d (x2k+1>x2k+2)| <

B |d (xzk: x2k+1) d (x2k+1) x2k+2)|

|1 +d (X X)) + (J’zk’)’zk+1)| '
(10)

Since |1 + d(xp Xp141) + d(Yaio> Yare1)| > 1d (X0 X1, 50
we get

|d (x2k+1 > Xok+2 ) |

S o4 |d (%285 x2k+1)| +o |d (Vo> y2k+1)| a1)
2

+p |d (x2k+1,x2k+2)| >

and hence

Id (x2k+1, x2k+2)|

1
<3 ( . i‘/j) |d (x50 Xo141)] (12)

1 o
+3 (m) |d (Y2t Yars)| -

Similarly, one can show that

«
Id (Vaks1s ;V2k+2)| < <IT[3) |d (200 }’2k+1)|

N | =

(13)
1
+3 (755 ) M G

Also,

d (x2k+2, x2k+3)
=d (T (x2k+1> )’zk+1) N (x2k+2) )’zk+2))

a (d (Xop1> Xo42) + d (Vaks1s Yokea))
2

+ (B (X015 T (Xk415 Yaks1))

IA

X d (X425 S (X425 Yake2)))

X (1+d (%1415 Xop2) + A (Vo }’2k+2))_1

+ (yd (%120 T (Xks15 Yoke))
X d (X515 (%2425 Yake2))
1 (14)

X (1+d (X1 Xops2) + d (Vaksr> Yarsa))

a (d (%415 Xak42) + A (Vager1> Yake2))
2

IA

Bd (x2k+1> x2k+2) d (x2k+2’ x2k+3)
1+ d (%9111 Xok42) + A (Varsr> Yarea)
)

yd (%2k42> Xos2) 4 (x2k+1, x2k+3)
1+ d (%111 Xoks2) + A (Varsr> Yakea)

a (d (%415 Xak42) + A (Vagr1> Yae2))
2

IA

pd (x2k+1, x2k+2) d (x2k+2, x2k+3)
1+ d (%9111 Xoks2) + A (Varsr> Yake2)

so that

o |d (X2k415 Xops) + (y2k+1>y2k+2)|
2

|d (%2k425 x2k+3)| <

B |d (x2k+1s x2k+2)| |d (x2k+2> x2k+3)|

|1 +d (Xgps1> Xopy2) +d (}’2k+1’)’2k+2)| .
(15)

As 1+ d(Xppi15 Xor42) + Ao Vo) > 1d(Xgpei15 Xoi40)5
therefore

1 o
|d (x2k+2> x2k+3)| <5 |d (x2k+1’ x2k+2)|
2

1-p
(16)
1 o
3 <m) |d (Vars1> Yors2)| -
Similarly, one can show that
o
|4 (Varr2> Yaras)| < 1-p |d (Vs> Va2l
17)

1
+ 2 <%ﬂ) |d (x2k+1’x2k+2)| :



Adding (12)-(17), we get

|d (k415 x2k+2)| + |d (Vo> y2k+2)|

fo o
1.8 |d (%20 x2k+1)| + q |d (Voo }’2k+1)|

N

|d (k425 x2k+3)| + Id (Varsas J’2k+3)|

= 1 i‘[g |4 (%a1cs1> Xapes2)| + ﬁ |4 (Vaks1> Yars2)| -

(18)

If h = «/(1 - B) < 1, then from (18), we get

ld (xn’ xn+1)| + |d (yn’ yn+1)|
< h(|d (%1 %,)[ + [d (-1 7)]) (19)

<< B (|d (3o x0)| + A (70> 1)) -

Now if |d(x,,, x,.1)| + 1d(¥,> Y1)l = 6,,, then

8,<hd, <---<Hh'S,. (20)

Without loss of generality, we take m > n. Since 0 < h < 1, so
we get

| (s 2,)| + |d (> )|
< |d (xn’xn+1)| + |d (yn’ yn+1)| +-

+|d (X1 X)| + 1A (Pne1s V)|
(21

< ('8 + W™ 8y + - + W8]

m—1
SZ h'&y, — 0, asm,n— +oo.

i=n

This implies that {x,} and {y,} are Cauchy sequences in X.
Since X is complete, there exists x, y € X such that x,, — x
and y, — yasn — +00. We now show that x = S(x, y)
and y = S(y, x). We suppose on the contrary that x # S(x, y)
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and y#S(y,x) so that 0 < d(x,S(x,y)) = I, and 0 <
d(y,S(y, x)) = 1,; we would then have

L =d(xS(xy)) 2d (% x342) +d (X352, S (%, 1))
< d (%, Xg2) + A (T (Xgges1> Yar1) > S (%, ¥))
a(d (%415 %) +d (Vo1 )
2
+ BA (31415 T (Xop415 Yagr1)) d (26, S (%, )
1+d (415 %) +d (Vo1 ¥)

<d (%, xp00) +

yd (36T (%41 Yaker)) d (Xoies1, S (%, 9)) (22)
1+d (X015 %) +d (Vasr15 )

a(d (%415 %) +d (Vo1 )
2
+ ﬁd (x2k+1’ x2k+2) d (x’ S (x> y))
1+d (x50, %) + d (Voper> ¥)

= d (X, Xpp4) +

yd (x, x2k+2) d (x2k+1> S (x, )’))
1+d (x2k+1)x) +d ()’2k+1’ )’)

so that

a|d (xge1, %) +d (Va1 ¥))|
2

B |d (%2k41> x2k+2)| |d (x,S(x, )’))|
|1 +d (Xyp15%) +d ()’2k+1’y)|

+ Y |d (x, x2k+2)| |d (x2k+1,S (x,y))|
|1 +d (Xypepo%) +d ()’2k+1’)/)|

|l1| < |d (x, x2k+2)| +

(23)

By taking k — +00, we get |d(x,S(x, ¥))| = 0 which is a
contradiction so that x = S(x, y). Similarly, one can prove
that y = S(y, x). It follows similarly that x = T'(x, y) and
y = T(y,x). So we have proved that (x, y) is a common
coupled fixed point of S and T. We now show that S and T
have a unique common coupled fixed point. For this, assume
that (x*, y*) € X is a second common coupled fixed point of
Sand T. Then

d(x,x")=d(S(xy),T(x"y"))
_a(d(nx)+d(ny")
B 2
, PA(xS(xy)d(x" T (x", 7))
L+d(x,x*)+d(y, y*)

yd (%, T (x", »"))d (xS (x,»))
1+d(x,x*)+d(y, y*)
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() +d(ny)
- 2
Bd (x,x)d (x",x")
+
1+d(x,x*)+d(y, y*)
yd (x,x")d (x", x)
1+d(x,x*)+d(y, y*)

(24)
so that
[0
’ - 2
(25)
y|d (2, x™)||d (x*, x)|
[L+d,x*)+d(y, y*)|
Since |1 +d(x, x™) + d(y, y*)| > |d(x, x™)|, so we get
|d(x,x*)|5 (x(d(x,x )2+d(y’y )) +y|d(x,x*)|
(26)

=<;i%gwﬂ%fﬂ

Similarly, one can easily prove that

40092 (5o )l @)

o«
2-a—2y
If we add (26) and (27), we get

+1d (3, ")

< (5255 ) (a el +latuy D,

|d (x, x")

(28)

which is a contradiction because & + 5 + y < 1. Thus, we get
x* = xand y* = y, which proves the uniqueness of common
coupled fixed point of Sand T. O

By setting § =
following.

T in Theorem 10, one deduces the

Corollary 11. Let (X, d) be a complete complex-valued metric
space, and let the mapping T : X x X — X satisfy

d(T (x,y),T (u,v))

. a(d(x,u)+d(y,v))
B 2

+(Bd (x,T (x,)) d (u, T (u,v)) (29)
+yd (u, T (x, ) d (x,T (u,v)))

x(1+d(x,u)+d(y, v))_1

forall x, y, u, v € X, where «, 3, and y are nonnegative reals
with o+ B+ 7y < 1. Then T has a unique coupled fixed point.

Corollary 12. Let (X, d) be a complete complex-valued metric
space, and let the mapping T : X x X — X satisfy
d(T" (x,y),T" (u,v))

. a(d(x,u)+d(y,v))
B 2
+ (Bd (%, T" (x, y)) d (u, T" (u, v)) (30)
+yd (T (x, y))d (x, T" (u, v)))

x (1+d(xu)+d(y,v)"
forall x, y, u, v € X, where «, 3, and y are nonnegative reals
with o+ B+ 7y < 1. Then, T has a unique coupled fixed point.

Theorem 13. Let (X, d) be a complete complex-valued metric
space, and let the mappings S, T : X x X — X satisfy

d(S(x,y),T (u,v))
(o (d (x,u) +d(y,v))

* B (S () d 6 T ()
d (6T wv)+d (S (x,y)) +d(x,u)+d(y,v)
if D#0
o, if D=0
(31)

IA

forall x, y,u,v € X, where D = d(x,T(u, y)) +d(u, S(x, y)) +
d(x,u)+d(y,v) and «, B are nonnegative reals with a + 8 < 1.
Then S and T have a unique common coupled fixed point.

Proof. Let x,, and y, be arbitrary points in X. Define x,;,, =
S0 Y2r)s Yaker = Sy Xop) and Xoppy = T(Xpei15 Yakar)s

Va2 = T(Vagi1> Xop41 ) for k = 0,1,
Now, we assume that
Dy (xzk) }’2k) =d (xzk) T (x2k+1’ )’2k+1))
+d (X115 S (%21 Yar))
+d (X3 Xo01) + d (Varo Vo)
= d (Xgp Xoper2) + A (X Xger1)
+d (Y2 Yokr1) #0s
(32)
Dy (J’zk’ xzk) =d ()’zk’ T ()’2k+1’ x2k+1))
+d (Vope1>S (Voo X))
+d (xzkr x2k+1) +d ()/210 J’2k+1)
=d (yzk’ y2k+2) +d (x2k’x2k+1)

+d (Vo> Yoks1) #0.
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Then, Now, if

d (Xops1> Xo42) Dr (Xgke1> Yaks1)

=d (S (%o yor) » T (Xake1> Yare1)) =d (o2 T (k41> Y2tn))

+d (Xop015S (%2425 Yokea)

a (d (% Xoe1) + d (V210 Yass1)) (38)
2 +d (Xop20 Xok1) + 4 (Vaks2> Yoke1)
+ Be (xS (%21 Y2k)) A (Xges15 T (Xoges1> Vo)) = d (X1 Xopss) + d (Xapazs X))

Dg (%300 Y1) i )
+d (Vagezs Yoknr) 0,
o (d (X0 Xops1) + d (Vo> Yarr1)) " '

2 we get
+ (Bd (%20 %2141) d (Xaies1> Xags2)) d (Xg32s Xos3)
X (d (%0 Xogea2) + d (X X341 = d (T (Xgp01> Yars1) S (%125 Vorsa))
+d (P yz"*l))_l a (d (%gps20 Xa1es1) + d (Vaks2 Y1)
(33) < 5

which implies that + (Bd (X120 S (X242 Y2rr2))

xd (x2k+1’ T (x2k+1’ y2k+1)))
|d (%115 Xo42)| (Dy ( ))_1 (39)
X\ P (Xok+1> Va1
< o |d (%21 Xope1) + A (Yoo J’zk+1)|
- 2 _« (d (X342 Xo1) + d (Vaksns Yaka1))

2
+(B |d (xzk’x2k+1)| |d (%6415 x2k+2)|)

+ (B (X012 Xo43) 4 (Xops1> Xos2))
X (| (Xg Xapr2) + d (X Xapes1) (34)

. X (d (k01> Xos3) + A (Xgger0 Xogea1)
+d()’2k’)’2k+1)|) a( ))_1
+a Va2 Yoke1)) >
<& |d (%21 Xope1) + A (Yoo y2k+1)|

2 which implies that
+ B d (0 X)) |d (%2425 x2k+3)|
as <al® (d (a2 k1) + 4 (Vaaz> Yoke1))
2
e G 2t )| (35) + (B1d (%2k2s Xogers)| |d (a1 Xaps2)])
< |d (Xaa1 k) +d (% Xapes2) +d (Voo Vaserr)| - < (1 (g Xrirs) + d (Xrgrzs %) (40)
Therefore,

+d (Vopsas J’2k+1)|)_1

|d (x2k+1’ x2k+2)| @ (d (x2k+2, x2k+1) +d (y2k+2’ )’2k+1))

<«
= (OH—Zﬁ) ld (%20 x2k+1)| + = |d ()’2k))/zk+1)| : o 2
2 2 +p |d (x2k+1’x2k+2)|
Similarly, one can easily prove that as
|d (x2k+2’ x2k+3)|
|d ()’2k+1’ )’2k+2)|
(37) < |d (%2425 Xop1) + A (Xops1> Xpy3) (41)

((x+ Zﬁ) o
= T |d (sz’ y2k+1)| + E |d (x2k’x2k+1)l : + d(y2k+2’y2k+l)| .
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Therefore,

|d (x2k+2> x2k+3)|

2

< o |d (x2k+zsxzk+1)| + « |d()’2k+2))’2k+1)|

2
+p |d (%2k415 x2k+2)|

(a+2PB)
= 5 |d (x2k+1,x2k+2)|

fo
+ 2 |d (y2k+1’)’2k+2)| .

Similarly, if Dp(¥yp41> Xo141) # 0, one can easily prove that

(e +2P)
|d (Va2ks2s )’2k+3)| < B

o
+ 3 ld (%8415 x2k+2)| .
Adding the inequalities (36)-(43), we get

Id (k415 x2k+2)| + ld (Vaks1> }’2k+2)|

< (a+ B) (|d (a0 Xapes1)| + |d (Vo> Yarar)]) -
|d (k425 x2k+3)| + |d (V2ks20 J’2k+3)|

< (a+B) (|d (x2k+1,x2k+2)| + |d (J’2k+1’)’2k+2)|) .

If h = (a + B) < 1, then, from (44), we get

|d (‘xn’ xn+1)| + |d (yn’ yn+1)|

< h(|d (xn,pxn)| + |d (ynfl’yn)l)

<o K (d (x|

+1d (o))
Now if |d(x,,, x,.1)| + 1d(V,> Vyi1)| = 6,,, then

8, <hd, <. <H'S,.

(46)
Without loss of generality, we take m > n. Since 0 < h < 1, so
we get

| (s 2,)| + |d (7> )|
= |d (xn’xn+1)| + |d (yn’ yn+1)| +

+ |d (xmfl’xm)l + Id (ymfl’ym)l

(47)
< (W0 + W™ Sy + -+ W15, ]

m—1
SZ W8, — 0, asm,n — +co.
i=n

Xn

This implies that {x,} and {y,} are Cauchy sequences in X.
Since X is complete, so there exists x, y € X such that

— xand y, — yasn — +00. We now show that

ld (V2k415 }’2k+z)|

0 < d(y,S(y,x)) = L,; we would then have

x = 8(x, y) and y = S(y, x). We suppose on the contrary that
x#S8(x, y) and y# S(y,x) so that 0 < d(x,S(x, y)) = I; and

L =d(xS(xy)) 2d (%, x342) +d (X342, S (%, 1))
(42)

< d (%, Xg2) + A (T (Xgges15 Yar1) > S (%, ¥))

d ,X) +d i
<d (x,X34,) + a(d (X1, %) +d (Vapes1> )

2

+ (ﬁd (x2k+1) T (x2k+1’ y2k+1)) d (x, N (x, }’)))
X (d (%341, S (%, ) +d (6, T (%141 Varsn))

+d (x40, %) +d (J’zk+1’)’))71

(43) <d (% %) + a (d (%15 x)2+ d (Yas1>9))
+ (Bhd (Xa41> Xok42))
X (d (%3141 S (% ¥)) + d (%, %5102)
+d (%15 %) +d (Vags1 ¥) )71’
(44) so that

o
|l1| < |d (%, x2k+2)| + ) |d (k415 %) +d (;Vzk+1’)’)|
+(B |11| |d (x2k+1,x2k+2)|)

(49)
X (|d (%1415 S (5, ¥)) + d (3, Xp42)

+d (x2k+1’x) +d (y2k+1’ y) |)_1'
By taking k — +o00, we get |d(x,S(x, ¥))| = 0 which is a
contradiction so that x = S(x, y). Now
L=d(yS(y,x) 2d (), yaxsz) + d (Y2rs2-S (1, %))
2 d (3, Yarsa) + A (T (Var1> Xops1) » S (15 X))
d b d bl
<d( yrs) + a(d (yarar J’)2+ (%2k415 %))
+(Bd (Var> T (Va1 Xak01)) A (35S (35 %))
X (d (Yo S (%)) +d (1. T (Va1 X2k41))

B (50)
+d (Vope1> y) +d (%1415 X))

d ,y)+d ,
< d(y,y2k+2) + (X( (y2k+1 y) + (x2k+1 x))

2

+ (BLd (Vaxs1> Yars2)

X (d (Yars1> S (X)) +d (95 Yagsa)

-1

>

+d (Vopse1> y) +d (x30415 %) )

(48)



which implies that

o
L] < |d (35 yarsa)| + 5 |d (k41> ¥) d (x01415 %))

+(B |lz| |d (J’zk+1>)’2k+2)|)

x (|d ()’2k+1>5 ()’) x)) +d (}’s y2k+2)

(51)

+d (y2k+1’ )’) +d (x2k+1’ x) |)_1’

Which, on making k — +oo, gives us |d(y,S(y,x))| =
0 which is a contradiction so that y = S(y,x). It follows
similarly that x = T'(x, y) and y = T(y, x). So we have proved
that (x, y) is a common coupled fixed point of S and T. As in
Theorem 10, the uniqueness of common coupled fixed point
remains a consequence of contraction condition (31).

We have obtained the existence and uniqueness of a
unique common coupled fixed point if

Dg (x5 ¥a1) > Ds (Yag %2x) »
(52)

Dy (x2k+1’ J’zk+1) » Dr ()’2k+1’ x2k+1) #0

for all k € N. Now, assume that Dg(x,, ¥5,) = 0 for some
k € N. From

d (Xop Xk42) + d (X Xok41) +d (Vapoo Yorr1) = 0, (53)

we obtain that x,, = x5 = Xy, and Yy = Yy If
Dg(y51> X51) # 0, using (8), we deduce

d ()’2k+1’ )’2k+2) =d (S ()’210 xzk) , T ()’2k+1a x2k+1)) = (2 )
54

That is, Y5511 = Vars (this equality holds also if Dg(y,, x51)
= 0). The equalities

Xok = Xogi1 = Xoke2s Yok = Yok+1 = Vak+2o (55)

ensure that (x5 1, ¥5i41) IS @ unique common coupled fixed
point of S and T The same holds if either Dg(yy, X,1) = 0,
Dr(Xgks1> Yair1) = 05 0F Dp(¥aper1> Xpe1) = 0. O

From Theorem 13, if we assume « = 0, we obtain the
following corollary.

Corollary 14. Let (X, d) be a complete complex-valued metric
space, and let the self-mappings S, T : X x X — X satisfy

d(S(xy),T wv)

Bd (x,S(x, y))d (u, T (u,v))
d(x, T wv)+dwS(x,y)+dxu) +d(yv)
if D#0
0, if D#0

(56)

forallx, y, u, v € X, where D = d(x,T(u, y))+d(u, S(x, y))+
d(x, y) +d(y,v) and 3 is a nonnegative real such that 0 < f <
1. Then S and T have a unique common coupled fixed point.
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Corollary 15. Let (X, d) be a complete complex-valued metric
space, and let the mapping T : X x X — X satisfy

d(T (x,y),T (u,v))
(o (d (x,u) +d(y,v))

© B T(%2)d T ()
d (T wv)+d (T (x, y)) +d (x,u) +d(y,v)’
if D#0
o, ifD=0
(57)

IA

<

forallx, y, u, v € X, where D = d(x,T(u, y))+d(u, T(x, y))+
d(x,u) +d(y,v) and o, B are nonnegative reals with o+ 3 < 1.
Then T has a unique coupled fixed point.

Corollary 16. Let (X, d) be a complete complex-valued metric
space, and let the mapping T : X x X — X satisfy

d(T" (x,y),T" (u,v))
(o (d (x,u) +d(y,v))

. 2 Bd (x,T" (x,y)) d (u, T" (u,v))

d (x, T" (u, v))+d (u, T" (%, y))+d (x, u)+d (y,v)
if D#0

o, if D=0

(58)

IA

for all x, y,u,v € X, where D = d(x,T"(u,y)) +
d(u, T"(x, ))+d(x,u)+d(y, v) and «, 3 are nonnegative reals
with o + B < 1. Then T has a unique coupled fixed point.

Now, we furnished a nontrivial example to support our
main result (Theorem 10).

Example 17. Let

X, ={ze€eC:Re(z) 20, Im(z) =0},
59
X,={zeC:Im(2) 20, Re(z) =0}, )

and let X = X, U X,. Consider a complex valued metric d :
X x X — Cas follows:

g|"1—x2|+i|xl—x2|>
3 2
ifz!, z, € X,
l|)’1‘)’2|+1|)/1_)’2|’
2 3
it z, z, € X,
2 i
§(x1+y2)+g(x1+y2),
itz € X, 2z, € X,
2
(x2+y1)+§(x2+yl),
it z; € X;, 2z, € X,

d(zy,2,) = 1 (60)

i
3
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with z; = x; +iy, and z, = x, +iy,. Then (X, d) is a complex
valued metric space. Define S, 7 : X x X — X as follows:

'O+mi it z, z, € X4
o) M0 0i ifzy, 2 € X,
S(z1,2,) = 1 x
P o+ 2225 if 2 e X, and 2, € X,
pe
N% L 0i ifz € X, and 2, € X,
(61)
( XX
0+ =22 ifz), z, € X,
) Y2 0 ifzy, 2y € X,
T (21,2,) = 1 x
v O+i—(})/2i if z, € X, and z, € X,
X
%+0i it z, € X, and z, € X;.

By a routine calculation, one can easily verify that the maps
S and T satisfy the contraction condition (8) with « = 3/4,
B =1/15,and y = 2/15. Notice that the point (0, 0) remains
fixed under S and T and is indeed unique common coupled
fixed point.
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