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The purpose of this paper is to prove some weak and strong convergence theorems for solving the multiple-set split feasibility
problems for 𝜅-strictly pseudononspreading mapping in infinite-dimensional Hilbert spaces by using the proposed iterative
method. The main results presented in this paper extend and improve the corresponding results of Xu et al. (2006), of Osilike
et al. (2011), and of many other authors.

1. Introduction and Preliminaries

Censor and Elfving first introduced the split feasibility
problem (SFP) [1] in finite dimensional spaces for modeling
inverse problems. The SFP can be used in various disciplines
such as medical image reconstruction [2], image restoration,
computer tomograph, and radiation therapy treatment plan-
ning [3–5].Themultiple-set split feasibility problem (MSSFP)
was studied in [4–6].

In the sequel, we always assume that 𝐻
1
, 𝐻
2
are two real

Hilbert spaces and denote by “→ ” and “⇀” the strong and
weak convergence, respectively.

The so-called multiple-set split feasibility problem
(MSSFP) is to find 𝑥

∗
∈ 𝐶 such that 𝐴𝑥

∗
∈ 𝑄, where

𝐴 : 𝐻
1

→ 𝐻
2
is a bounded linear operator, 𝑆

𝑖
and 𝑇

𝑖
, 𝑖 =

1, 2, . . . , 𝑁 are the families of mappings, 𝑆
𝑖
: 𝐻
1

→ 𝐻
1
and

𝑇
𝑖
: 𝐻
2

→ 𝐻
2
, 𝐶 := ⋂

𝑁

𝑖=1
𝐹(𝑆
𝑖
), and 𝑄 := ⋂

𝑁

𝑖=1
𝐹(𝑇
𝑖
), where

𝐹(𝑆
𝑖
) = {𝑥 ∈ 𝐻

1
: 𝑆
𝑖
𝑥 = 𝑥} and 𝐹(𝑇

𝑖
) = {𝑦 ∈ 𝐻

2
: 𝑇
𝑖
𝑦 = 𝑦}

denote the sets of fixed points of 𝑆
𝑖
and 𝑇

𝑖
, respectively. In the

sequel, we use Γ to denote the set of solutions of the MSSFP;
that is,

Γ = {𝑥 ∈ 𝐶 : 𝐴𝑥 ∈ 𝑄} . (1)

Recently, Kohsaka and Takahashi [7, 8] introduced an
important class of mappings which is called the class of
nonspreading mappings.

Definition 1 (see [7, 8]). Let𝐾 to be a nonempty closed convex
subset of a Hilbert space𝐻. A mapping 𝑇 : 𝐾 → 𝐾 is said to
be nonspreading, if

2
󵄩
󵄩
󵄩
󵄩
𝑇𝑥 − 𝑇𝑦

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑇𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑇𝑦 − 𝑥

󵄩
󵄩
󵄩
󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐾. (2)

In [9], Iemoto and Takahashi proved that this definition
is equivalent to the following.

Definition 2 (see [9]). Let 𝐾 be a nonempty closed convex
subset of a Hilbert space𝐻. A mapping 𝑇 : 𝐾 → 𝐾 is said to
be nonspreading, if

󵄩
󵄩
󵄩
󵄩
𝑇𝑥 − 𝑇𝑦

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

+ 2 ⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐾.

(3)

Browder and Petryshyn [10] proposed the following 𝜅-
strictly pseudononspreading mapping.
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Definition 3 (see [10]). Let 𝐻 be a real Hilbert space. We
say that a mapping 𝑇 : 𝐷(𝑇) ⊂ 𝐻 → 𝐻 is 𝜅-strictly
pseudononspreading if there exists 𝜅 ∈ [0, 1), such that

󵄩
󵄩
󵄩
󵄩
𝑇𝑥 − 𝑇𝑦

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

+ 𝜅
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑇𝑥 − (𝑦 − 𝑇𝑦)

󵄩
󵄩
󵄩
󵄩

2

+ 2 ⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) .

(4)

Clearly every nonspreadingmapping is 𝜅-strictly pseudonon-
spreading.

Osilike and Isiogugu [11] introduced a class of nonspread-
ing type mappings which is more general than that of the
mappings studied in [12] in Hilbert spaces and proved some
weak and strong convergence theorems in real Hilbert spaces.
Recently, the split feasibility problem also was considered in
the work by Deepho and Kumam [13, 14] and Sunthrayuth et
al. [15], and some weak and strong convergence theorems are
proved in real Hilbert spaces.

The purpose of this paper is to study the multiple-set
split feasibility problem (MSSFP) for 𝜅-strictly pseudonon-
spreadingmappings in the framework of infinite dimensional
Hilbert spaces.

In the sequel, we recall some definitions, notations, and
conclusionswhichwill be needed in proving ourmain results.

Definition 4 (see [3]). Let 𝐸 be a real Banach space. A map-
ping 𝑇 with domain 𝐷(𝑇) and range 𝑅(𝑇) in 𝐸 is said to be
demiclosed at origin if for any sequence {𝑥

𝑛
} in 𝐷(𝑇) which

converges weakly to a point 𝑥
∗

∈ 𝐷(𝑇) and ‖(𝐼 − 𝑇)𝑥
𝑛
‖

converges strongly to 0, then 𝑇𝑥
∗
= 𝑥
∗.

Definition 5. A Banach space 𝐸 is said to have Opial property
if, for any sequence {𝑥

𝑛
} with 𝑥

𝑛
⇀ 𝑥
∗, we have

lim inf
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
∗󵄩
󵄩
󵄩
󵄩
< lim inf
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑦

󵄩
󵄩
󵄩
󵄩 (5)

for all 𝑦 ∈ 𝐸 with 𝑦 ̸= 𝑥
∗.

Remark 6. It is well known that each Hilbert space possesses
Opial property.

Definition 7. A mapping 𝑆 : 𝐾 → 𝐾 is said to be semi-
compact, if, for any bounded sequence {𝑥

𝑛
} ⊂ 𝐾 with

lim
𝑛→∞

‖𝑥
𝑛
− 𝑆𝑥
𝑛
‖ = 0, there exists a subsequence {𝑥

𝑛𝑖
} ⊂

{𝑥
𝑛
} such that {𝑥

𝑛𝑖
} converges strongly to some point 𝑥∗ ∈ 𝐾.

Lemma 8 (see [11]). Let H be a real Hilbert space; then the
following results hold.

(i) For all 𝑥, 𝑦 ∈ 𝐻 and for all 𝑡 ∈ [0, 1],

󵄩
󵄩
󵄩
󵄩
𝑡𝑥 + (1 − 𝑡)𝑦

󵄩
󵄩
󵄩
󵄩

2

= 𝑡‖𝑥‖
2
+ (1 − 𝑡)

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

2

− 𝑡 (1 − 𝑡)
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

.

(6)

(ii) ‖𝑥 + 𝑦‖
2
≤ ‖𝑥‖

2
+ 2⟨𝑦, 𝑥 + 𝑦⟩.

(iii) If {𝑥
𝑛
}
∞

𝑛=1
is a sequence in𝐻 which converges weakly to

𝑧 ∈ 𝐻, then

lim sup
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑦

󵄩
󵄩
󵄩
󵄩

2

= lim sup
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑧 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

, ∀𝑦 ∈ 𝐻.

(7)

Definition 9. Let 𝐾 be a nonempty closed convex subset of a
real Hilbert space 𝐻. The metric projection𝑃

𝐾
: 𝐻 → 𝐾 is a

mapping such that, for each 𝑥 ∈ 𝐻, 𝑃
𝐾
𝑥 is the unique point

in𝐾 such that ‖𝑥 −𝑃
𝐾
𝑥‖ ≤ ‖𝑥 −𝑦‖, ∀𝑦 ∈ 𝐾. It is known that,

for each 𝑥 ∈ 𝐻,

⟨𝑥 − 𝑃
𝐾
𝑥, 𝑦 − 𝑃

𝐾
𝑥⟩ ≤ 0, ∀𝑦 ∈ 𝐾. (8)

Lemma 10 (see [11]). Let 𝐾 be a nonempty closed convex
subset of a real Hilbert space 𝐻, and let 𝑇 : 𝐾 → 𝐾 be a
𝜅-strictly pseudononspreading mapping. If 𝐹(𝑇) ̸= 0, then it is
closed and convex.

Lemma 11 (see [11]). Let𝐾 be a nonempty closed convex subset
of a real Hilbert space 𝐻, and let 𝑇 : 𝐾 → 𝐾 be a 𝜅-strictly
pseudononspreading mapping. Then (𝐼 − 𝑇) is demiclosed at 0.

2. Main Results

Theorem 12. Let 𝐻
1
, 𝐻
2
, 𝐴, {𝑆

𝑖
}, {𝑇
𝑖
}, 𝐶, 𝑄 be the same

as aforementioned. For each 𝑖 = 1, 2, . . . , 𝑁, let 𝑇
𝑖
be a

𝜅
𝑖
-strictly pseudononspreading mapping and let 𝑆

𝑖
be a 󰜚

𝑖
-

strictly pseudononspreading mapping. Let {𝑥
𝑛
} be the sequence

generated by

𝑥
1
∈ 𝐻
1
𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝑢
𝑛
= 𝑥
𝑛
+ 𝛾𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑆
𝑛(mod𝑁)𝑢𝑛,

(9)

where 𝛾 ∈ (0, (1 − 𝜅)/𝜆) with 𝜆 being the spectral of the
operator 𝐴∗𝐴 and 𝜅 = max{𝜅

1
, 𝜅
2
, . . . , 𝜅

𝑁
} ∈ (0, 1), and 𝛼

𝑛
is

a sequence in (0, 1 − 󰜚] with 󰜚 = max{󰜚
1
, 󰜚
2
, . . . , 󰜚

𝑁
} ∈ (0, 1).

If Γ ̸= 0 (where Γ is the set of solutions of the MSSFP defined by
(1)), then the sequence {𝑥

𝑛
} converges weakly to a point 𝑥∗ ∈ Γ.

Proof. The proof is divided into four steps.
(I) We first prove that lim

𝑛→∞
‖𝑥
𝑛
− 𝑝‖ exists for any 𝑝 ∈

Γ.
Since 𝑝 ∈ Γ, 𝑝 ∈ 𝐶 := ⋂

𝑁

𝑖=1
𝐹(𝑆
𝑖
) and 𝐴𝑝 ∈ 𝑄 :=

⋂
𝑁

𝑖=1
𝐹(𝑇
𝑖
). It follows from (9) that

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝 + 𝛼

𝑛
(𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑢

𝑛
)
󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝛼
𝑛
⟨𝑢
𝑛
− 𝑝, 𝑆

𝑛(mod𝑁)𝑢𝑛 − 𝑢
𝑛
⟩

+ 𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑆
𝑛(mod𝑁)𝑢𝑛

󵄩
󵄩
󵄩
󵄩

2

.

(10)
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Because 𝑆
𝑖
is 󰜚
𝑖
-strictly pseudononspreading, for each V ∈

𝐻
1
, we have

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑆

𝑛(mod𝑁)V
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− V

󵄩
󵄩
󵄩
󵄩

2

+ 󰜚
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑆
𝑛(mod𝑁)𝑢𝑛 − (V − 𝑆

𝑛(mod𝑁)V)
󵄩
󵄩
󵄩
󵄩

2

+ 2 ⟨𝑢
𝑛
− 𝑆
𝑛(mod𝑁)𝑢𝑛, V − 𝑆

𝑛(mod𝑁)V⟩ .

(11)

Taking V = 𝑝, we have

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 󰜚
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑆
𝑛(mod𝑁)𝑢𝑛

󵄩
󵄩
󵄩
󵄩

2

.

(12)

This implies that

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑢

𝑛
+ 𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑢

𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2 ⟨𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑢

𝑛
, 𝑢
𝑛
− 𝑝⟩

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 󰜚
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑆
𝑛(mod𝑁)𝑢𝑛

󵄩
󵄩
󵄩
󵄩

2

.

(13)

Thus it yields that

2𝛼
𝑛
⟨𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑢

𝑛
, 𝑢
𝑛
− 𝑝⟩

≤ 𝛼
𝑛
(󰜚 − 1)

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑆
𝑛(mod𝑁)𝑢𝑛

󵄩
󵄩
󵄩
󵄩

2

.

(14)

Substituting (14) into (10) and simplifying, we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛼
𝑛
(󰜚 − 1)

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑆
𝑛(mod𝑁)𝑢𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑆
𝑛(mod𝑁)𝑢𝑛

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

−𝛼
𝑛
(1 −󰜚− 𝛼

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑆
𝑛(mod𝑁)𝑢𝑛

󵄩
󵄩
󵄩
󵄩

2

.

(15)

On the other hand,
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝 + 𝛾𝐴

∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝛾 ⟨𝑥
𝑛
− 𝑝, 𝐴

∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
⟩

+ 𝛾
2󵄩
󵄩
󵄩
󵄩
𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝛾 ⟨𝑥
𝑛
− 𝑝, 𝐴

∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
⟩

+ 𝛾
2
⟨𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
, 𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
⟩

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝛾 ⟨𝑥
𝑛
− 𝑝, 𝐴

∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
⟩

+ 𝛾
2
⟨𝐴𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
, (𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
⟩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝛾 ⟨𝑥
𝑛
− 𝑝, 𝐴

∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
⟩

+ 𝛾
2
‖𝐴‖
2󵄩
󵄩
󵄩
󵄩
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

.

(16)

Since𝑇
𝑖
is 𝜅
𝑖
-strictly pseudononspreading and noting that

𝐴𝑝 ∈ ⋂
𝑁

𝑖=1
𝐹(𝑇
𝑖
), we have

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛(mod𝑁)𝐴𝑥

𝑛
− 𝐴𝑝

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑇
𝑛(mod𝑁)𝐴𝑥

𝑛
− 𝐴𝑥
𝑛
+ 𝐴𝑥
𝑛
− 𝐴𝑝

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑇
𝑛(mod𝑁)𝐴𝑥

𝑛
− 𝐴𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝐴𝑥
𝑛
− 𝐴𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2 ⟨𝑇
𝑛(mod𝑁)𝐴𝑥

𝑛
− 𝐴𝑥
𝑛
, 𝐴𝑥
𝑛
− 𝐴𝑝⟩

≤
󵄩
󵄩
󵄩
󵄩
𝐴𝑥
𝑛
− 𝐴𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝜅
󵄩
󵄩
󵄩
󵄩
𝑇
𝑛(mod𝑁)𝐴𝑥

𝑛
− 𝐴𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

.

(17)

This leads to

⟨𝑇
𝑛(mod𝑁)𝐴𝑥

𝑛
− 𝐴𝑥
𝑛
, 𝐴𝑥
𝑛
− 𝐴𝑝⟩

≤

𝜅 − 1

2

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛(mod𝑁)𝐴𝑥

𝑛
− 𝐴𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

.

(18)

By (18), we have

⟨𝑇
𝑛(mod𝑁)𝐴𝑥

𝑛
− 𝐴𝑥
𝑛
, 𝑇
𝑛(mod𝑁)𝐴𝑥

𝑛
− 𝐴𝑝⟩

= ⟨𝑇
𝑛(mod𝑁)𝐴𝑥

𝑛
− 𝐴𝑥
𝑛
, 𝑇
𝑛(mod𝑁)𝐴𝑥

𝑛
+ 𝐴𝑥
𝑛
− 𝐴𝑥
𝑛
− 𝐴𝑝⟩

=
󵄩
󵄩
󵄩
󵄩
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

+⟨𝑇
𝑛(mod𝑁)𝐴𝑥

𝑛
− 𝐴𝑥
𝑛
, 𝐴𝑥
𝑛
− 𝐴𝑝⟩

≤
󵄩
󵄩
󵄩
󵄩
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

+

𝜅 − 1

2

󵄩
󵄩
󵄩
󵄩
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

=

𝜅 + 1

2

󵄩
󵄩
󵄩
󵄩
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

.

(19)

It follows from (19) that

2𝛾 ⟨𝑥
𝑛
− 𝑝, 𝐴

∗
(𝑇
𝑛( mod 𝑁) − 𝐼)𝐴𝑥

𝑛
⟩

= 2𝛾 ⟨𝐴 (𝑥
𝑛
− 𝑝) , (𝑇

𝑛(mod𝑁) − 𝐼)𝐴𝑥
𝑛
⟩

= 2𝛾 ⟨𝐴 (𝑥
𝑛
− 𝑝) + (𝑇

𝑛(mod𝑁) − 𝐼)𝐴𝑥
𝑛

− (𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
, (𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
⟩

= 2𝛾 ⟨𝑇
𝑛(mod𝑁)𝐴𝑥

𝑛
− 𝐴𝑝, (𝑇

𝑛(mod𝑁) − 𝐼)𝐴𝑥
𝑛
⟩

− 2𝛾
󵄩
󵄩
󵄩
󵄩
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ [𝛾 (1 + 𝜅) − 2𝛾]
󵄩
󵄩
󵄩
󵄩
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

= [𝛾 (𝜅 − 1)]
󵄩
󵄩
󵄩
󵄩
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

.

(20)
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By using (15), (16), (19), and (20), we have
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
2
‖𝐴‖
2󵄩
󵄩
󵄩
󵄩
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

+ [𝛾 (𝜅 − 1)]
󵄩
󵄩
󵄩
󵄩
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

− 𝛼
𝑛
(1 − 𝜎 − 𝛼

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑆
𝑛(mod𝑁)𝑢𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

− 𝛾 (1 − 𝜅 − 𝛾‖𝐴‖
2
)
󵄩
󵄩
󵄩
󵄩
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

− 𝛼
𝑛
(1 − 󰜚 − 𝛼

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑆
𝑛(mod𝑁)𝑢𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

.

(21)

This shows that lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ exists.

(II) We now prove that lim
𝑛→∞

‖𝑢
𝑛
− 𝑝‖ exists.

In fact, by (21), we have

[𝛾 (1 − 𝜅 − 𝛾‖𝐴‖
2
)]

󵄩
󵄩
󵄩
󵄩
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 𝛼
𝑛
(1 − 󰜚 − 𝛼

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑆
𝑛(mod𝑁)𝑢𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

−
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2

.

(22)

This implies that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩
= 0, (23)

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑆
𝑛(mod𝑁)𝑢𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (24)

By virtue of (16), (23), and (24), it follows that
lim
𝑛→∞

‖𝑢
𝑛
−𝑝‖ exists and lim

𝑛→∞
‖𝑥
𝑛
−𝑝‖ = lim

𝑛→∞
‖𝑢
𝑛
−

𝑝‖.
(III) Now, we prove that lim

𝑛→∞
‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0 and

lim
𝑛→∞

‖𝑢
𝑛+1

− 𝑢
𝑛
‖ = 0.

In fact, it follows from (9) that
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛
) (𝑥
𝑛
+ 𝛾𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
)

+𝛼
𝑛
𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛
) (𝛾𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
)

+𝛼
𝑛
(𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑥

𝑛
)
󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛
) (𝛾𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
)

+𝛼
𝑛
(𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑢

𝑛
) + 𝛼
𝑛
(𝑢
𝑛
− 𝑥
𝑛
)
󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑛
) (𝛾𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
)

+ 𝛼
𝑛
(𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑢

𝑛
)

+𝛼
𝑛
𝛾𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛

󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
𝛾𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
+ 𝛼
𝑛
(𝑆
𝑛(mod𝑁)𝑢𝑛 − 𝑢

𝑛
)
󵄩
󵄩
󵄩
󵄩
.

(25)

This together with (23) and (24) leads to lim
𝑛→∞

‖𝑥
𝑛+1

−

𝑥
𝑛
‖ = 0.
Similarly, it follows from (9), (23), and (25) that

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1

− 𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

+ 𝛾𝐴
∗
(𝑇
𝑛+1(mod𝑁) − 𝐼)𝐴𝑥

𝑛+1

− [𝑥
𝑛
+ 𝛾𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
]
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝛾𝐴
∗
(𝑇
𝑛+1(mod𝑁) − 𝐼)𝐴𝑥

𝑛+1

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
[𝛾𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
]
󵄩
󵄩
󵄩
󵄩

󳨀→ 0 (as 𝑛 → ∞) .

(26)

(IV) Finally, we prove that 𝑥
𝑛
⇀ 𝑥
∗ and 𝑢

𝑛
⇀ 𝑥
∗, which

is a solution of the MSSFP.
In fact, since {𝑢

𝑛
} is bounded, there exists a subsequence

{𝑢
𝑛𝑖
} ⊂ {𝑢

𝑛
} such that {𝑢

𝑛𝑖
} ⇀ 𝑥

∗
∈ 𝐻
1
. Hence, for any

positive integer 𝑗 = 1, 2, . . . , 𝑁, there exists a subsequence
{𝑛
𝑖
(𝑗)} ⊂ {𝑛

𝑖
} with 𝑛

𝑖
(𝑗)(mod𝑁) = 𝑗 such that {𝑢

𝑛𝑖(𝑗)
} ⇀ 𝑥

∗.
Again, by (24) we know that ‖𝑢

𝑖𝑁+𝑗
− 𝑆
𝑗
𝑢
𝑖𝑁+𝑗

‖ → 0, as
𝑛 → ∞; therefore, we have that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛𝑖(𝑗)

− 𝑆
𝑗
𝑢
𝑛𝑖(𝑗)

󵄩
󵄩
󵄩
󵄩
󵄩
󳨀→ 0, as 𝑛

𝑖(𝑗)
󳨀→ ∞. (27)

Since 𝑆
𝑗
is demiclosed at zero, it follows that 𝑥 ∈ 𝐹(𝑆

𝑗
).

By the arbitrariness of 𝑗 = 1, 2, . . . , 𝑁, we have

𝑥
∗
∈ 𝐶 :=

𝑁

⋂

𝑖=1

𝐹 (𝑆
𝑖
) . (28)

Moreover, from (9) and (24), we have 𝑥
𝑛𝑖

= 𝑢
𝑛𝑖

−

𝛾𝐴
∗
(𝑇
𝑛𝑖(mod𝑁) − 𝐼)𝐴𝑥

𝑛𝑖
⇀ 𝑥
∗. Since 𝐴 is a bounded linear

operator, it follows that𝐴𝑥
𝑛𝑖

⇀ 𝐴𝑥
∗. For any positive integer

𝑘 = 1, 2, . . . , 𝑁, there exists a subsequence {𝑥
𝑛𝑖(𝑘)

} ⊂ {𝑥
𝑛𝑖
}

with 𝑛
𝑖
(𝑘)(mod𝑁) = 𝑘 such that 𝐴𝑥

𝑛𝑖(𝑘)
⇀ 𝐴𝑥

∗ and
‖𝐴𝑥
𝑛𝑖(𝑘)

−𝑇
𝑘
𝐴𝑥
𝑛𝑖(𝑘)

‖ → 0. Since 𝑇
𝑘
is demiclosed at zero, we

have 𝐴𝑥
∗

∈ 𝐹(𝑇
𝑘
). By the arbitrariness of 𝑘 ∈ {1, 2, . . . , 𝑁},

it follows that 𝐴𝑥
∗

∈ 𝑄 := ⋂
𝑁

𝑘=1
𝐹(𝑇
𝑘
). This together with

𝑥
∗

∈ 𝐶 shows that 𝑥∗ ∈ Γ; that is, 𝑥∗ is a solution to the
MSSFP.

Now, we prove that 𝑥
𝑛
⇀ 𝑥
∗ and 𝑢

𝑛
⇀ 𝑥
∗.

Suppose on the contrary that there exists another subse-
quence {𝑢

𝑛𝑙
} ⊂ {𝑢

𝑛
} such that {𝑢

𝑛𝑙
} ⇀ 𝑦

∗
∈ Γ with 𝑦

∗
̸= 𝑥
∗.

Consequently, by virtue of the existence of lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖

and the Opial property of Hilbert space, we have

lim inf
𝑛𝑖→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛𝑖
− 𝑥
∗󵄩󵄩
󵄩
󵄩
󵄩
< lim inf
𝑛𝑖→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛𝑖
− 𝑦
∗󵄩󵄩
󵄩
󵄩
󵄩

= lim inf
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑦
∗󵄩
󵄩
󵄩
󵄩
= lim inf
𝑛𝑗→∞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑢
𝑛𝑗

− 𝑦
∗
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

< lim inf
𝑛𝑗→∞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑢
𝑛𝑗

− 𝑥
∗
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

= lim inf
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑥
∗󵄩
󵄩
󵄩
󵄩

= lim inf
𝑛𝑖→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛𝑖
− 𝑥
∗󵄩󵄩
󵄩
󵄩
󵄩
.

(29)
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This is a contradiction. Therefore 𝑢
𝑛

⇀ 𝑥
∗. By (9) and

(24), we have

𝑥
𝑛
= 𝑢
𝑛
− 𝛾𝐴
∗
(𝑇
𝑛

𝑛(mod𝑁) − 𝐼)𝐴𝑥
𝑛
⇀ 𝑥
∗
. (30)

Therefore, the conclusion follows.
This completes the proof of Theorem 12.

Theorem 13. Let 𝐻
1
, 𝐻
2
, 𝐴, {𝑆

𝑖
}, {𝑇
𝑖
}, 𝐶, 𝑄 be the same

as in Theorem 12. For each 𝑖 = 1, 2, . . . , 𝑁, let 𝑇
𝑖
be a 𝜅

𝑖
-

strictly pseudononspreading mapping, and 𝑆
𝑖
be a 󰜚

𝑖
-strictly

pseudononspreading mapping. Let {𝑥
𝑛
} be the sequence gener-

ated by

𝑥
1
∈ 𝐻
1
𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝑢
𝑛
= 𝑥
𝑛
+ 𝛾𝐴
∗
(𝑇
𝑛(mod𝑁) − 𝐼)𝐴𝑥

𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑆
𝑛(mod𝑁)𝑢𝑛,

(31)

where 𝛾 ∈ (0, (1−𝜅)/𝜆)with 𝜆 being the spectral of the operator
𝐴
∗
𝐴 and 𝜅 = max{𝜅

1
, 𝜅
2
, . . . , 𝜅

𝑁
} ∈ (0, 1), and {𝛼

𝑛
} is a

sequence in (0, 1 − 󰜚] with 󰜚 = max{󰜚
1
, 󰜚
2
, . . . , 󰜚

𝑁
} ∈ (0, 1).

If Γ ̸= 0 and if there exists a positive integer 𝑗 such that 𝑆
𝑗
is

semicompact, then the sequence {𝑥
𝑛
} converges strongly to a

point 𝑥∗ ∈ Γ.

Proof. Without loss of generality, we can assume that 𝑆
1
is

semicompact. It follows from (27) that
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛𝑖(1)

− 𝑆
1
𝑢
𝑛𝑖(1)

󵄩
󵄩
󵄩
󵄩
󵄩
󳨀→ 0, 𝑛

𝑖(1)
󳨀→ ∞. (32)

Therefore, there exists a subsequence of {𝑢
𝑛𝑖(1)

} (for the
sake of convenience, we still denote it by {𝑢

𝑛𝑖(1)
}), such that

𝑢
𝑛𝑖(1)

→ 𝑢
∗

∈ 𝐻
1
. Since 𝑢

𝑛𝑖(1)
⇀ 𝑥
∗, 𝑥∗ = 𝑢

∗, and so
𝑢
𝑛𝑖(1)

→ 𝑥
∗
∈ Γ. By virtue of the existence of lim

𝑛→∞
‖𝑥
𝑛
−

𝑝‖, we know that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑥
∗󵄩
󵄩
󵄩
󵄩
= 0, lim

𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
∗󵄩
󵄩
󵄩
󵄩
= 0. (33)

That is, {𝑢
𝑛
} and {𝑥

𝑛
} both converge strongly to the point

𝑥
∗
∈ Γ. This completes the proof of Theorem 13.
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